电动助力转向系统操纵性能及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电动助力转向(Electric Power Steering,简称EPS)系统越来越被广泛应用在轿车上,人们对EPS系统的操纵性能要求也越来越高,这给EPS系统控制器的设计提出了极大的挑战。
     本论文针对EPS系统在汽车转向与回正工况下的各项操纵性能要求及其影响因素,设计一种内外环双层结构的控制器。所设计的控制器首先在EPS系统模型中进行仿真分析,然后进行软硬件实现,并在台架和实车试验中对仿真结果进行验证,从而证明本文设计的控制器能够有效提高EPS系统的操纵性能。主要的研究内容和成果概括如下:
     一、建立了EPS系统的动力学模型和简化的两自由度汽车模型。通过分析EPS系统原始动态性能,提出系统中存在的不确定因素,并详细分析了不确定因素对操纵性能造成的影响。针对EPS系统的各项操纵性能要求,设计一种内外环双层结构的控制器,包括主环路控制和伺服环路控制。针对汽车在行驶过程中的转向和回正工况,主环路控制分为转向控制策略和回正控制策略。
     二、在主环路转向控制策略中,提出了一种由分段多项式确定助力特性曲线的方法,此方法确定的助力特性曲线能够为驾驶员提供比较好的“手感”,但同时也为EPS系统带来了非线性因素。为了实现EPS系统在不确定干扰因素影响下的转向操纵性能,设计了保证EPS系统时滞相关鲁棒镇定的H∞鲁棒模糊状态反馈控制器。仿真结果表明,所提出的转向控制策略能够保证转向过程中的操纵性能要求:提高转向轻便性和“路感”,改善转向跟随性和转向力矩平顺性,使系统具有鲁棒稳定性。
     三、在主环路回正控制策略中,为了克服转向系统的参数摄动、外界干扰以及非线性摩擦,采用基于参考模型的滑模控制算法实现EPS系统的回正控制,并设计滑模观测器观测不可直接测量的状态量。仿真结果表明,所提出的回正控制策略不仅能够实现EPS系统在汽车低速时的回正性能,而且能够提高汽车高速时的操纵稳定性。
     四、提出EPS系统伺服环路控制策略的设计方法。针对助力电机存在的两大扰动因素:摩擦和外部干扰,采用基于干扰观测器的PID控制算法。仿真结果表明,所提出的伺服环路控制器对于干扰起到了很好的抑制作用,目标电流的跟踪性能得到很大的改善。
     五、从硬件和软件上设计EPS系统双层结构控制器。设计开发EPS系统的试验台架,进行转向轻便性和转向跟随性的操纵性能试验。将EPS样机安装在某型号的轿车上进行转向和回正性能实车试验,试验结果验证了所建立的EPS及两自由度汽车模型及参数的正确性,进一步证明本文提出的控制策略能够实现EPS系统操纵性能要求。
     本文针对EPS系统的操纵性能要求及其不确定影响因素,研究、设计并实现一种双层结构控制器。通过仿真及试验,验证了本文所提出的内外环双层结构控制器较传统的单层结构PID控制器,更能满足EPS系统的操纵性能要求,具有一定的理论价值和实用价值。
With the increasing number of EPS systems installed in vehicles, people pay more attention to the handling performance of the EPS system, which challenges designing such controller with high performance.
     In this paper, a two-lay structure controller is proposed to improve handling performances in the steering and returning process with uncertain influencing factors. Simulations for the study of the controller have been carried out in the EPS model and verified in the experiments of test bench and vehicle. The content and results are summarized as follows.
     Firstly, EPS dynamics and simplified vehicle model are established to analysis the influencing factors. This paper developed a two-lay structure controller with main and servo loops to improve the handling performance of EPS system. The main loop consists of steering assist control strategy and return control strategy according to the driving conditions.
