用户名: 密码: 验证码:
喉鳞癌中Hsa-miR-145-5p及靶基因FSCN1调控紊乱的新机制及临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究目的】
     1.获得喉鳞癌中差异性microRNA表达谱,从中挑选预研究的靶标分子;
     2.结合喉鳞癌临床病理参数评价Hsa-miR-145-5p及其靶基因FSCN1的临床意义,探讨它们与喉鳞癌预后的关系;
     3.验证Hsa-miR-145-5p及其靶基因FSCN1的调控关系,并明确他们在喉鳞癌细胞系Hep-2及TU-177中的体外、体内生物学功能;
     4.初步明确两者在喉鳞癌中调控紊乱的分子生物学机制。
     【研究方法】
     1.利用基因芯片技术获得喉鳞癌中差异性microRNA的表达谱;
     2.通过生物信息学预测并结合文献,定位与喉鳞癌侵袭转移相关的microRNA及其靶基因;
     3.利用qRT-PCR、Western blot及免疫组化技术回顾性研究它们与喉鳞癌患者临床病理参数及预后的关系;
     4.利用双荧光报告载体验证他们之前的靶向调控关系;
     5.利用基因转染技术,通过loss-of-function及gain-of-function体外观察他们对喉鳞癌细胞恶性表型的影响,通过裸鼠移植瘤模型观察抑制肿瘤效果;
     6.通过荧光共聚焦技术、电镜技术观察他们对喉鳞癌细胞骨架形成及细胞生物学结构的影响;
     7.利用生物信息学技术预测Hsa-miR-145-5p甲基化位点,结合甲基化测序进行定量验证;
     8.体外校正Hsa-miR-145-5p-FSCN1轴后,检测EMT关键分子的变化水平;数据全部录入SPSS21.0。率的比较用卡方检验,计量资料用t检验或方差检验,强度用秩和检验,生存分析用KM法及Cox模型。P<0.05认为差异有统计学意义。
     【研究结果】
     1.基因芯片筛查发现Hsa-miR-145-5p是喉鳞癌中显著下调的差异性microRNA之一;
     2.经生物信息学预测,同时利用双荧光报告载体验证了FSCN1是Hsa-miR-145-5p的直接靶基因;Hsa-miR-145-5p发挥对FSCN1转录后的调控作用;
     3. miR-145-5p(抑癌基因)在喉鳞癌组织中存在显著异常低表达,而其靶基因FSCN1(癌基因)则存在显著异常高表达;miR-145-5p与喉鳞癌患者T分期、颈淋巴结转移、临床分期、分化程度呈负相关,而FSCN1与喉鳞癌患者T分期、颈淋巴结转移、临床分期、分化程度呈正相关(P<0.05);
     4. miR-145-5p低表达及FSCN1蛋白高表达提示喉鳞癌患者预后不良。其中FSCN1是喉鳞癌患者预后不良的单独影响因素;特别是同时伴有miR-145-5p低表达且FSCN1蛋白高表达这一分子特征是患者预后不良的独立风险因子。
     5.体外实验证实恢复miR-145-5p的表达或敲减FSCN1的表达,则可抑制喉鳞癌细胞增殖、平板克隆、迁移及侵袭的恶性表型,同时可将喉鳞癌细胞阻滞在G0/G1期,并促进其凋亡;化学修饰的miR-145-5p及si-FSCN1药物具有体内抑制肿瘤生长的效果;
     6. miR-145-5p启动子高甲基化引发其转录障碍,导致靶基因FSCN1调控紊乱,并在肿瘤细胞恶性间质转化(EMT)中发挥重要生物学效应。
     【研究结论】
     1.喉鳞癌中存在显著差异性microRNA表达谱。miR-145-5p在喉鳞癌中显著下调,扮演抑癌基因角色,而其靶基因FSCN1扮演癌基因角色。同时伴有miR-145-5p低表达且FSCN1高表达的个体预后不良,且这一分子特征是喉鳞癌患者预后的独立危险因素。
     2. miR-145-5p启动子高甲基化导致其功能失调,促进喉鳞癌细胞增殖、侵袭转移、间质转化等恶性表型,这一生物学效应是通过其靶基因FSCN1异常上调所介导。
     3.本研究以microRNA这一新视角,明确了miR-145-5p及靶基因FSCN1调控紊乱是喉癌中的重要分子事件。也为以microRNA为靶点对喉鳞癌行分子靶向治疗提供新思路及理论依据。
Objective:
     MicroRNAs (miRNAs) are endogenous short non-coding RNA molecules thatregulate gene expression by repressing translation or cleaving RNA transcripts in asequence-specific manner. We aim to get the expression profiles of microRNAs inlaryngeal squamous cell carcinoma (LSCC). We investigated the association ofmiR-145-5p and its target gene FSCN1expression with clinicopathologic factors andtheir prognostic value in LSCC. Finaly, we identify the main function of miR-145-5pand FSCN1in Hep-2and TU-177.
