ZnO基半导体—金属异质纳米结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型半导体异质结构是当前半导体科学技术研究的前沿领域。借助异质材料的接触与融合所产生的表面和界面的奇异功能特性,来创造新型材料和器件,已成为许多研究领域的指导思想。本论文从ZnO基半导体出发,探索发展新结构、揭示新现象、阐释其物理机制,着重介绍了两方面工作:ZnO/Au异质结构材料设计、制备,并对ZnO薄膜的应力、发光特性以及极性控制作进一步的探讨;Zn_2SiO_4纳米线和Zn_2SiO_4-Zn异质结构纳米同轴线的制备,及其发光性质研究。
     在ZnO/Au异质结构材料的研究中,首先采用了基于密度泛函理论的从头计算方法,参照层晶模型的构建方法,设计了Au(111)及其上面的ZnO形成的ZnO/Au异质结构模型。通过模拟计算ZnO不同结构的体系总能,优化并确定了ZnO薄膜的结构性质。接着我们在Si衬底上溅射沉积了两种厚度的Au薄膜,后用气相沉积方法在不同温度下沉积了ZnO薄膜。研究发现Au形成纳米晶粒后生长的ZnO薄膜表面呈六角对称小丘状,薄膜沿c轴生长,晶粒尺寸较大,晶粒间接合较好,晶体质量较好;通过Raman、CL、CBED等表征手段表明,用纳米Au晶粒引导异质生长ZnO薄膜,不仅能够充当生长晶核,还能够控制ZnO薄膜为Zn极性、降低Si衬底与外延层间的失配应力、提高带边紫外发光效率。此外结合理论模型,进一步探讨Au纳米颗粒上ZnO薄膜的生长机制;提出在晶核形成时处于富Zn状态,随着晶核慢慢向边上生长,Zn和O的比例越来越接近理想化学剂量配比,ZnO的质量也更好,岛状的ZnO慢慢接合在一起,形成质量较好的无晶界的薄膜结构。
     另一方面,我们用简单的气相沉积生长了Zn_2SiO_4纳米线和Zn_2SiO_4-Zn异质结构纳米同轴线阵列。使用了包括扫描电子显微镜、能量色散X射线谱、高分辨透射电子显微镜以及X射线衍射等各种实验方法对样品进行了表征,提出了一种新的应力促进生长机制,为生长均匀的纳米同轴线提供一种新的技术。同时测量了不同温度下样品的阴极荧光谱,在300 nm左右、560 nm和865 nm左右分别出现了强度依次减弱的峰。各峰的半高宽都随温度增长而增大。通过对比Zn_2SiO_4纳米线的发光特性表明,回音壁模式为光在Zn_2SiO_4纳米线内传播的主要模式,因而不同直径的Zn_2SiO_4纳米线得到不同波长的发光;波长约为560 nm
One of the promising avenues in the current semiconductor science and technology research is the development of the novel semiconductor heterogeneous functional materials. It is extremely important to explore materials and devices with new properties and functions. This thesis aims to grope for new structure, open out new phenomena and provide a thorough insight into their physical mechanisms. Two aspects have been emphasized; one is the material design and preparation of ZnO/Au/Si heterogeneous epitaxial film, and besides, having further considerations of the stress, optical properties and the polarity control; the other one is the preparation of the Zn_2SiO_4 nanowires, the Zn_2SiO_4-Zn nanocable heterostructures and the investigation of their fascinating optical properties.
     First-principles computation based on the density functional theory were performed to investigate the initial growth of ZnO films on Au layer, the results of which provided an intrinsic geometric structure of the formation of the Zn-polar ZnO film. And then, the properties of ZnO grown under different conditions were characterized. The results proved that the Au nanocrystallites can play as the role of crystal nucleus, and that ZnO on Au layer displayed a film structure that had no grain boundary and showed a surface composed of hexagonal hillocks. Furthermore, X-ray diffraction, Raman, and cathodoluminescence data supported that the hexagonal hillock grains were well aligned in the c axis. We believed that Zn was rich on the top of the hillocks where the nuclei initiated. Zn and O reach the stoichiometric ratio when the nuclei grew gradually to the side. The islands of ZnO joined together, and then formed a ZnO film of good quality without grain boundary. With Au as the buffer layer, the misfit stress is minimized, the UV emission is improved, and Zn-polarity is controlled. All of these might affect the electrical conductivity of ZnO.
     Chemical vapor deposition was used to grow Zn_2SiO_4 nanowires and Zn_2SiO_4-Zn nanocable arrays. Morphological, chemical and crystallographic characterizations of the as-grown samples were carried out by SEM, EDS, TEM and
引文
[1] 黄德欢. 纳米技术与应用 [M]. 上海:中国纺织大学出版社,2001.
