商品水泥搅拌站管理决策及控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术、自动检测和传感技术、自动控制技术以及网络技术的发展,测量的直观、准确、智能化和控制的可靠及其过程自动化与信息管理自动化无疑己成为商品水泥搅拌站的发展方向。随着计算机管理技术日益普及,混凝土工厂的计算机管理必将渗透到每个工序,如生产管理、设备管理、原材料管理、成本核算管理等。研究推广商品水泥企业管理决策与控制系统对混凝土行业乃至建筑施工业整体管理水平的提升有重要意义。
     混凝土搅拌站管理决策及控制系统由下位机PLC和上位机工控机组成。下位机PLC控制器是整个控制系统的核心,负责接收现场信号和输出控制信号。上位机采用标准的PC平台工控机,要求不高时也可以采用普通的PC机,它完成管理系统和控制系统的信息交换和对下位机的监控。从功能实现来划分,系统分为管理子系统和控制子系统。管理决策系统的信息化是衡量混凝土生产企业发展成熟的标准,因此,对资源更合理的规划,以便更好的提高企业的生产效益就成了管理子系统设计的目标。
     通过对管理子系统的需求分析,进行了总体设计,将其划分为系统管理、库存管理、生产管理、车辆管理、试验室管理等几个功能模块,并应用Delphi7.0和Paradox6.0开发环境进行了编程和实现。从原材料存储总费用为最小的前提出发进行综合的分析,对库存管理模块的原料库存建立数学模型,采用自适应遗传算法进行优化,预测最低库存量和最优库存量,实现库存的最优控制。控制子系统上位机监控采用西门子公司的WinCC工控组态软件,实现了现场数据实时记录和监控,设计了能反映混凝土生产工艺流程的动态操作画面。下位机采用了西门子公司的S7-200系列PLC,运用STEP7编程软件,编制了下位机PLC的控制程序,可以按要求自动完成配料、称重、装料、搅拌的全过程,并通过OPC实现了PLC和WinCC的通讯,组成了一个混合型的工业控制系统。针对控制子系统现场调试不便的情况,开发设计了以单片机为核心的现场模拟系统对实际控制子系统进行测试,缩短了系统的开发周期。
     实践结果表明:管理子系统的实施使企业从生产任务单的下发到商品砼的运送都采用计算机管理,库存管理模块通过对最优库存、最小库存量的预测,使企业提高了效率,降低了成本;控制子系统下位机PLC运行可靠,配合上位机的生产工艺流程监控画面,动态显示了整个生产过程;现场模拟系统在不开动现场设备的情况下也能方便有效地测试控制子系统。总之,集监、控、管结合的商品水泥搅拌站管理决策及控制系统的设计,实现了企业管理信息和设备监控信息的共享。对于类似的工业控制系统的研制提供了借鉴,在工业控制系统的研发方面具有普遍意义。
With the development of the computer technology, automatic detection and sensor technology, automatic control and ICT technology; visibility, accuracy and intelligence of measurement, and the reliability of control has become the development tendency of the concrete mixing plant. With the growing popularity of computer technology management, computer management of the concrete factory will penetrate into every process, such as production management, equipment management, raw materials management, cost accounting management, and so on. Improving and researching the overall level of management and the construction of the concrete industry is of great significance on the promotion of concrete mixing station management decision and control system.
     The concrete mixing station management decision and control system consist of lower computer PLC and upper computer. PLC controller is lower computer, it is the core of the whole control system. And it is responsible for receiving signals and outputing control signals. The upper computer can be IPC. And it also can be ordinary PC instead. It completes the management system and the control interface of the control system with WinCC configuration software. The system is divided into management subsystems and control subsystems by function. Information of the management decision-making system is a standard of concrete production enterprises. Therefore, better improve the productivity of the enterprises is a more rational planning management subsystems is to design.
     A whole deign is made by the needs analysis of the management subsystem. The subsystem is divided into system management, inventory management, production management, vehicle management, laboratory management, and other functional modules. The detailed design is based on the Delphi7.0 and Paradox6.0 to programe. To minimize the total fee of the raw material, a math model of the raw material of the inventory management module is made. Optimization is made by adaptive genetic algorithm. Forecast minimum inventory and the optimal inventory levels, to achieve the optimal inventory control. The upper computer of the control subsystem use Wincc configuration software, which is produced by Siemens, to record and monitor the real-time data, so that a dynamic operation process picture which reflect the concrete production process. The design of the lower computer used the Siemens S7-200 series PLC and the STEP7 programming software, to design the control procedures of the PLC, so that under the batching system, the request batching, weighing, filling and mixing process can be done automatically. Though the OPC we can carry out the communication of the PLC and WinCC, to form a mixed type of industrial control system. Debugging control subsystem is developed because of the inconvenient debug environment. We developed a simulation system by MCU to test the actual system. And it shortened the development cycle of the system.