     Methods:
     We used microRNA chip to identify the expression profiles in LSCC. Thebioinformatics was used in prediction of regulation between miR-145-5p and FSCN1which was validated by fluorescent report vector. Quantitative RT-PCR and westernblot analyses were used to examine mRNA and protein levels in10fresh LSCCspecimens and10corresponding adjacent normal margin (ANM) tissues frompatients undergoing surgery in2012. We used immunohistochemistry toretrospectively study188paraffin blocks of LSCC samples from patients who hadundergone surgery between2000and2006and had not received special treatmentbefore the diagnosis. Univariate analysis of patient survival involved the Kaplan–Meier method. Multivariate analyses involved the Cox proportional hazards model.The gene transfection and siRNA technology was used in order to explore theirfunctions on the malignant phenotype of laryngeal squamous carcinoma cells in vitro. The biological information technology was used in forecasting methylation sites ofHsa-miR-145-5p which was validated by quantitative methylation sequencing.Finally, we detected the changes of key molecules of epithelial-mesenchymaltransition (EMT) after Hsa-miR-145-5p-FSCN1axis was rescued in vitro.
     Results:
     Hsa-miR-145-5p, one of the multifarious microRNA, was significantlydown-regulated in laryngeal squamous cell carcinoma. FSCN1was the direct targetgene of miR-145-5p. It could inhibit the proliferation, clone, migration, invasion oflaryngeal squamous carcinoma cell which were arrested in G0/G1phase, andpromoted into apoptosis by recovery of miR-145-5p or siRNA of FSCN1.
     Low expression of miR-145-5p and high expression pattern of FSCN1weresignificantly observed in laryngeal squamous cell carcinoma. The low expression ofmiR-145-5p was positively correlated with poor tumor differentiation, cervical lymphnode metastasis (N+), and advanced clinical stage (III+IV), but not sex, denger ormetastasis. In addition, a high expression of FSCN1was associated with advancedtumor stage (T3+T4). The expression of fascin-1was higher in smokers thannon-smokers. A high expression of FSCN1or low expression of miR-145-5p wasassociated with poor prognosis. Low expression of miR-145-5p with high expressionof FSCN1is an independent risk factor for LSCC patients with poor prognosis.
     MiR-145-5p promoter hypermethylation caused the imbalance ofhsa-miR-145-5p-FSCN1axis, resulting in regulation disorder of FSCN1, whichplayed an important biological effect in tumor cell malignant mesenchymal transition(EMT).
     Conclusions:
     The regulation disorder between miR-145-5p and FSCN1is important molecularevent in the process of malignant progression and metastasis in laryngeal squamous cell carcinoma. miR-145-5p is an actor as tumor suppressor gene but proto-oncogeneof FSCN1which might be prognostic of poor outcome with LSCC after surgery. Ourstudy may lead to establishing new molecular therapeutic targets and/or prognosticbiomarkers in LSCC.
引文
[1] Black RJ, Bray F, Ferlay J, et al. Cancer incidence and mortality in the European Union: cancer registrydata and estimates of national incidence for1990. Eur J Cancer,1997,33:1075-107.
    [2] Chu EA, Kim YJ. Laryngeal cancer: diagnosis and preoperative work-up. Otolaryngol Clin North Am,2008,41:673-95, v.
    [3] Pfister DG, Laurie SA, Weinstein GS, et al. American Society of Clinical Oncology clinical practiceguideline for the use of larynx-preservation strategies in the treatment of laryngeal cancer. J Clin Oncol,2006,24:3693-704.
