70GHz二次谐波倍频回旋速调管高频系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐波倍频回旋速调管能在毫米波、亚毫米波产生高峰值功率,高平均功率,并有一定的带宽的微波毫米波,而且由于其谐波和倍频的两个特性使得它所需的磁场和对输入信号源的要求大为降低。这使它成为一种容易实现的高功率THz源。在军事和科研上都具有极其重要的应用前景,受到各国的重视,取得了长足的发展,并迅速成为一种极有潜力的高功率毫米波及THz源。
     本文利用模式匹配与散射矩阵级联的办法,分析计算了单级和多级突变及渐变结构的模式耦合与转化。结合高频计算软件HFSS设计了70GHz二次谐波倍频四腔回旋速调管的高频结构,包括输入腔,漂移段,群聚腔和输出腔。研究了TE_(02)模腔体绕射与模式转化问题,有效解决了谐波TE_(02)模工作时,由于漂移段不能截止70GHz的TE_(01)模而引发的一系列问题。
     利用HFSS对回旋速调管输入耦合器和回旋行波管输入耦合器进行了仿真与优化。提出了一种理论与软件模拟计算相结合的办法,有效的解决了输入耦合器内腔模式纯度的计算问题。研究了回旋速调管输入耦合器的耦合缝的分布形式、几何参数及个数对内腔模式纯度和耦合效率的影响。
     利用轨道理论对回旋速调管的输出腔进行了非线性非自洽的计算,并进行了优化。结果表明恰当的预群聚可以有效地提高互作用效率,而且即使二次谐波工作也能达到很高的互作用效率。
     建立了70GHz二次谐波倍频四腔回旋速调管的PIC计算模型,并进行了模拟计算和优化。研究输入功率和频率、电子电流、电子横纵速度比和纵向磁场强度等参数对输出功率、增益、效率的影响。通过优化得到了中心频率69.81 GHz的二次谐波倍频四腔回旋速调管放大器设计方案。粒子模拟表明:在工作电压70 kV,注电流13 A,电子注横向与纵向速度比为1.5,输入功率约10W时,输出功率256 kW,带宽160 MHz,电子效率28%,饱和增益44 dB。
     为配合课题研究需要,对基波TE_(01)模和基波TE_(02)模四腔回旋速调管进行了PIC模拟计算。对TE_(01)模在工作电压70kV,注电流12A,电子注横向与纵向速度比为1.5,输入功率约10W时,输出功率406kW,电子效率48.3%,饱和增益约46dB,绝对带宽约为650MHz,相对带宽1.9%。对TE_(02)模在工作电压70kV,注电流20A,电子注横向与纵向速度比为1.5,输入功率约12W时,输出功率708kW,电子效率50.6%,饱和增益约47dB,绝对带宽约为510MHz,相对带宽1.5%。
     本文在大量阅读和研究国内外相关文献的基础上,在导师的悉心指导下,对基波和谐波倍频回旋速调管进行创新性研究,取得了如下的一些新成果和新结论。对回旋速调管的设计研究具有重要的意义。
     1.对工作模为TE_(02)模的群聚腔绕射Q值随腔长成准周期性变化的研究。研究表明TE_(02)模与TE_(01)模群聚腔相比,端面处的相位和幅值以及绕射Q值和模式转化都有很大不同,且TE_(02)模群聚腔绕射Q值随腔长的变化成准周期性变化。并由此特点成功解决了二次谐波回旋速调管漂移段不能截止工作频率的TE_(01)模,从而引起的腔体间高频串扰的问题。这种研究对基波TE_(02)模工作也有相当大的价值。
     2.对回旋速调管输入耦合器模式纯度的研究,提出了一种模式纯度计算方法。回旋速调管输入耦合器国内外都有相关研究和报道,但对模式纯度只是一些定性的分析。本文首次提出了一种模式纯度计算方法,并对回旋速调管输入耦合器模式纯度进行定量计算,并对耦合缝的分布及几何参数等参量的变化对输入耦合器的模式纯度、频率、Q值和内腔储能等进行研究,成功设计了基波回旋速调管输入耦合器,并进行了试验冷测,结果基本一致。
     3.对预群聚电子注输出腔注波互作用的优化研究。利用非线性非自洽注波互作用理论优化计算,研究了预群聚基波和二次谐波输出腔注波互作用。进一步的研究将会极大的促进基波和二次谐波回旋速调管的研究及设计。
     4.对二次谐波倍频、基波TE_(01)模和基波TE_(02)模回旋速调管的PIC模拟优化。利用对TE_(02)模工作特性的研究,成功设计了基波和谐波倍频回旋速调管高频系统。PIC优化结果表明:所设计的70GHz二次谐波倍频回旋速调管的效率在高于国外相关PIC模拟报道的前提下,带宽是其报道的两倍多;所设计的Ka波段基波回旋速调管的效率达到50.6%和48.3%,带宽达到1.5%和1.9%。
The frequency-doubling gyroklystron amplifiers not only can produce high pulsepower and high average power in millimeter and sub-millimeter wave bands withmoderate bandwidth, but also because of the harmonic and frequency-doubling property,it needs very low magnetic field, low frequency and power of the input signal. And thismade it become a good candidate sourse of high power THz microwave. So greatmilitary countries pay attention to development of frequency-doubling gyroklystronamplifier's research, and spend a lot to develop them. Its research had become the frontand hotspot in the field of high power microwave and THz sourse.