    [2] P. Buffat, J. P. Borel, Size effect on the melting temperature of gold particles [J]. Phys. Rev. A, 1976, 13: 2287.
    [3] S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, M. A. El-Sayed, Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time [J]. Phys. Rev. B, 2000, 61: 6086.
    [4] (a) Y. Y. Wu, P. D. Yang, Melting and welding semiconductor nanowires in nanotubes[J]. Adv. Mater., 2001, 13: 520. (b) Y. Y. Wu, P. D. Yang, Germanium/carbon core–sheath nanostructures [J].Appl. Phys. Lett., 2000, 77: 43.
    [5] (a) E. O. Hall, Proc. Phys. Soc. London B, 1951, 64: 747. (b) N. J. Petch, J. Iron Steel Inst, 1953, 174: 25.
    [6] J. S. Koehler, Attempt to design a strong solid [J]. Phys. Rev. B, 1970, 2: 547.
    [7] J. S. Shib, D. B. Dove, Ti/Ti-N, Hf/Hf-N, and W/W-N multiplayer films with high mechanical hardness [J]. Appl. Phys. Lett., 1992, 61: 654. [ 8 ] B. W. Tai, Effect of screening singularities on the elastic constants of composition-modulated alloys [J]. J. Appl. Phys. 1982, 53:5265.
    [9] J. Schi?tz, F. D. Di Tolla, K. W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561.
    [10] G. R. Bollinger, S. R. Bahn, N. Agra?t, K. W. Jacobsen, S. Vieira, Mechanical Properties and Formation Mechanisms of a Wire of Single Gold Atoms [J]. Phys. Rev. Lett., 2001, 87: 026101.
    [11] H. Z. Wu, D. J. Qiu, Y. J. Cai, et al., Optical studies of ZnO quantum dots grown on Si (001) [J]. J. Cryst. Growth, 2002, 245: 50.
    [12] D. Mohanta, S. S. Nath, A. Bordoloi, et al., Optical absorption study of 100-Mev chlorine ion-irradiated hydroxyl-free ZnO semiconductor quantum dots [J]. J. Appl. Phys., 2002, 92: 7149.
    [13] (a) X. Lu, T. Hanrath, K. P. Johnston, B. A. Korgel, Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate [J]. Nano lett., 2003, 3: 93. (b) J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Control of thickness and orientation of solution-grownsilicon nanowires [J]. Science, 2000, 287: 1471.
    [14] Z. K. Tang, G. L. Wong, P. Yu, et al., Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett. 1998, 72: 3270.
    [15] M. Huang, S. Mao, H. Feick, H. Yan, et al., Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897.
    [16] J. C. Johnson, H. J. Choi, K. P. Knutsen, et al., Single gallium nitride nanowire lasers [J]. Nature mater., 2002, 1: 106.
    [17] R. M. Dickson, L. A. Lyon, Unidirectional Plasmon Propagation in Metallic Nanowires [J]. J. Phys. Chem. B, 2000, 104: 6095.
    [18] 张立德,牟季美. 纳米材料学 [M]. 沈阳:辽宁科学技术出版社,1994. [ 19 ] (a) K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, P. M. Fauchet, Silicon-based visible light-emitting devices integrated into microelectronic circuits [J]. Nature, 1996, 384: 338. (b) C. Peng, K. D. Hirschman, P. M. Fauchet, Carrier transport in porous silicon light-emitting devices [J]. J. Appl. Phys., 1996, 80: 295. [ 20] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices [J]. Phys. Rev. Lett. 1988, 61: 2472.
    [21] 刘颖力等. NiFe/Cu 多层膜的巨磁阻效应 [J]. 功能材料,1995(增).
    [22] 王雅静,姜月顺等. SnO2 超微粒薄膜的界面电子转移研究 [J]. 化学物理学报,1999,12(2):201.
    [23] A. Fujishima, K. Honda, Electrochemical photocatalysis of water at a semi- conductor electrode [J]. Nature, 1972, 37(1): 238.
    [24] 张立德. 纳米材料科学 [M]. 长沙:湖南科学技术出版社,1998.
    [25] 张志锟,崔作林. 纳米技术与纳米材料 [M]. 北京:国防工业出版社,2000.
    [26] 王世敏,许祖勋,傅晶编著. 纳米材料制备技术 [M]. 北京:化学工业出版社,2001.
    [27] 尾崎义治,贺集诚一郎著. 赵修建,张联盟译. 纳米微粒导论 [M]. 武汉:武汉工业大学出版社,1991.
    [28] 段波,赵兴中等. 材料工程 [M]. 1994,(6):5.