    [4] Dequanter D, Lothaire P, Zouaoui K, et al. Epidemiology and clinical characteristics of larynx andhypopharynx carcinoma: a comparative study in the Hainaut and review of the literature. Acta Chir Belg,2012,112:423-5.
    [5] Jemal A, Thomas A, Murray T, et al. Cancer statistics,2002. CA Cancer J Clin,2002,52:23-47.
    [6] Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA Cancer J Clin,2012,62:10-29.
    [7] Siegel R, Naishadham D, Jemal A. Cancer statistics,2013. CA Cancer J Clin,2013,63:11-30.
    [8] Dequanter D, Lothaire P, Zouaoui K, et al. Epidemiology and clinical characteristics of larynx andhypopharynx carcinoma: a comparative study in the Hainaut and review of the literature. Acta Chir Belg,2012,112:423-5.
    [9]毕丽青,王翠玲.山西某医院2008-2010年7335例肿瘤病例调查分析.山西医科大学学报,2012,43:200-203.
    [10]武永春,张燕萍,马利刚.太原市2009年恶性肿瘤发病资料分析.山西医药杂志,2012,41:992-995.
    [11] Gao W, Zhang C, Feng Y, et al. Fascin-1, ezrin and paxillin contribute to the malignant progression and arepredictors of clinical prognosis in laryngeal squamous cell carcinoma. PLOS ONE,2012,7:e50710.
    [12] Hermans R. Staging of laryngeal and hypopharyngeal cancer: value of imaging studies. Eur Radiol,2006,16:2386-400.
    [13]刘鸣,肖占荣.声门上型喉癌与颈淋巴结转移.中华耳鼻咽喉科杂志,1995,30:47-49.
    [14]时曜唏,关超.声门上喉癌颈淋巴结转移临床病理研究.中华耳鼻咽喉科杂志,1990,25:234-236.
    [15]于靖寰,季文樾.声门上型喉癌颈淋巴结转移的临床病理研究.中华耳鼻咽喉科杂志,1997,32:325-328.
    [16] Yurut-Caloglu V, Caloglu M, Turan FN, et al. The better performance status, the better outcome: laryngealcarcinoma treated with definitive radiotherapy. J Otolaryngol Head Neck Surg,2008,37:799-806.
    [17]赵舒薇.喉癌治疗进展.肿瘤学杂志,2012:644-647.
    [18] Ganly I, Patel SG, Matsuo J, et al. Predictors of outcome for advanced-stage supraglottic laryngeal cancer.Head Neck,2009,31:1489-95.
    [19]刘天润,杨安奎,陈福进,等.221例晚期喉鳞癌患者术后的生存和预后分析.癌症,2009:297-302.
    [20] Pitman KT, Johnson JT, Myers EN. Effectiveness of selective neck dissection for management of theclinically negative neck. Arch Otolaryngol Head Neck Surg,1997,123:917-22.
    [21]徐震纲,屠规益.上颈深淋巴结清除术对声门上型喉癌无临床淋巴结转移的治疗….中华耳鼻咽喉科杂志,1993,28:213-215.
    [22]季文樾,杜强,关超,王殿阁.1115例喉癌患者的生存分析.中华耳鼻咽喉科杂志,2004,39:17-19.
    [23] Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature,1980,283:139-46.
    [24] Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer,2003,3:453-8.
    [25] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAs withantisense complementarity to lin-14. Cell,1993,75:843-54.
    [26] Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles inCaenorhabditis elegans. Science,2001,294:858-62.
    [27] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressedRNAs. Science,2001,294:853-8.
    [28] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004,116:281-97.
    [29] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates thatthousands of human genes are microRNA targets. Cell,2005,120:15-20.
    [30] Makarova JA, Kramerov DA. Noncoding RNAs. Biochemistry (Mosc),2007,72:1161-78.
    [31] Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med,2005,353:1768-71.
    [32] Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors. Dev Biol,2007,302:1-12.
    [33] Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell,2005,122:6-7.
    [34] van RE. The art of microRNA research. Circ Res,2011,108:219-34.
    [35] Yu CC, Chen YW, Chiou GY, et al. MicroRNA let-7a represses chemoresistance and tumourigenicity inhead and neck cancer via stem-like properties ablation. Oral Oncol,2011,47:202-10.