     Secondly, in the steering assist control strategy, a new method to define boost curve in form of piecewise multinomial is proposed, which can provide a good“steering feel”to the driver. However, the boost curve is also a nonlinear factor to the EPS system. In this paper, a time delay-dependent H∞robust fuzzy state feedback controller is adopted to achieve the handling performances in the steering process. Simulation results show that the steering assist control strategy proposed in this paper can achieve the handling performances in the steering process, including steering easiness and road feel, tracking performance, steering smoothness and robust stability.
     Thirdly, in the return control strategy, a sliding mode controller based on a reference model is adopted to deal with the parameters uncertainty, external disturbance and nonlinear frictions. A sliding mode observer is developed to estimate the immeasurable states. Simulation results show that the return control strategy proposed in this paper can achieve fast and accurate return with low vehicle speed and handling stability of the vehicle with high speed.
     Fourthly, a PID controller with disturbance observer designed in servo loop to weaken the effect of the frictions and disturbance. Simulation results show that the proposed controller in servo loop can suppress the disturbance well and the tracking performance to the target current is improved.
     Lastly, a two-lay structure controller with the proposed control strategies is development, including the hardware and software. A test bench is established to debug the controller. Experiments for steering easiness and tracking performance are carried out in the test bench. An EPS system is assembled with the designed controller and installed in a car. Steering and returnability maneuver experiments are carried out in the car. Experimental results validate the EPS system and vehicle models and prove that the proposed control strategies can get better handling performance.
     In this paper, a two-lay structure controller is studied and realized to achieve the handling performances of EPS system with uncertain influencing factors. Simulations and experiments have been carried out and show that the control strategies proposed in this paper could meet the requirement of the handling performances better than that of the traditional one-lay structure PID controller.
引文
[1] Sch?ner, H. P., Hille, P. Automotive power electronics-new challenges for power electronics. IEEE. 2000, 6-11.
    [2] Kim. S., Pyo J., A control strategy for kickback reduction using electric power steering and combined chassis control. SAE Technical Paper Series. No. 2007-01-3658.
    [3] Morrison, D., Sensor guides electric power steering into main stream. Electronic Design. 2000(48), 11-34.
    [4] Kurishige, M., Kifuku, T., Inoue, N., A control strategy to reduce steering torque for stationary vehicles equipped with EPS. SAE Paper. No.1999-01-0403, 1999(108), 654-659.
    [5] Zaremba, A., Davis, R.I., Dynamic analysis and stability of a power steering system. Proceedings of the American Control Conference (ACC). 1995, 4253-4257.
    [6] Kim, B. K., Grenier G. C., Jay, G. C., A numerical and experimental study on power steering shudder. SAE Technical Paper Series. No. 2008-01-0501.
    [7] Bokulich, F., A new generation of electric power steering from ZF. Automotive Engineering International. 1998, 106–113.
    [8] Xuewu Ji, Yahui Liu, Study on dynamic responses of the vehicle handling models with a speed-sensitive hydraulic power steering system. SAE Technical Paper Series. No. 2007-01-4239.
    [9] Kemmetmüller, W., Kugi A., Müller, S., Modeling and nonlinear control of an electrohydraulic closed-center power-steering system. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. 2005, 5077-5082.
    [10] Chandrasekha, R., Improved hydraulic power steering pump design using computer tools. SAE Technical Paper Series. 2005-01-1269.
    [11] Wong, T. C., Hydraulic power steering system design and optimization simulation. SAE Technical Paper Series. No. 2001-01-0479.
    [12] Valentine, R.J., Electric steering power electronics. Power Electronics in Transportation. 1996, 105.
    [13] Akhan, M.B., Byatt, M.J., Toquet, G., Munro, I., Electric power assisted steering (EPAS). IEEE Colloquium on DSP Chips in Real Time Measurement and Control.1998(8), 1-4.
    [14] Garshells, I.J., Whitney, K., May, L., Development of an on-contact torque transducer for Electric Power Steering. SAE Papers No. 920702. 1992(101), 916-925.
    [15] Hazelden, R.J., Application of an optical torque sensor to a vehicle power steering system. IEEE Colloquium on Automotive Sensors, 1992(9), 1-3.