    [29] 张立德,牟季美. 纳米材料和纳米结构 [M]. 北京:科学出版社,2001.
    [30] A. Roosen, H. Hausner, Ceramic Powders [M]. Amsterdam: Elservier, 1983.
    [31] 钱逸泰,朱英杰,张曼维等. 微米纳米科学与技术 [J]. 1995,1(1):27.
    [32] 黄钧声,任山. 材料科学与工程 [J]. 2001,19(2):76.
    [33]《有机化学实验技术》编写组编. 有机化学实验技术 [M]. 北京:科学出版社,1978.
    [34] 尾崎义治,贺集诚一郎著. 赵修建,张联盟译. 超微颗粒导论 [M]. 武汉:武汉工业大学出版社,1991.
    [35] S. M. Sze, Physics of semiconductor devices [M]. New York: Wiley-Interscience, 1981.
    [36] R. Rossetti, L. Brus, Electron-Hole Recombination Emission as a Probe of Surface Chemistry in Aqueous CdS Colloids [J]. J. Phys. Chem., 1982, 86: 4470.
    [37] B. O. Dabbousi, J. Rodrigo-Viejo, F. V. Mikulec, J. R. Heine, H. Mattousi, et al., (CdSe)ZnS Core Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J]. J. Phys. Chem., 1997, 101: 9463.
    [38] M. A. Hines, P. Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnS Capped CdSe Nanocrystals [J]. J. Phys. Chem. 1996, 100: 468.
    [39] X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell nanocrystals with Photostability and Electronic Accessibility [J]. J. Am. Chem. Soc. 1997, 119: 7019.
    [40] M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, C. M. Lieber, Growth of nanowire superlattice structures, for nanoscale photonics and electronics [J]. Nature, 2002, 415: 617.
    [41] Y. Y. Wu, R. Fan, P. D. Yang, Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires [J]. Nano Lett., 2002, 2: 83.
    [42] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature, 2002, 420: 57.
    [43] P. Yu, Z. K. Tang, G. K. L. Wong, et al., Stimulated emission at room temperature from ZnO quantum dot films [J]. The 23rd International Conference on the Physics of Semiconductors, Berlin, Germany, 1996.
    [44] R. F. Service, Will UV lasers beat the blues [J]. Science, 1997, 276: 895.
    [45] Shuji Nakamura, The role of structural imperfections in InGaN-based bluelight-emitting diodes and laser diodes [J]. Science, 1998, 281: 956.
    [46] M. H. Huang, S. Mao, H. Feick, H. Yan, et al., Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897.
    [47] A. Suzuki, T. Matsushita, N. Wada, et al., Transparent conducting Al - doped ZnO films prepared by pulsed laser deposition [J]. Jpn. J. Appl. Phys., 1996, 35: 56.
    [48] V. Craciun, J. Elders, J. G. E. Gardeniers , et al., Characteristics of high quality ZnO thin films deposited by pulsed laser deposition [J ]. Appl. Phys.Lett., 1995, 65: 2963.
    [49] P. L. Washington, H. C. Ong, J. Y. Dai, et al., Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry [J]. Appl. Phys. Lett., 1998, 72: 3261.
    [50] (a) D. M. Bagnall,Y. F. Chen,Z. Zhu,et al., Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett., 1997, 70: 2230. (b) D. M. Bagnall,Y. F. Chen,Z. Zhu,et al., High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Appl. Phys. Lett., 1998, 73: 1038.
    [51] Z. K. Tang,G. K. L. Wong,P. Yu,et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films [J]. Appl. Phys. Lett., 1998, 72: 3270.
    [52] C. R. Gorla, N. W. Emanetoglu, S. Liang, et al., Structural ,optical , and surface acoustic wave properties of epitaxial ZnO films grown on (01-12) sapphire by metal organic chemical vapor deposition [J]. J . Appl. Phys., 1998, 85(5): 2595.
    [53] T. Minami, T. Yamamoto, et al., Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering [J]. Thin Solid Films, 2000, 366: 63.
    [54] H. Fabricius, T. Skettrup, P. Bisgaard, Ultraviolet detectors in thin sputtered ZnO films [J]. Appl. Optics, 1986, 25: 2764.
    [55] Y. Liu, C. R. Gorla, S. Liang, et al., Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD [J]. J. Elec. Mater., 2000, 29(1): 60.
    [56] H. Nakahata, K. Higaki, et al., High frequency surface acoustic wave filter using ZnO/Diamond/Si strucure [J]. Jpn. J. Appl. Phys., 1994, 33: 324.
    [1] J. H. Choi, H. Tabata, T. Kawai, Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition [J]. J. Crystal Growth, 2001, 226: 493.