    [36] Wang YY, Ren T, Cai YY, et al. MicroRNA let-7a Inhibits the Proliferation and Invasion of Nonsmall CellLung Cancer Cell Line95D by Regulating K-Ras and HMGA2Gene Expression. Cancer BiotherRadiopharm,2012.
    [37] Xiong S, Zheng Y, Jiang P, et al. MicroRNA-7inhibits the growth of human non-small cell lung cancerA549cells through targeting BCL-2. Int J Biol Sci,2011,7:805-14.
    [38] Shibuya H, Iinuma H, Shimada R, et al. Clinicopathological and prognostic value of microRNA-21andmicroRNA-155in colorectal cancer. Oncology,2010,79:313-20.
    [39] Liu C, Li B, Cheng Y, et al. MiR-21plays an important role in radiation induced carcinogenesis in BALB/cmice by directly targeting the tumor suppressor gene Big-h3. Int J Biol Sci,2011,7:347-63.
    [40] Liu CJ, Tsai MM, Hung PS, et al. miR-31ablates expression of the HIF regulatory factor FIH to activatethe HIF pathway in head and neck carcinoma. Cancer Res,2010,70:1635-44.
    [41] Kinoshita T, Nohata N, Fuse M, et al. Tumor suppressive microRNA-133a regulates novel targets: moesincontributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma. BiochemBiophys Res Commun,2012,418:378-83.
    [42] Deng Y, Deng H, Bi F, et al. MicroRNA-137targets carboxyl-terminal binding protein1in melanoma celllines. Int J Biol Sci,2011,7:133-7.
    [43] Liu X, Wang C, Chen Z, et al. MicroRNA-138suppresses epithelial-mesenchymal transition in squamouscell carcinoma cell lines. Biochem J,2011,440:23-31.
    [44] Wu DW, Cheng YW, Wang J, et al. Paxillin predicts survival and relapse in non-small cell lung cancer bymicroRNA-218targeting. Cancer Res,2010,70:10392-401.
    [45] Guo SL, Peng Z, Yang X, et al. miR-148a promoted cell proliferation by targeting p27in gastric cancercells. Int J Biol Sci,2011,7:567-74.
    [46] Kikkawa N, Hanazawa T, Fujimura L, et al. miR-489is a tumour-suppressive miRNA target PTPN11inhypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer,2010,103:877-84.
    [47]李琳,张宗敏,刘宇,等.应用基因芯片检测喉鳞状细胞癌甲醛固定石蜡包埋组织microRNA表达谱.中华病理学杂志,2010,39:391-395.
    [48]王苹,付涛,王绪锐,祝威.应用微阵列芯片分析喉鳞状细胞癌miRNA与正常黏膜表达差异的初步研究.临床耳鼻咽喉头颈外科杂志,2010,24:535-538.
    [49] Cao P, Zhou L, Zhang J, et al. Comprehensive expression profiling of microRNAs in laryngeal squamouscell carcinoma.LID-10.1002/hed.23011[doi]. Head Neck,2012.
    [50] Wu BL, Xu LY, Du ZP, et al. MiRNA profile in esophageal squamous cell carcinoma: downregulation ofmiR-143and miR-145. World J Gastroenterol,2011,17:79-88.
    [51] Yu T, Wang XY, Gong RG, et al. The expression profile of microRNAs in a model of7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res,2009,28:64.
    [52] Hui AB, Lenarduzzi M, Krushel T, et al. Comprehensive MicroRNA profiling for head and neck squamouscell carcinomas. Clin Cancer Res,2010,16:1129-39.
    [53] Nohata N, Hanazawa T, Kinoshita T, et al. MicroRNAs function as tumor suppressors or oncogenes:Aberrant expression of microRNAs in head and neck squamous cell carcinoma. Auris Nasus Larynx,2013,40:143-9.
    [54] Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer.Cancer Res,2005,65:7065-70.
    [55] Bandres E, Cubedo E, Agirre X, et al. Identification by Real-time PCR of13mature microRNAsdifferentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer,2006,5:29.
    [56] Akao Y, Nakagawa Y, Kitade Y, et al. Downregulation of microRNAs-143and-145in B-cell malignancies.Cancer Sci,2007,98:1914-20.
    [57] Akao Y, Nakagawa Y, Naoe T. MicroRNA-143and-145in colon cancer. DNA Cell Biol,2007,26:311-20.