     In this paper, the single and multiple abrupt section were studied usingmode-matching technique and scattering matrix formulation. A high frequency circuit ofa four cavities 70-GHz second-harmonic frequency-doubling gyroklystron has beenstudied in this method. The problem of mode conversion of the TE_(02) mode is studied.A effective method is used to reduce the RF crosstalk of the 70GHz TE_(01) mode betweencavities for drift section not cut off.
     The input coupler of gyroklystron is simulated and optimized by HFSS. A method,which combine theory and simulation, is proposed to solve the problem of calculatingthe purity of modes in coupler. The influence of the number and position of slots to thecoupling efficiency and purity of the modes were studied.
     The ballistic bunching theory was used to calculate and optimize the nonlinearproperty of the output cavity of gyroklystron. The results show that the prebunchingcould improve the interaction efficiency, even on second harmonic, the high efficiencycould achieved also.
     A 70GHz second-harmonic frequency-doubling gyroklystron with four cavities hasbeen studied. The Q factor and mode conversion of the bunching cavities were studiedin detail with field matching analysis to reduce the RF crosstalk of the 70GHz TE_(01)mode between cavities. And the RF circuit was designed and optimized to enhanceoperating bandwidth and electron efficiency. And then a 70GHz second-harmonic frequency-doubling gyroklystron was designed. 256kW output power, 44dB saturationgain, 28% electron efficiency can be obtained with about 160MHz instantaneousbandwidth were obtain by PIC simulation at 70-kV, 13A electron beam.
     The two kinds of first harmonic gyroklystron which working in TE_(01) mode and TE_(02)mode was simulated too. When working in TE_(01) mode, 406kW output power, 46dBsaturation gain, 48.3% electron efficiency can be obtained by PIC simulation at 70-kV,12A electron beam. While working in TE_(02) mode, 708kW output power, 47dBsaturation gain, 50.6% electron efficiency can be obtained by PIC simulation at 70-kV,20A electron beam.
引文
[1] V. V. Alikaev, G. A. Bobrovskii, M. M. Ofitserov, et al. Electron-cyclotron heating on the Tokamak TM-3, JETP Let-t, 1972,15(7):27-31
    [2] M. Thumm, S. Alberti, A. Arnold, et al. Gyrotron development in EU for present and future fusion plasma experiments, IEEE International Conference on Infrared and Millimeter Waves, 2006,7-8
    [3] F. Karlsruhe, A. Euratom. Novel application of millimeter and submillimeter wave gyro-devices, International Journal of Infrared and Millimeter Waves,2001,22(3):377-385
    [4] I. I. Antakov, A. V. Gaponov, E. V. Zasypkin, et al. Gyroklystrons-millimeter wave amplifiers of the highest power, Proc. 1993 Int .Symp.Strong Microwaves in Plasmas,Moscow-N.Novgorod Moscow,1994,587
    [5] H. R. Jory, F. Friedlan, S. J. Hegji, et al. Gyrotrons for high-power millimeter wave generation, Onde Electrique, 1977,59(4):234-237
    [6] R. S. Symons, H. R. Jory. Cyclotron Resonance Devices, In Advances in Electronics and Electron Physics, 1981,55(2): 1-75
    [7] W. M. Bollen, A. H. McCurdy, J. H. McAdoo, et al. Operational Characteristics of the NRL gyroklystron amplifier. IEEE Trans. On Nuclear Sci.,1985,32(5):2879-2880
    [8] W. M. Bollen, A. H. McCurdy, R. K. Paker, et al. Design and performance of a three-cavity gyroklystron amplifier. IEEE Trans. On Plasma Science,1985,13(6):417-423
    [9] B. Arfin, A. K. Gangnly. A three-cavity gyroklystron amplifier experiment,int. J. Electronics, 1982,53(6):709-714