    [2] K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe, H. Takasu, ZnO growth on Si by radical source MBE [J]. J. Crystal Growth, 2000, 214/215: 50.
    [3] T. Hattori, Trends in Wafer Cleaning Technology [M]. Supplement to Solid State Technology, 1995.
    [4] (a) 杨邦朝,王文生,薄膜物理与技术 [M]. 成都:电子科技大学出版社,1994. (b) 许小红,武海顺,压电薄膜的制备、结构与应用 [M]. 北京:科学出版社,2002.
    [5] 许顺生,X 射线衍射学的进展 [M]. 北京:科学出版社,1986.
    [6] 丛秋滋,多晶二维 X 射线衍射 [M]. 北京:科学出版社,1997.
    [7] http://nobelprize.org/physics/laureates/1915/wh-bragg-bio.html [Z]
    [8] 王世中,臧鑫世,现代材料研究方法 [M]. 北京:北京航空航天大学出版社, 1991.
    [9] 朱良漪 主编,分析仪器手册 [M]. 北京:化学工业出版社, 1997.
    [10] 谈育煦,材料研究方法 [M]. 北京:机械工业出版社,2004.
    [11] 吴立新,陈方玉,现代扫描电镜的发展及其在材料科学中的应用 [A]. 武钢技术,2005,43(6):36.
    [12] A. Twitchett, Electron microscopy and analysis Lecture 3: Image formation [Z], 2000.
    [13] http://plaza.snu.ac.kr/~lee2602/atlas/cath_intro.html [Z]
    [14] 傅竹西,吴自勤,阴极射线发光分析方法及其在新材料研究中的应用 [J]. 物理,2000,29(2):96.
    [15] 陆家和,陈长彦,现代分析技术 [M]. 北京:清华大学出版社,1995.
    [16] D. B. Williams and C. B. Carter, Transmission Electron Microscopy [M]. New York: Plenum Press, 1996.
    [17] P. E. Fischione, T. K. Kelly, A. Dalley, L. Holzman and D. Advances in ultrasonic disk cutting and precision dimpling [J]. Mater. Res. Soc. Symp. Proc. 1992, 254: 79.
    [18] K. Bataineh, Development of precision TEM holder assemblies for use in extreme environments [D]. University of Pittsburgh, 2005.
    [19] B. F. Buxton, et al., Developments in Electron Microscopy and Analysis [M]. edited by J. A. Venables, London: Academic Press, 1976.
    [20] 冯国光,会聚束电子衍射 [J]. 物理,1983,12(3):183.
    [21] 程光煦 编著. 拉曼布里渊散射――原理及应用 [M]. 北京:科学出版社,2001.3.
    [22] L. Shi. Raman spectroscopy study of wurtzite crystals: Gallium Nitride and Zinc Oxide [D]. 2003.
    [23] http://www.future-fab.com/documents.asp?grID=216&d_ID=2332# [Z].
    [1] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas [J]. Phys. Rev., 1964, 136(3B): B864.
    [2] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev., 1965, 140(4A): A1133.
    [3] L. H. Thomas, The calculation of atomic fields [J]. Proc. Cambridge Philos. Soc., 1927, 23: 542.
    [4] E. Fermi, Un Metodo Statistico per la Determinazione di alcune Priorieta dell'Atome [J]. Rend. Accad. Naz. Lincei, 1927, 6: 602.
    [5] G. D. Mahan, Many Particle Physics [M]. New York: Plenum Publishing, 1990.
    [6] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B, 1981, 23(10): 5048.
    [7] D. M. Ceplerley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method [J]. Phys. Rev. Lett., 1980, 45(7): 566.
    [8] E. Fermi, The displacement by pressure of the high terms of spectral series [J]. Nuovo Cimento, 1934, 11: 157.
    [9] H. Hellmann, Acta Physiochimica URSS, 1935, 1: 913.
    [10] D. R. Hamann, M. Schlüter, and C. Chiang, Norm-Conserving Pseudopotentials [J]. Phys. Rev. Lett., 1979, 43(20): 1494.
    [11] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990, 41(11): 7892.
    [12] P. E. Bl?chl, Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50(24): 17953.
    [13] S.G. Louie, S. Froyen, and M.L. Cohen, Nonlinear ionic pseudopotentials in spin-density-functional calculations [J]. Phys. Rev. B, 1982, 26(4): 1738.
    [14] (a) G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set [J]. Phys. Rev. B, 1996,54(16): 11169. (b) G. Kresse and J. Furthmüller, VASP the GUIDE [EB/01]. http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
    [15] G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. J. Phys.: Condens. Matter., 1994, 6(40): 8245.
    [16] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B, 1999, 59(3): 1758.