    [58] Bauer KM, Hummon AB. Effects of the miR-143/-145microRNA cluster on the colon cancer proteomeand transcriptome. J Proteome Res,2012,11:4744-54.
    [59] Kano M, Seki N, Kikkawa N, et al. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs targetFSCN1in esophageal squamous cell carcinoma. Int J Cancer,2010,127:2804-14.
    [60] Yin R, Zhang S, Wu Y, et al. microRNA-145suppresses lung adenocarcinoma-initiating cell proliferationby targeting OCT4. Oncol Rep,2011,25:1747-54.
    [61] Cho WC, Chow AS, Au JS. MiR-145inhibits cell proliferation of human lung adenocarcinoma bytargeting EGFR and NUDT1. RNA Biol,2011,8:125-31.
    [62] Suh SO, Chen Y, Zaman MS, et al. MicroRNA-145is regulated by DNA methylation and p53genemutation in prostate cancer. Carcinogenesis,2011,32:772-8.
    [63] Fuse M, Nohata N, Kojima S, et al. Restoration of miR-145expression suppresses cell proliferation,migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol,2011,38:1093-101.
    [64] Dip N, Reis ST, Srougi M, et al. Expression profile of microrna-145in urothelial bladder cancer. Int Braz JUrol,2013,39:95-102.
    [65] Bryan J, Kane RE. Separation and interaction of the major components of sea urchin actin gel. J Mol Biol,1978,125:207-24.
    [66] Tubb B, Mulholland DJ, Vogl W, et al. Testis fascin (FSCN3): a novel paralog of the actin-bundling proteinfascin expressed specifically in the elongate spermatid head. Exp Cell Res,2002,275:92-109.
    [67] De Arcangelis A, Georges-Labouesse E, Adams JC. Expression of fascin-1, the gene encoding theactin-bundling protein fascin-1, during mouse embryogenesis. Gene Expr Patterns,2004,4:637-43.
    [68] Kureishy N, Sapountzi V, Prag S, et al. Fascins, and their roles in cell structure and function. Bioessays,2002,24:350-61.
    [69] Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion.Biochim Biophys Acta,2007,1773:642-52.
    [70] Buda A, Pignatelli M. Cytoskeletal network in colon cancer: from genes to clinical application. Int JBiochem Cell Biol,2004,36:759-65.
    [71] Xie JJ, Xu LY, Xie YM, et al. Roles of ezrin in the growth and invasiveness of esophageal squamouscarcinoma cells. Int J Cancer,2009,124:2549-58.
    [72] Pelosi G, Pastorino U, Pasini F, et al. Independent prognostic value of fascin immunoreactivity in stage Inonsmall cell lung cancer. Br J Cancer,2003,88:537-47.
    [73] Hsu KF, Lin CK, Yu CP, et al. Cortactin, fascin, and survivin expression associated withclinicopathological parameters in esophageal squamous cell carcinoma. Dis Esophagus,2009,22:402-8.
    [74]薛丽燕,邹霜梅,郑闪,等.成束蛋白和细胞角蛋白14在多种肿瘤组织中的表达及其鉴别诊断意义.中华肿瘤杂志,2010,32:838-844.
    [75] Grothey A, Hashizume R, Sahin AA, et al. Fascin, an actin-bundling protein associated with cell motility,is upregulated in hormone receptor negative breast cancer. Br J Cancer,2000,83:870-3.
    [76] Cao D, Ji H, Ronnett BM. Expression of mesothelin, fascin, and prostate stem cell antigen in primaryovarian mucinous tumors and their utility in differentiating primary ovarian mucinous tumors frommetastatic pancreatic mucinous carcinomas in the ovary. Int J Gynecol Pathol,2005,24:67-72.
    [77] Maitra A, Iacobuzio-Donahue C, Rahman A, et al. Immunohistochemical validation of a novel epithelialand a novel stromal marker of pancreatic ductal adenocarcinoma identified by global expressionmicroarrays: sea urchin fascin homolog and heat shock protein47. Am J Clin Pathol,2002,118:52-9.
    [78] Swierczynski SL, Maitra A, Abraham SC, et al. Analysis of novel tumor markers in pancreatic and biliarycarcinomas using tissue microarrays. Hum Pathol,2004,35:357-66.