    [16]张昕,电动助力转向感觉的综合评价研究,博士学位论文,2006。
    [17] Rogers, K., Kimberley, W., Turning steering to electric. Automotive Engineering. 2000, 108(2), 39-41.
    [18] Hetal, W., Future electrical steering systems realizations with safety requirements. SAE Paper. No. 2000-01-0822.
    [19] Column-type electric power steering with tilt mechanism. NSK Technical Report. Motion and Control. No.11. 2001, 39-40.
    [20] Kozaki Y., Hirose G., Sekiya, S., Miyaura, Y., Electric power steering. NSK Technical Report. Motion and Control, No.6. 1999, 9-15.
    [21] Kurishige, M., Tanaka, H., Inoue, N., Tsutsumi, K., Kifuku, T., An EPS control strategy to improve steering maneuverability on slippery roads. SAE Technical Paper Series. No. 2002-01-0618.
    [22] Burton, A. W., Innovation drivers for electric power-assisted steering. IEEE Control System Magazine. 2003, 30-39.
    [23] Avachat, R., Mahajan, J. S., Gopalakrishna, K. Development of methodology for improvement in steering returnability. SAE Technical Paper Series. No. 2008-01-0494.
    [24] Mortara, A., Heim,P., Masa, P., Franzi, E., An opto-electronic revolution absolute angle and torque sensor for automotive steering applications. IEEE International Solid-State Circuits Conference (ISSCC). 2000, 182–183.
    [25] Amberkar, S., Kushion, M., Diagnostic development for an electric power steering system. SAE paper. No. 2000-01-0819. 2000(109), 1134-1139.
    [26] Shimizu, Y., Kawai, T., Yuzuriha, J., Improvement in driver-vehicle system performance by varying steering with vehicle speed and steering angle: VGS (variable gear-ratio steering system). SAE Papers. No.1999-01-0395. 1999(108), 630-639.
    [27] Kobayashi, H., Inagaki, K.A., Virtual steering system. IEEE International Work shop on Robot and Human Communication. 1992, 353-357.
    [28] Badaway, A., Zuraski, J., Bolourchi, F., Changdy, A., Modeling and analysis of an electric power steering system. Automotive Engineering. 1998(1069), 25-31.
    [29] Kurishige, M., Fukusumi, K., Inoue, N., A new current control strategy for EPS motors. SAE Paper. 2001(1), 200-205.
    [30] Eiichiro, O., Masuo, T., Tohru, N., Modeling and control of electrically assisted power steering. Transactions of the Japan Society of Mechanical Engineers, Part C, vol (56):527, 1990, 1812-1817.
    [31] Badawy, A., A., Bolourchi, F., Gaut S., K., The design and benefits of electric power steering. SAE Technical Paper Series. No. 973041, 1999.
    [32] Kurishige, M., Kifuku, T., Inoue, N., Zeniya, S., Otagaki, S., A control strategy to reduce steering torque for stationary vehicles equipped with EPS. SAE Paper. No. 1999-01-0403. 1999, 654-660.
    [33] Liu, G., Kurnia, A., larminat, R. D., Desmond, P., Gorman, T. O., A low torque ripple PMSM drive for EPS applications. IEEE. 2004, 1130-1136.
    [34] Mohammadi, H., Kazemi, R., Simulation of different types of electric power assisted steering (EPS) to investigate applied torque positions’effects. SAE Technical Paper Series. No. 2003-01-0585.
    [35] Masrur, M.A., Hampo, R.J., Miller, J.M., Rotational sensorless scalar control of three-phase induction motors and its application to automotive electric power assist steering. Proceedings of the Institution of Mechanical Engineers, Part D. 2000(214), 33-44.
    [36] Shimisu Y., Kawai, T., Development of electric power steering. SAE Paper. No. 910014, 1991.
    [37] Nakayama T., Suda, E., The present and future of electric power steering. International Journal of Vehicle Design. 1994, 3-5.
    [38] Ouyang, X., Morgan, C., Nwagboso, C., Neural network model-reference of power steering systems. SAE Technical Paper Series. No.00AE003.