    [17] E. Polak, Computational Methods in Optimization[M]. New York: Academic, 1971.
    [18] E. R. Davidson, In Methods in Computational Molecular Physics, vol 113 of NATO Advanced Study Institute, Series C: Mathematical and Physical Sciences [M]. edited by G. H. F. Diercksen, and S. Wilson, New York: Plenum Publishing, 1983.
    [19] P. Pulay, Convergence acceleration of iterative sequences. the case of scf iteration [J]. Chem. Phys. Lett., 1980, 73(2): 393.
    [20] J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45(23): 13244.
    [21] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865.
    [22] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13(12): 5188.
    [23] O. Jepsen and O. K. Andersen, The electronic structure of h.c.p. Ytterbium [J]. Solid State Commun. 1971, 9(20): 1763.
    [24] P. E. Bl?chl, O. Jepsen and O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B, 1994, 49(23): 16223. [ 25 ] C.-L. Fu and K.-M. Ho, First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo [J]. Phys. Rev. B, 1983, 28(10): 5480.
    [26] M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zoneintegration in metals [J]. Phys. Rev. B, 1989, 40(6): 3616.
    [27] B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, et al., Effect of the growth temperature on ZnO thin films grown by plasma enhanced chemical vapor deposition [J]. Thin Solid Films, 2002, 414: 170.
    [28] F. K. Shan, B. C. Shin, S. W. Jang, Y. S. Yu, Substrate effects of ZnO thin films prepared by PLD technique [J]. J. Eur. Ceram. Soc., 2004, 24: 1015.
    [29] T. W. Kim, K. H. Lee, H. S. Lee, J. Y. Lee, et al., Effect of thermal annealing on the surface and the microstructural properties of ZnO thin films grown on p-Si (100) substrates [J]. J. Crystal Growth, 2004, 262: 72.
    [30] C. Y. Liu, B. P. Zhang, N. T. Binh, et al., Temperature dependence of structural and optical properties of ZnO films grown on Si substrates by MOCVD [J]. J. Crystal Growth, 2006, 290 (2): 314.
    [31] N. Kawamoto, M. Fujita, T. Tatsumi, Y. Horikoshi, Growth of ZnO on Si Substrate by Plasma-Assisted Molecular Beam Epitaxy [J]. Jpn. J. Appl. Phys., 2003, 42: 7209.
    [32] K. Iwata, P. Fons, S. Niki, A. Yamada, et al., ZnO growth on Si by radical source MBE [J]. J. Crystal Growth, 2000, 214/215: 50.
    [33] C. Kittel, Introduction to Solid State Physics [M], New York: Wiley, 1996.
    [34] L. L. Wang, and H. P. Cheng, Density functional study of the adsorption of a C60 monolayer on Ag(111) and Au(111) surfaces [J]. Phys. Rev. B, 2004, 69: 165417.
    [1] H. K. Kim,M. Mathur. Thermally stable ZnO films deposited on GaAs substrates with a SiO2 thin buffer layer [J]. Appl. Phys. Lett. 1992, 61: 2524-2526.
    [2] Z. X. Fu, B. X. Lin, G. H. Liao, Z. Q. Wu, The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates [J]. J. Cryst. Growth., 1998, 193: 316-321.
    [3] M. Joseph, H. Tabata, H. Saeki, et al., Fabrication of the low-resistive p-type ZnO by codoping method [J]. Physica B., 2001, 302: 140-148.
    [4] S. Niki, et al. ZnO compound semiconductor light emitting element and production method thereof [P]. Pat. WO01/08229, 2001.
    [5] H. W. Suh, et al., Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis [J]. J. Appl. Phys., 2005, 97: 044305.
    [6] M. Chen, et al. Surface characterization of transparent conductive oxide Al-doped ZnO films [J]. J. Cryst. Growth, 2000, 220: 254-262.
    [7] J. Tersoff, A. W. Denier van der Gon, R. M. Tromp, Critical island size for layer-by-layer growth [J]. Phys. Rev. Lett. 1994, 72: 266.
    [8] J. K. Zuo, J. F. Wendelken, Evolution of mound morphology in reversible homoepitaxy on Cu (100) [J]. Phys. Rev. Lett. 1997, 78: 2791.
    [9] R. A. Laudise, A. A. Ballman, Hydrothermal synthesis of zinc oxide and zinc sulfide [J]. J. Phys. Chem., 1960, 64(5): 688-691.
    [10] R. L. Schwoebel, E. J. Shipsey, Step Motion on Crystal Surfaces [J]. J. Appl. Phys., 1966, 37: 3628.
    [11] 程光煦 编著. 拉曼布里渊散射――原理及应用 [M]. 北京:科学出版社,2001.3.