    [79] Jawhari AU, Buda A, Jenkins M, et al. Fascin, an actin-bundling protein, modulates colonic epithelial cellinvasiveness and differentiation in vitro. Am J Pathol,2003,162:69-80.
    [80] Zhang FR, Tao LH, Shen ZY, et al. Fascin expression in human embryonic, fetal, and normal adult tissue. JHistochem Cytochem,2008,56:193-9.
    [81] Goncharuk VN, Ross JS, Carlson JA. Actin-binding protein fascin expression in skin neoplasia. J CutanPathol,2002,29:430-8.
    [82] Li D, Feng J, Wu T, et al. Long Intergenic Noncoding RNA HOTAIR Is Overexpressed and RegulatesPTEN Methylation in Laryngeal Squamous Cell Carcinoma. Am J Pathol,2013,182:64-70.
    [83] Peng X, Guo W, Liu T, et al. Identification of miRs-143and-145that is associated with bone metastasis ofprostate cancer and involved in the regulation of EMT. PLOS ONE,2011,6:e20341.
    [84] Sempere LF, Christensen M, Silahtaroglu A, et al. Altered MicroRNA expression confined to specificepithelial cell subpopulations in breast cancer. Cancer Res,2007,67:11612-20.
    [85] Radojicic J, Zaravinos A, Vrekoussis T, et al. MicroRNA expression analysis in triple-negative (ER, PRand Her2/neu) breast cancer. Cell Cycle,2011,10:507-17.
    [86] Hamano R, Miyata H, Yamasaki M, et al. Overexpression of miR-200c induces chemoresistance inesophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res,2011,17:3029-38.
    [87] Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosisand prognosis. Cancer Cell,2006,9:189-98.
    [88] Hashimoto Y, Shimada Y, Kawamura J, et al. The prognostic relevance of fascin expression in humangastric carcinoma. Oncology,2004,67:262-70.
    [89]刘莉,丁彦青.结直肠癌组织Fascin-1蛋白表达的意义.第四军医大学学报,2007,28:108-110.
    [90] Iguchi T, Aishima S, Taketomi A, et al. Fascin overexpression is involved in carcinogenesis and prognosisof human intrahepatic cholangiocarcinoma: immunohistochemical and molecular analysis. Hum Pathol,2009,40:174-80.
    [91] Zou J, Yang H, Chen F, et al. Prognostic significance of fascin-1and E-cadherin expression in laryngealsquamous cell carcinoma. Eur J Cancer Prev,2010,19:11-7.
    [92] Durmaz A, Kurt B, Ongoru O, et al. Significance of fascin expression in laryngeal squamous cellcarcinoma. J Laryngol Otol,2010,124:194-8.
    [93] Lee TK, Poon RT, Man K, et al. Fascin over-expression is associated with aggressiveness of oral squamouscell carcinoma. Cancer Lett,2007,254:308-15.
    [94] Al-Alwan M, Olabi S, Ghebeh H, et al. Fascin is a key regulator of breast cancer invasion that acts via themodification of metastasis-associated molecules. PLOS ONE,2011,6:e27339.
    [95] Hashimoto Y, Ito T, Inoue H, et al. Prognostic significance of fascin overexpression in human esophagealsquamous cell carcinoma. Clin Cancer Res,2005,11:2597-605.
    [96] Pelosi G, Pastorino U, Pasini F, et al. Independent prognostic value of fascin immunoreactivity in stage Inonsmall cell lung cancer. Br J Cancer,2003,88:537-47.
    [97] Curado MP, Hashibe M. Recent changes in the epidemiology of head and neck cancer. Curr Opin Oncol,2009,21:194-200.
    [98] Nowak JM, Grzanka A, Gagat M, et al. The influence of cotinine on the non-small-cell lung cancer lineA549. Postepy Hig Med Dosw (Online),2009,63:1-7.
    [99] Chiyomaru T, Enokida H, Tatarano S, et al. miR-145and miR-133a function as tumour suppressors anddirectly regulate FSCN1expression in bladder cancer. Br J Cancer,2010,102:883-91.
    [100] Liu R, Liao J, Yang M, et al. The cluster of miR-143and miR-145affects the risk for esophageal squamouscell carcinoma through co-regulating fascin homolog1. PLOS ONE,2012,7:e33987.