    [39] Kohno, T., Takeuchi, S., Moniyama, M., Nimura, H., Development of electric power steering system with H∞control. SAE Paper. No. 2000-1-0813.
    [40] Zaremba, A., Liubakka, M. K., Stuntz, R. M., Vibration control based on dynamic compensation in an electric power steering system. Proceedings on Control of Oscillations and Chaos. 1997, 453-456.
    [41] Gusev, S.V., Zaremba, A., LMI based minimax control under component-wise constraints on the inputs with application to an electric power steering system. Proceedings of the 38th IEEE Conference on Decision and Control. 1999, 32353-2358.
    [42] Yun, S. C., Cho, N. G., Han, C. S., A simulation study of the control algorithm of aballscrew type motor-driven power steering system. Proceedings of the Institution of Mechanical Engineers, Part D. 2002, 11-22.
    [43] Parmar, M., Hung, J. Y., Modeling and sensorless optimal controller design for an electric power assist steering system. IEEE 28th Annual Conference of the Industrial Electronics Society. 2002, 1784–1789.
    [44] Chabaan, R.C., Wang, L., Control of electrical power assist systems: H-infinity design, torque estimation and structural stability. JSAE Review. 2001, 435-444.
    [45] Chabaan, R.C., H-infinity control design and gain scheduling of electrical power assist steering systems to improve system robustness and stability. PhD Dissertation. Wayne State University, 2000.
    [46] Moradkhani, M., Hairi-Yazdi, M.R., Salamsi, F.R., H∞loop shaping control of an electric power steering. IEEE. 2007.
    [47] Mjeda, A., Jackman, B., A Fuzzy logic approach for an electrical power steering system. SAE Technical Paper Series. No. 2005-01-1276.
    [48] Kim. S., Pyo J., A control strategy for kickback reduction using electric power steering and combined chassis control. SAE Technical Paper Series. No. 2007-01-3658.
    [49] McCann, R., Pujura, L. R., Lieh, J., Influence of motor drive parameter on the robust stability of power steering system. Power Electronics in Transportation. 1998, 103-108.
    [50] Chen, J. S., Control of electric power steering. SAE Paper. No. 98116. 1998, 1702-1704.
    [51] Kurishige M., Kifuku, T., Static steering control aystem for electric power steering. Mitsubishi Electric Advance. 2001, 18-20.
    [52] Sugiyama, A., Kurishige, M., Hamada, H., Kifuku, T., An EPS control strategy to reduce steering vibration associated with disturbance from road wheels. SAE Technical Paper Series. No. 2006-01-1178.
    [53] Christian, R., Kelber, J., Cunha, F., Junior, Q., Lessa, L., Compensation of power supply fluctuations in electric power steering (EPS) systems. SAE Technical Paper Series. No. 2007-01-2647E.
    [54] Sato, H., Osawa, H, Haraguchi, T., The quantitative analysis of steering feel. JSAE Review. 1991(2), 85-87.
    [55] Palkovics, L., Gindy, M. E., Pacejka, H. B., Modeling of the cornering characteristics of tyres on uneven road surface: a dynamic version of the“Neuro Tyre”. International Journal of the Vehicle Design. 1994(15), 189-215.
    [56] Sugitani, N., Fujuwara, Y., Uchida, K., Fujita, M., Electric power steering with H-infinity control design to obtain road information. Proceedings of American Control Conference (ACC). 1997, 52935-2939.
    [57] Kifuku,T., Wada, S., An electric power-steering system. Mitsubishi Electric Advance. 1997, 20-23.
    [58] Zaremba,A. T., Liubakka, M. K., Stuntz, R. M., Control and steering feel issue in the design of an electric power steering system. Proceedings of American Control Conference (ACC). 1998, 36-40.
    [59] Kim, J. H., Song, J. B., Control logic for an electric power steering system using assist motor. Mechatronics. 2002(12), 447-459.
    [60] Noh, T., Kim J., Choi, J., Cha, H., A control strategy to compensate the reaction torque of active front steering system. SAE Technical Paper Series. No. 2007-01-3659.