    [12] J. C. Manifacier, J. Gasiot, J. P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film [J]. J. Phys. E: Sci. Instrum., 1976, 9: 1002-1004.
    [13] C. A. Arguello, D. L. Rousseau, S. P. S. Porto, First-order Raman effect in wurtzite-type crystals [J]. Phys. Rev., 1969, 181: 1351.
    [14] I. Gorczyca, N. E. Christensen, et al., Optical phonon modes in GaN and AlN [J]. Phys. Rev. B, 1995, 51: 11936.
    [15] F. Demangeot, J. Frandon, M. A. Renucci, C. Meny. et al., Interplay of electrons and phonons in heavily doped GaN epilayers [J]. J. Appl. Phys., 1997, 82: 1305.
    [16] Y. Zhang, H. B. Jia, R. M. Wang, C. P. Chen, X. H. Luo, D. P. Yu, C. Lee, Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate [J]. Appl. Phys. Lett., 2003, 83: 4631-4633.
    [17] N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, et al., Infrared dielectric functions and phonon modes of high-quality ZnO films [J]. J. Appl. Phys., 2003, 93: 126-133.
    [18] J. M. Calleja, M. Cardona, Resonant Raman scattering in ZnO[J]. Phys. Rev. B, 1977, 16: 3753–3761.
    [19] B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, E. Ziegler, Raman study of the phonon halfwidths and the phonon-plasmon coupling in zinc oxide [J]. Phys. Status Solidi B, 1983, 119: 227.
    [20] Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, et al., High optical quality GaN nanopillar arrays [J]. Appl. Phys. Lett., 2005, 86: 071917.
    [21] I. D. Wolf, M. Ignat, et al., Analysis of local mechanical stresses in and near tungsten lines on silicon substrate [J]. J. Appl. Phys., 1999, 85: 6477.
    [22] P. J. Klar, C. M. Townsley, D. Wolverson, J. J. Davies, et al., Photomodulated reflectivity of Zn1-xMnxTe/ZnTe multiple-quantum wells with below-bandgap excitation [J]. Semicond. Sci. Technol., 1995, 10: 1586.
    [23] S. S. Mitra, O. Brafman, Pressure-induced phonon frequency shifts measured by Raman scattering [J]. Phys. Rev. 1969, 186: 942.
    [24] F. Decremps, J. P. Porres, A. M. Saitta, J. C. Chervin, A. Polian, High-pressure Raman spectroscopy study of wurtzite ZnO [J]. Phys. Rev. B, 2002, 65: 092101.
    [25] S. C. Lyu, et al., Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method [J]. Chem. Mater., 2003, 15: 3294.
    [26] T. Sekiguchi, et al., Hydrothermal growth of ZnO single crystals and their optical characterization [J]. J. Cryst. Growth, 2000, 214/215: 72.
    [27] Y. Ding, P. X. Gao, Z. L. Wang, Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: A case of Sn/ZnO [J]. J. Am. Chem. Soc., 2004, 126: 2066.
    [28] V. Kirilyuk, A. R. A. Zauner, P. C. M. Christianen, J. L. Weyher, et al., Exciton-related photoluminescence in homoepitaxial GaN of Ga and N polarities[J]. Appl. Phys. Lett., 2000, 76: 2355.
    [29] R. Dimitrov, M. Murphy, J. Smart, W. Schaff, et al., Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire [J]. J. Appl. Phys., 2000, 87: 3375-3380.
    [30] L. K. Li, M. J. Jurkovic, W. I. Wang, J. M. Van Hove, P. P. Chow, Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2000, 76: 1740.
    [31] D. C. Look, D. C. Reynolds, et al., Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett. 2002, 81: 1830.
    [1] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires [J]. Science, 2000, 287: 1471-1473.
    [2] M. Huang, S. Mao, H. Feick, H. Yan, et al., Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899.
    [3] E. W. Wang, P. E. Sheehan, C. M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277: 1971-1975.
    [4] P. Gibart, Metal organic vapour phase epitaxy of GaN and lateral overgrowth [J]. Reports on progress in physics, 2004, 67(5): 667-715.
    [5] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Recent advances in processing of ZnO [J]. Journal of Vacuum Science & Technology B, 2004, 22(3): 932-948.
    [6] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber, Highly polarised photoluminescence and photodetection from single indium phosphide nanowires [J]. Science, 2001, 293: 1455–1457.
    [7] Johnson, J. C., Yan, H., Schaller, R. D., Petersen, P. B., Yang, P. & Saykally, R. J. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires [J]. Nano Lett. 2 279–283 (2002).