    [101] La Rocca G, Badin M, Shi B, et al. Mechanism of growth inhibition by MicroRNA145: the role of theIGF-I receptor signaling pathway. J Cell Physiol,2009,220:485-91.
    [102] Wu Y, Liu S, Xin H, et al. Up-regulation of microRNA-145promotes differentiation by repressing OCT4in human endometrial adenocarcinoma cells. Cancer,2011,117:3989-98.
    [103] Chen Z, Zeng H, Guo Y, et al. miRNA-145inhibits non-small cell lung cancer cell proliferation bytargeting c-Myc. J Exp Clin Cancer Res,2010,29:151.
    [104] Shi B, Sepp-Lorenzino L, Prisco M, et al. Micro RNA145targets the insulin receptor substrate-1andinhibits the growth of colon cancer cells. J Biol Chem,2007,282:32582-90.
    [105] Carmona-Fontaine C, Matthews HK, Kuriyama S, et al. Contact inhibition of locomotion in vivo controlsneural crest directional migration. Nature,2008,456:957-61.
    [106] Ray ME, Mehra R, Sandler HM, et al. E-cadherin protein expression predicts prostate cancer salvageradiotherapy outcomes. J Urol,2006,176:1409-14; discussion1414.
    [107] Hazan RB, Phillips GR, Qiao RF, et al. Exogenous expression of N-cadherin in breast cancer cells inducescell migration, invasion, and metastasis. J Cell Biol,2000,148:779-90.
    [108] Bonnomet A, Brysse A, Tachsidis A, et al. Epithelial-to-mesenchymal transitions and circulating tumorcells. J Mammary Gland Biol Neoplasia,2010,15:261-73.
    [109] Bonnomet A, Syne L, Brysse A, et al. A dynamic in vivo model of epithelial-to-mesenchymal transitions incirculating tumor cells and metastases of breast cancer. Oncogene,2012,31:3741-53.
    [110] Hu J, Guo H, Li H, et al. MiR-145regulates epithelial to mesenchymal transition of breast cancer cells bytargeting Oct4. PLOS ONE,2012,7:e45965.
    [111] Sachdeva M, Mo YY. MicroRNA-145suppresses cell invasion and metastasis by directly targeting mucin1. Cancer Res,2010,70:378-87.
    [112] Zou J, Yang H, Chen F, et al. Prognostic significance of fascin-1and E-cadherin expression in laryngealsquamous cell carcinoma. Eur J Cancer Prev,2010,19:11-7.
    [113] Chen SF, Lin CY, Chang YC, et al. Effects of small interfering RNAs targeting Fascin on gene expressionin oral cancer cells. J Oral Pathol Med,2009,38:722-30.
    [114] Hayashi Y, Osanai M, Lee GH. Fascin-1expression correlates with repression of E-cadherin expression inhepatocellular carcinoma cells and augments their invasiveness in combination with matrixmetalloproteinases. Cancer Sci,2011,102:1228-35.
    [115] Gao P, Xing AY, Zhou GY, et al. The molecular mechanism of microRNA-145to suppressinvasion-metastasis cascade in gastric cancer. Oncogene,2013,32:491-501.
    [116] Alam H, Bhate AV, Gangadaran P, et al. Fascin overexpression promotes neoplastic progression in oralsquamous cell carcinoma. BMC Cancer,2012,12:32.
    [117] Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment.Cell,2010,141:52-67.
    [118] Kozaki K, Imoto I, Mogi S, et al. Exploration of tumor-suppressive microRNAs silenced by DNAhypermethylation in oral cancer. Cancer Res,2008,68:2094-105.
    [119] Henson BJ, Bhattacharjee S, O'Dee DM, et al. Decreased expression of miR-125b and miR-100in oralcancer cells contributes to malignancy. Genes Chromosomes Cancer,2009,48:569-82.
    [120] Avissar M, McClean MD, Kelsey KT, et al. MicroRNA expression in head and neck cancer associates withalcohol consumption and survival. Carcinogenesis,2009,30:2059-63.
    1. Wienholds E,Plasterk RH.MicroRNA function in animal development. FEBSLetters,2005,579(26):911.
    2. ScholzováE,Malik R,Sevcik J,et al.RNA regulation and cancer development. Cancer Lett,2007,246(1-2):12.
    3. Lewis BP, Burge CB, Bartel DP.Conserved seed pairing, often flanked by adenosines,indicates that thousands of human genes are microRNA targets. Cell.2005Jan14;120(1):15-20.