    [61] Sekiguchi, D., Toshiyuki M., Vehicle steering assist by estimated self-aligning torque in skid condition. AMC. 2004, 269-273.
    [62] Mcann, R. Variable effort steering for vehicle stability enhancement using an electric power steering system. SAE Technical Paper Series. No. 2000-01-0817. 2000, 1-5.
    [63] Fujiwara, Y., Adachi, S., Steering assistance system for driver characteristics using gain scheduling control. Proceedings of the American Control Conference (ACC). 2002, 857-862.
    [64] Liao, Y.G., Du, H. I., Modeling and analysis is of electric power steering system and its effect on vehicle dynamic behavior. International Journal of Vehicle Autonomous Systems (IJVAS). 2003, 1(2), 153-165.
    [65] Kushiro, I., Yamonoto, M., Vehicle behavior under the influence of steering dynamics by means of low frequency torque input. SAE Technical Paper Series. No. 2006-01-0557.
    [66] Tanaka, H., Hitosugi, K., Kurishige, M., Kifuku, T., Development of torque controlled active steering with improving the vehicle stability for brushless EPS. SAE Technical Paper Series. No. 2007-01-1147.
    [67]吴文江,杜彦良,季学武,电动转向控制系统跟踪性能研究,机械工程学报,2004(4):77-80。
    [68]吴文江,杜彦良,季学武等,汽车电动转向控制系统抗干扰策略的仿真,汽车工程,2003,25(4):364-366。
    [69]吴文江,杜彦良,季学武,陈奎元,增强电动转向系统助力跟踪性能的H∞控制,汽车工程,2002(4):465-467。
    [70]施国标、林逸、陈万忠等,汽车电动助力转向试验台测试系统开发,测控技术,2005,24(3):23-25。
    [71]张昕、施国标、林逸,电动助力转向系统移线试验转向感觉评价与分析,汽车技术,2007(12):14-17。
    [72]孟涛、余卓平、陈慧等,电动助力转向控制策略研究及试验验证,汽车技术,2005(5):26-30。
    [73]孟涛、余卓平、陈慧、李莉,电动助力转向系统的回正与主动阻尼控制策略研究,汽车工程,2006,28(12):1125-1128。
    [74]任延,杨家军,刘照,电动助力转向器硬件在环仿真系统的设计,湖北工学院学报,2004(6):44-46。
    [75]刘照,杨家军,廖道训,基于动态分析的电动助力转向系统设计与研究,华中科技大学学报,2001(12):24-26。
    [76]刘照,杨家军,廖道训,基于混合灵敏度方法的电动助力转向系统控制,中国机械工程,2003(10):874-876。
    [77]唐新蓬,杨树,电动助力转向系对汽车角输入响应影响的仿真,汽车工程,2004(3):315-318。
    [78]陈无畏,王妍,王启瑞等,汽车电动助力转向系统的自适应LQG控制,机械工程学报,2005,41(12):167-172。
    [79]陈无畏,王妍,王其东等,电动助力转向与主动悬架系统多变量自适应集成控制,振动工程学报,2005,18(3):360-365。
    [80]王其东,姜武华,陈无畏,赵君卿,主动悬架和电动助力转向系统机械与控制参数集成优化,机械工程学报,2008,44(8):67-72。
    [81]徐建平,何仁,苗立冬,徐勇刚,电动助力转向系统的建模与仿真分析,中国汽车工程学会,2003学术年会,SAE-C2003E206:654-661。
    [82]肖生发,冯樱,刘洋,电动助力转向系统助力特性的研究,湖北汽车工业学院学报,2001,15(3):34-37。
    [83] Bayle, R., Servo mechanism. U.S. Patent disclosure. 1976.
    [84] Kade, A., Karadsheh, S. M., Adaptive controller for electric power steering. U.S. Patent Disclosure. 1985.
    [85] Abukawa, T., Kazuo Tahara, K., Electric power steering control system. U.S. Patent Disclosure. 1989.
    [86] Joseph, D., Hills, F., James H., Method and apparatus for controlling damping in anelectric power steering system for vehicle yaw rate control. U.S. Patent Disclosure. 1993.