    [8] J. C. Johnson, H. J. Choi, K. P. Knutsen, et al., Single gallium nitride nanowire lasers [J]. Nature Materials, 2002, 1: 106-110.
    [9] X. F. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Single-nanowire electrically driven lasers [J]. Nature, 2003, 421: 241-245.
    [10] E. I. Givargizov, Highly Anisotropic Crystals [M] (Eds: M. Senechal, S. College), Dordrecht (The Netherlands): Reidel, , 1987.
    [11] Y. N. Xia, P. D. Yang, et al. One-dimensional nanostructures: synthesis, characterization, and applications [J]. Adv. Mater. 2003, 15: 353.
    [12] Eds: M. A. Herman, H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status [M]. Berlin: Springer, 1996.
    [13] Ed: B. R. Nag, Physics of Quantum Well Devices [M]. Dordrecht (TheNetherlands): Kluwer, 2000.
    [14] G. W. Sears, A growth mechanism for mercury whiskers [J]. Acta Metall. 1955, 3: 361.
    [15] S. S. Brenner, G. W. Sears, Mechanism of whisker growth-III: nature of growth sites [J]. Acta Metall. 1956, 4: 268.
    [16] Y. Zhang, H. Jia, X. Luo, X. Chen, et al., Synthesis, microstructure, and growth mechanism of dendrite ZnO nanowire [J]. J. Phys. Chem. B, 2003, 107: 8289.
    [17] R. S. Wagner, W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth [J]. Appl. Phys. Lett., 1964, 4: 89-90.
    [18] (a) X. F. Duan, C. M. Lieber, General Synthesis of Compound Semiconductor Nanowires [J]. Adv. Mater. 2000, 12: 298. (b) X. F. Duan, C. M. Lieber, Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires [J]. J. Am. Chem. Soc. 2000, 122: 188.
    [19] (a) Y. Y. Wu and P. D. Yang, Germanium Nanowire Growth via Simple Vapor Transport [J]. Chem. Mater. 2000, 12: 605. (b) P. D. Yang, et al. Controlled growth of ZnO nanowires and their optical properties [J]. Adv. Funct. Mater. 2002, 12: 323.
    [20] Y. Y. Wu, P. D. Yang. Direct observation of vapor-liquid-solid nanowire growth [J]. J. Am. Chem. Soc. 2001, 123: 3165.
    [21] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics [J]. Nature, 2002, 415: 617-620.
    [22] R. He, M. Law, R. Fan, F. Kim, P. Yang, Functional bimorph composite nanotapes [J]. Nano. Lett., 2002, 2: 1109-1112.
    [23] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures [J]. Nature, 2002, 420: 57-61.
    [24] X. Y. Kong, Y. Ding, Z. L. Wang, Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes [J]. J. Phys. Chem. B, 2004, 108: 570-574.
    [25] (a) A. E. Ringwood, Further data on the olivine-spinel transition [J]. Geochim. Cosmochim. Acta, 1958, 15: 18-29. (b) A. E. Ringwood, Prediction and confirmation of olivine-spinel transition in Ni2SiO4 [J]. Geochim. Cosmochim. Acta, 1962, 26: 457-469.
    [26] J. L. Li, J. F. Jia, X. J. Liang, X. Liu, et al., Spontaneous assembly of perfectlyordered identical-size nanocluster arrays [J]. Phys. Rev. Lett. 2002, 88: 066101.
    [27] S. C. Li, J. F. Jia, R. F. Dou, Q. K. Xue, et al., Borderline magic clustering: the fabrication of tetravalent Pb cluster arrays on Si(111)-(7×7) surfaces [J]. Phys. Rev. Lett. 2004, 93: 116103.
    [28] H. Chang, H. D. Park, K. S. Sohn, J. D. Lee, Electronic structure of Zn2SiO4 and Zn2SiO4 : Mn [J]. J. Korean Phys. Soc., 1999, 34: 545-548.
    [29] X. Wang, C. J. Summers, Z. L. Wang. Mesoporous single-crystal ZnO nanowires epitaxially sheathed with Zn2SiO4 [J]. Adv. Mater., 2004, 16: 1215-1218.
    [30] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures [J]. Nature, 2002, 420: 57-61.
    [31] (a) Y. Y. Wu, P. D. Yang, Direct observation of vapor-liquid-solid nanowire growth [J]. J. Am. Chem. Soc., 2001, 123: 3165-3166. (b) P. X. Gao, Y. Ding, Z. L. Wang, Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst [J]. Nano Lett., 2003, 3: 1315-1320.
    [32] S. K. Sharma, G. J. Exarhos, Influence of processing variables on the structure and properties of ZnO films [J]. Thin Solid Films, 1995, 270: 27-32.