    [10] A. A. Tolkachev, B. A. Levitan, G. K. Solovjev, et al. A megawatt power millimeter-wave phased-array radar. IEEE AES Eystems Magazine,2000,15(7):25-32
    [11] Monica. Blank, Bruce. G. Danly. Circuit Design of a Wideband W-Band Gyroklystron Amplifier for Radar Applications. IEEE Trans. On Plasma Science,1998,26(3):426-432
    [12] Ivailo. G. Yovchev, Wes. G. Lawson, Gregory. S. Nusinovich, et al. Present Status of a 17.1-GHz Four-Cavity Frequency-Doubling Coaxial Gyroklystron Design. IEEE Trans. On Plasma Science,2000,28(3):523-528
    [13] Wess. Lawson. The Design of a High-Power,High-Gain, Frequency-Doubling Gyroklystron. IEEE Trans. On Plasma Science,2005,33(2):858-865
    [14] W. Lawson, M. Walter, K. Ngnyen, M. Garven, et al. Design of a 1 MW, 35 GHz, TE02, 2ndHarmonic Output Gyroklystron. IEEE Trans. On Plasma Science, 2000,28(3):688-694
    [15] J. Zhao, Hezhong Guo, Gregory S. Nusinovich, et al. Studies of a Three-Stage Inverted Gyrotwystron. IEEE Trans. On Plasma Science,2000,28(3):657-664
    [16] Chan-Wook Baik, Seok-Gy Jeon, Dae-Ho Kim, et al. Third-Harmonic Frequency Multiplication of a Two-Stage Tapered Grrotron TWT Amplifier. IEEE Trans. On Electron Devices,2005,52(5):829-837
    [17] Anthony T. Lin. Amplification Mechanism in the Output Section of the Harmonic Multiplying Gyrotron Traveling-Wave Amplifier. IEEE Trans. On Plasma Science, 2002,30(3):931-937
    [18] Gregory S. Nusinovich, Olesandr V. Sinitsyn, J. Rodgers, et al. Comparison of Multistage Gyroamplifiers Operating in the Frequency-Multiplication Regime With Gyroamplifiers Operating at a Given Cylotron Harmonic. IEEE Trans. On Plasma Science,2004,32(3): 957-969
    [19] Gregory S. Nusinovich, G. P. Saraph, V. L. Crranatstein. Scaling Law for Ballistic Bunching IN multicavity Harmonic Gyroklystron. Physcical review leters, 1997,78(9):1815-1818
    [20] G. S. Nusinovich, B. Levush, O. Dumbrajs. Optimization of multistage harmonic gyro-devices Phys. Plasmas, 1996,3(8):3133-3144
    [21] E. M. Demidovich, I. S. Kovalev, A. A. Kurayev, et al. Efficiency-optimized cascaded circuits utilizing the cyclotron resonance. Radio Eng. Electron. Phys., 1973, 18(10): 1542-1549
    [22] S. V. Kolosov, A. A. Kurayev. Comparative analysis of the interaction at the first and second harmonics of the cyclotron resonance. Radio Eng. Electron. Phys.,1974,19(10): 65-73
    [23] A. A. Kurayev, F. G. Shevchenvo, V. P. Shetakovich. Efficiency-optimized output cavity profiles that provide a higher margin of gyroklystron stability. Radio Eng. Electron. Phys., 1974,19(5): 96-103
    [24] V. I. Kanavets, O. I. Klimov. The electron efficiency of a monotron and klystron with a relativistic polyhelical electron beam. Radio Eng. Electron. Phys.,1976,21(11):78-83
    [25] R. S. Symons, H. R. Jory. Small-signal theory of gyrotrons and gyroklystrons. In Proc. 7 th Symp. Eng. Probl. Fusion. Res. Knoxville, TN, 1977,1111-1115
    [26] I. S. Kovalev, A. A. Kurayev, S. V. Kolosofv, et al. The effect of space charge in gyroresonance devices with thin equally mixed and axially symmetrical electron beams. Radio Eng. Electron. Phys., 1974,19(5): 149-151
    [27] A. A. Kurayev, A. F. Stekolnikov. Study of influence of space charge forces on electron bunching in drift tube of gyroklystron. Radio Eng. Electron. Phys.,1980,25(9):78-84
    [28] Caplan. Gain characteristics of stagger-tuned multi-cavity gyroklystron amplifier. Dig. 8th Int. Conf. IR&MM Waves. Miami: 1983,15(3): 12-17
    [29] T. M. Tran, K. E. Kreischer, R. J. Temkin. Self-consisitent theory of a harmonic gyroklystron with a minimum Q cavity. Phys. Fluids, 1986,29(11):3858-3863