    [87] Lu, E., Mclaughlin, K. M., Electric assist steering system having an improved motor current controller with gain scheduler. U.S. Patent Disclosure. 2000.
    [88] Chabaan, R. C., Wang, L. Y., Vehicle electric power steering assist system method using angle based torque estimation. U.S. Patent Disclosure. 2001.
    [89] Rodenas, Y. J., Merzoung, D. P., Method and system for application return torque in a vehicle power steering system. U.S. Patent Disclosure. 2002.
    [90] Wittig, W. H., Automatic compensation for electric power steering hysteresis. U.S. Patent Disclosure. 2002.
    [91] Burton, A. W., Stevens, S. D., Compensation for motor inertia in electric power steering systems. U.S. Patent Disclosure. 2003.
    [92] Norman, M. A., Kleinau, J. A., Soft-disable damping for electric power steering. U.S. Patent Disclosure. 2003.
    [93] Hironaka, S., Koibuchi, H., Tamaki, A., Control method for electric power steering apparatus. U.S. Patent Disclosure. 2005.
    [94] Recker, D. A., Killins, D. C., Electric power assist torque check. U.S. Patent Disclosure. 2005.
    [95] Katch, G., Wittig, W., Vehicle speed dependent compensator for electric steering systems. U.S. Patent Disclosure. 2006.
    [96] James, A., Timothy James, T., Rack force disturbance rejection. U.S. Patent Disclosure. 2007.
    [97] Yoshida, K., Development of custom IC for EPS torque sensor. Koyo Engineering Journal English Edition. E160. 2002.
    [98] Morcos, A. C., Brown, D. N., Campbell, P., NdFeB magnets for electric power steering (EPS) applications. 2002 IEEE International Magnetic Conference. 2002, 425-425.
    [99] Liu, G., Kurnia, A., Larminat, R. D., Rotter, S. J., Position sensor error analysis for EPS motor drive. IEEE. 2003, 249-254.
    [100] Cherouat, H., Diop. S., An observor and an integrated braking/traction and steering control for a cornering vehicle. Proceedings of American Control Conference. 2005, 2212-2217.
    [101] Mammar, S., Combining active steering and independent wheels braking for CIVIClateral assistance. Proceedings of the American Control Conference. 2004, 1469-1474.
    [102] Giiveng, B., A., Acarman, T., Giiveng, L., Coordination of steering and individual wheel braking actuated vehicle yaw stability control. IEEE. 2003, 288-293.
    [103] Aglar, S., C., Lamish, B., Kose, I. E., Anlas, G., Design of active steering and intelligent braking systems for road vehicle handling improvement: a robust control approach. Proceedings of the IEEE International Conference on Control Applications Munich. 2006, 909-914.
    [104] Chen, C., Tomizuka, M., Steering and braking control of tractor-semitrailer vehicles in automated highway systems. Proceedings of the American Conference.1995, 658-662.
    [105] Pilutti, T., Vehicle steering intervention through differential braking. Proceedings of the American Control Conference. 1995, 1667-1671.
    [106] Pacejka, H., B., Tyre and vehicle dynamics. The Netherlands.
    [107]安部正人,汽车的运动和操纵,机械工业出版社,1998。
    [108]丁永生,应浩,邵世煌,模糊系统逼近理论:现状与展望,信息与控制,2000,29(2):157-163。
    [109]俞立,鲁棒控制—线性矩阵不等式处理方法,清华大学出版社,2002。
    [110] Edwards, C., Spurgeon, S., K., Sliding mode control: theory and applications. Taylor & Francis. 1998.
    [111]刘金琨,先进PID控制MATLAB仿真,电子工业出版社,2004。
    [112] U., Takaji and H., Yoichi“Robust speed control of DC servomotors using modern two degrees-of-freedom controller design.”IEEE Transactions on Industrial Electronics, 1991, 38(5):363-368.
    [113]汽车操纵稳定性指标限值与评价方法,中华人民共和国汽车行业标准,QC/T 480-2000。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700