    [1] E. M. Purcell, Spontaneous emission probabilities at radio frequencies [J]. Phys. Rev. 1946, 69: 681.
    [2] J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, Science, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires [J]. 2001, 293: 1455-1457.
    [3] X. F. Duan, U. Huang, R. Agarwal, C. M. Lieber, Single-nanowire electrically driven lasers [J]. Nature, 2003, 421: 241-245.
    [4] P. Berman (editor), Cavity Quantum Electrodynamics [M]. San Diego: Academic, 1994.
    [5] J. McKeever, A. Boca, A. D. Boozer, et al., Experimental realization of a one-atom laser in the regime of strong coupling [J]. Nature, 2003, 425: 268-271.
    [6] J. McKeever, A. Boca, A. D. Boozer, R. Miller, et al., Deterministic generation of single photons from one atom trapped in a cavity [J]. Science, 2004, 303: 1992-1994.
    [7] E. Peter, P. Senellart, et al., Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity [J]. Phys. Rev. Lett., 2005, 95: 067401.
    [8] E. Moreau, I. Robert, J. M. Gérard, I. Abram, et al., Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities [J]. Appl. Phys. Lett., 2001, 79: 2865-2867.
    [9] T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J.-P. Reithmaier, et al., Enhanced light emission of InxGa1-xAs quantum dots in a two-dimensional photonic-crystal defect microcavity [J], Phys. Rev. B, 2002, 66: 041303.
    [10] T. F. Krauss, Control at the quantum level [J]. Science, 2005, 308: 1122-1123.
    [11] T.Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, et al., Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity [J]. Nature, 2004, 432: 200-203.
    [12] A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, et al., Deterministic coupling of single quantum dots to single nanocavity modes [J]. Science, 2005, 308: 1158-1161.
    [13] A. P. Lenham, D. M. Treherne, The optical constants of single crystals ofcadmium and zinc [J]. Proc. Phys. Soc., 1964, 83: 1059.
    [14] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip [J]. Nature, 2003, 421: 925.
    [15] T. Y. Yamamato, R. E.Slusher, Optical processes in microcavities [J], Physics Today , 1993, 46 (6): 66.
    [16] S. McCall, A. F. J. Levi, R. E. Slusher, et al., Whispering-gallery mode microdisk lasers [J], Appl. Phys.Lett., 1992, 60 (3): 289.
    [17] R. A. Mair, K. C. Zeng, J. Y. Ling, et al., Optical properties of GaN/AlGaN multiple quantum well microdiscs [J], Appl. Phys. Lett., 1998, 72 (13): 1530.
    [18] Z. W?adys?aw, Whispering-Gallery-Mode Resonances: A NewWay to Accelerate Charged Particles [J]. Phys. Rev. Lett. 2005, 95: 114801.
    [19] E. M. Purcell, Spontaneous emission probabilities at radio frequencies [J]. Phys. Rev. 1946, 69: 681.
    [20] E. Moreau, I. Robert, J. M. Gérard, I. Abram, et al., Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities [J]. Appl. Phys. Lett., 2001, 79: 2865.
    [21] T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J.-P. Reithmaier, et al., Enhanced light emission of InxGa1-xAs quantum dots in a two-dimensional photonic-crystal defect microcavity [J], Phys. Rev. B, 2002, 66: 041303.
    [22] Edited by E. Burstein and C. Weisbuch, Confined electrons and photons: new physics and applications [M]. New York: Plenum press, 1995.
    [23] L. C. Andreani, G. Panzarini, Strong-coupling regime for quantum boxes in pillar microcavities: theory [J]. Phys. Rev. B, 1999, 60: 13276.
    [24] 郑厚植, 半导体微腔物理及其应用 [J]. 1997, 18(7): 481.
    [25] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity [J]. Phys. Rev. Lett., 1992, 69: 3314.
    [26] R. Houdré, C. Weisbuch. R. P. Stanley, U. Oesterle, et al., Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments [J]. Phys. Rev. Lett., 1994, 73: 2043.
    [27] H. Wang, J. Shah, T. C. Damen, W. Y. Jan, et al., Coherent oscillations in semiconductor microcavities [J]. Phys. Rev. B, 1995, 51: 14713.
    [28] Rudin, S., Reinecke, T. L. Oscillator model for vacuum Rabi splitting inmicrocavities [J]. Phys. Rev. B, 1999, 59: 10227.
    [29] J. P. Reithmaier et al., Strong coupling in a single quantum dot semiconductor microcavity system [J]. Nature, 2004, 432: 197.
    [30] S. Haroche, Fundamental Systems in Quantum Optics [M], Edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin, Les Houches Session LIII. New York: Elsevier, 1992, p. 769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700