    [30] T. M. Tran, B. G Danly, K. E. Kreischer, et al. Operation of gyroklystron efficiency. Phys. Fluids, 1986,29(4): 1274-1281
    [31] H. R. Jory. Millimeter Wave Gyrotron Development Phase I. Rome Air Development Center. 1977,288-300
    [32] D. S. Furuno, D. B. McDermott, N. C. Luthmann, et al. Design and operation of a high-harmonic gyro-klystron amplifier, in Conf. Dig. 8th Int. Conf. IR&MM Waves. Miami: 1983,12-17
    [33] D. S. Furuno, D. B. McDermott, N. C. Luthmann, et al. A high-harmonic gyro-klystron amplifier: theory and experiment. Int. J.Electronics, 1984,57(6): 1151-1165
    [34] K. R. Chu, D. S. Furuno, N. C. Luthmann, et al. Theory, design, and operation of large-orbit high-harmonic gyro-klystron amplifier. IEEE Trans. On Plasma Sci., 1985,13(6):435-443
    [35] P. E. Latham, W. Lawson, V. Irwin. The design of a 100MW, Ku band second harmonic gyroldystron experiment. IEEE Trans. On Plasma Sci, 1994,22(5):804-817
    [36] D. B. McDermott, C. K. Chong, N. C. Luthmann, et al. High-harmonic slotted gyroklystron amplifier: linear theory and nonlinear simulation. IEEE Trans. On Plasma Sci., 1994,22(5): 920-931
    [37] J. D. Mcnally, D. B. McDermott, N. C. Luthmann, et al. Third-harmonic TE_(411) gyroklystron amplifier. IEEE Trans. On Plasma Sci., 1998,26(3):496-499
    [38] J. D. Mcnally, D. B. McDermott, Q. S. Wang, et al. High performance, 70kV third-harmonic smooth-bore gyroklystron amplifier. IEEE Trans. On Plasma Sci., 1994,22(5):932-938
    [39] A. Wexler, Solution of Waveguide Discontinuities by modal analysis, IEEE Trans. Microwave Theory Tech, 1967,15(5):508-517
    [40] Jeff. M. Neilson, Peter. E. Latham, Malcolm. Caplan, et al. Determination of the Resonant Frequencies in a Complex Cavity Using the Scattering Matrix Formulation, IEEE Trans. Microwave Theory Tech., 1989,37(8): 1165-1169
    [41] D. Wagner, M. Thumm, G. Gantenbein, et al. Analysis of a complete gyrotron oscillator using the scattering matrix description, International journal of infrared and millimeter waves, 1998,19(2): 185-193
    [42] 罗勇,李宏福.回旋速调管群聚腔研究.电子学报,2003,31(6):864-866
    [43] 罗勇,李宏福,谢仲怜,等.回旋速调管中间腔的研究.电子学报,2003,31(6):865-866
    [44] 罗勇,李宏福,谢仲怜,等.含有吸收介质的突变结构腔体场匹配分析.物理学报,2004,53(1):229-232
    [45] 杨仕文,李宏福.突变结构复合腔高频场研究.电子学报,1997,25(12):43-47
    [46] 张克潜,李德杰.微波与光电子学中的电磁理论(第二版).北京:电子工业出版社,2001
    [47] 李浩.高功率微波高斯馈源的研究:[硕士论文].成都:电子科技大学,2003:31-33
    [48] Lawson. W, Ives. R. L, Mizuhara, et al. M Design ofa 10-MW,91.4-GHz Frequency-Doubling Gyroklystron for Advanced Accelerator Applications [J]. IEEE trans. Plasma science, 2001, 29:545-558.
    [49] Garven. M, Manheimer. W. M, Blank.M. Simple theory of input couplers for gyroklystron amplifiers[J]. IEEE Trans Plasma Sci.,1998,26(3):433-443.
    [50] McCurdy. A. H, Choi. J. J. Design and analysis of a coaxial couplers for a 35 GHz gyroklystron amplifiers[J]. IEEE Trans Plasma Sei,1999,47(2): 164-175.
    [51] 罗勇,李宏福.回旋速调放大器输入谐振腔分析及数值模拟[J].强激光与电子束,2003,16(3):358-362.
    [52] Chu. K. R. Theory of electron cyclotron maser interaction in a cavity at the harmonic frequencies [J]. Phys. Fluids,1978,21(12):2354-2364
    [53] 刘盛纲.相对论电子学.成都:科学出版社,1987
    [54] Danly. B. G, Temkin. R. J. Generalized nonlinear harmonic gyrotron theory [J]. Phys. Fluids, 1986,29:561-567
    [55] 李宏福,杜品忠,杨仕文,等.突变复合腔回旋管自洽场理论与模拟.物理学报,2000,49(2):312-317
    [56] 罗勇,李宏福.回旋速调管放大器注-波互作用分析.强激光与粒子束,2005,17(5):725-727
    [57] V. A. Flyagin, A. L. Goldenberg, G. S. Nusionvich. Poerful Gyrotrons [J] Infrared and Millimeter Waves, 1984,11(3): 179-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700