     Practice results show that the implementation of management decision-making subsystem enable enterprises use computer management from the productionbill issued to the delivery of concrete. Through the forecast of the optimal inventory and the smallest inventory of the inventory management modules, it enabled the enterprise to increase efficiency and reduce costs. The lower computer PLC of control subsystem operates reliable, matching a group of control and monitoring system of animation, dynamic display of the entire mixing process. Simulation System out of field realized the entire process of mixing station simulation. The combination of supervise, control and manage enabled the ready-mixed concrete station management decision and control system realize the system control integration, and information sharing. It provides a reference for similar industrial control systems. It has a universal significance in the development of industrial control system.
引文
[1]孙晓雅,王晓东.随机库存控制策略的优化仿真[J].物流科技.2007,11.
    [2]周永务,汪磊,王君华.基于库存论的模型库建立与实现[J].计算机应用研究,2007, (24):276-278.
    [3]姜昌华,胡幼华.基于遗传算法的随机(s,S)库存系统仿真优化[J].华东师范大学学报.2006,03.
    [4]姜昌华,戴树贵,胡幼华.基于遗传算法的随机性(Q,r)库存系统仿真优化[J].计算机应用. 2006.01.
    [5]程晓华.库存控制与销售管理和预测处理流程[J].物流技术与应用, 2008, (1):102-104.
    [6]王清泉.混凝土搅拌站生产管理控制系统.吉林大学硕士学位论文,2005.10.
    [7]岑君秀.商品混凝土生产企业管理信息系统的开发与应用.浙江大学硕士学位论文,2005
    [8]张云凤.四方商品混凝土公司管理信息系统设计.东北大学硕士学位论文,2001.
    [9] Charu Chandra. Inventory management with variable lead-time dependent procurement cost. Industrial and Manufacturing Systems Engineering,2006,07.
    [10] T. I. Nasirova, G. Yapar. Cybernetics and Systems Analysis. A Model of Inventory Control.2000,11.
    [11] S. S. Demchenko, A. P. Knopov. Optimal Strategies for Inventory Control Systems with a Convex Cost Function. Cybernetics and Systems Analysis. 2004,11.
    [12] Peer Kleinau. Deriving inventory-control policies with genetic programming. OR Spectrum. 2004,10.
    [13]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [14]杨万军,鲁克永.西门子PLC在回转窑控制系统中的应用[J].黑龙江科技信息,2008, (2):49.
    [15]苏昆哲,何华.深入浅出西门子Wincc V6[M].北京:北京航空航天大学出版社,2006.
    [16] Ming Cao, Ming Lu. Concrete Plant Operations Optimization Using Combined Simulation And Genetic Algorithms, Machine Learning and Cybernetics. Proceedings of 2004 International Conference on Volume 7, 26-29 Aug. 2004 Page(s):4204 - 4209 vol.7.
    [17] Wang. P., and Lu. M. Genetic algorithm optimized resource activity critical path method, Proceedings of the first international conference on machine learning and cybernetics, Beijing, China, No+. 2002.
    [18]刘士阳.基于PLC和组态软件的搅拌站控制系统[J].建筑机械,2005.05.
    [19]张晓杰,刘海昌.基于WinCC的数据采集和监控系统设计[J].工业仪表与自动化装置.2007,04.
    [20]毛联杰. S7-300系列PLC与组态软件WinCC实现通信的方法[J].电气时代.2006,09.
    [21]毛雪珍,颜文俊. S7-200系列PLC与WinCC通信实现研究[J].工业控制计算机.2005,02.
    [22] Anson, M. Measurement of the performance of ready mixed concreting resources as data for system simulation, Construction Management and Economics, Vol. 20,237-250.
    [23]李晓媛,尹淑萍,王杰.商品混凝土搅拌站自动控制系统[J].微计算机信息,2005.04.
    [24]邵建华,杨光,殷奎喜.连续强制式水泥混凝土搅拌站及其控制算法研究[J].南京师范大学学报,2006.03.
    [25]杨珂,费树岷.混凝土搅拌站自适应配料系统[J].仪器仪表用户,2004,02.
    [26]季利伟.迭代自学习动态称量配料方法及其在混凝土搅拌系统中的应用.浙江大学硕士学位论文,2001.
    [27]王立明.基于PLC和工控机的混凝土搅拌站测控系统设计.西安建筑科技大学硕士学位论文,2006.
    [28]李永华.网络化配料管理与监控系统的设计与应用.山东大学硕士学位论文,2004.
    [29] Almodarresi Yasin, Application of artificial neural networks to intelligent weighing systems, Science Measurement and Technology, IEE Proceedings-Volume 146, Issue 6, Nov. 1999 Page(s):265– 269.
    [30]黄松华.基于ANN和DCS的混凝土搅拌站测控系统的研究与设计.河海大学硕士学位论文, 2005.
    [31]李熊.意大利SICOMA混凝土搅拌机[J].建筑机械化,2003.05.
    [32]孙中艮. SETTER混凝土搅拌站计量及控制系统技术改造[J].隧道建设,2003.04.
    [33]李卫华,曹志军.商品混凝土技术的发展与应用[J].内蒙古科技与经济, 2006,5.
    [34]陈小亮.水泥混凝土搅拌站(楼)的现状与课题[J].工程机械, 2001.09.
    [35]佳珍.混凝土搅拌站(楼)综述四[J].建设机械技术与管理,2000.04

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700