    4. Makarova J A, Kramerov D A. Noncoding RNAs.Biochemistry(Mosc),2007,72(11):1161-1178.
    5. Chen C Z. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med,2005,353(17):1768-1771.
    6. IorioM V, Ferracin M, Liu C G, et al. MicroRNA gene exp ressionderegulation in humanbreast cancer. Cancer Res,2005,65(16):7065-7070.
    7. Bandrés E, Cubedo E, Agirre X, et al. Identification by Real-time PCR of13maturemicroRNAs differentially expressed in colorectal cancer and non-tumoral tissues. MolCancer,2006,5(29):1-10.
    8. Akao Y,Nakagawa Y, Kitade Y, et al. Down-regulation of microR NAs-143and145inB2cellmalignancies. Cancer Sci,2007,98(12):1914-1920.
    9. AKao Y, Nakagawa Y, Naoe T. MicroRNA-143and-145in Colon Cancer. DNA Cell Biol,2007,26(5):311-320.
    10. Masayuki Kano, Naohiko Seki, Naoko Kikkawa,et al. miR-145, miR-133a and miR-133b:tumor-suppressive miRNAs target FSCN1in esophageal squamous cell carcinoma. Int. J.Cancer:127,2804-2814.
    11. Yin R, Zhang S, Wu Y, et al.microRNA-145suppresses lung adenocarcinoma-initiating cellproliferation by targeting OCT4. Oncol Rep.2011Jun;25(6):1747-54
    12. Cho WC, Chow AS, Au JS.MiR-145inhibits cell proliferation of human lungadenocarcinoma by targeting EGFR and NUDT1. RNA Biol.2011Jan1;8(1).[Epub aheadof print]
    13. Suh SO, Chen Y, Zaman MS, et al.MicroRNA-145is regulated by DNA methylation andp53gene mutation in prostate cancer. Carcinogenesis.2011May;32(5):772-778
    14. Fuse M, Nohata N, Kojima S,er al.Restoration of miR-145expression suppresses cellproliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol.2011Apr;38(4):1093-101.
    15. Bing-Li Wu, Li-Yan Xu, Ze-Peng Du,etal.MiRNA profile in esophageal squamous cellcarcinoma: Downregulation of miR-143and miR-145. World J Gastroenterol2011January7;17(1):79-88.
    16. Zhang L,Deng T,Li X, et al. microRNA-141is involved in a nasopharyngealcarcinoma-related genes net-work. Carcinogenesis,2010Apr;31(4):559-566.
    17. Xia H,Ng SS,Jiang S,et al. miR-200a-mediated downregulation of ZEB2and CTNNB1differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion.Biochem Biophys Res Commun,2010Jan1;391(1):535-541.
    18. Gourzones C,Gelin A,Bombik I, et al. Extra-celluar release and blood diffusion ofBARTvival microRNAs produced by EBV-infected nasopharyngeal carcinoma. Virol J,2010Oct15;7:271.
    19. Yu T,Wang XY,Gong RG,et al. The expression profile of microRNAs in a model of7,12-dimethyl-benz(a) anthrane-induced oral carcinogenesis in Syrian hamster. J Exp ClinCancer Res,2009May13;28:64.
    20. Liu CJ,Kao SY,Tu HF,et al. Increase of micreRNA miR-31level in plasma could be apotential marker of oral cancer(OSCC). Oral Dis,2010May;16(4):360-364.
    21. Liu X,Wang A,Heidbreder CE,et al. MicroRNA-24targeting RNA-binding protein DND1intongue spuamous cell carcinoma. FEBS Lett,2010Sep24;584(18):4115-4120.
    22. Wong TS,Ho WK,Chan JY,et al. Mature miR-184and squamous cell carcinoma of thetongue. Scientific World Journal,2009Feb15;9:130-132
    23. Li J,Huang H,Sun L,et al. MiR-21indicates poor prognosis in tongue squamous cellcarcinomas as an apoptosis inhibitor. Clin Cancer Res,2009Jun15;15(12):3998-4008.
    24. Jiang L,liu X,Chen Z,et al. MicroRNA-7targets IGF1R(insulin-like growyh factor1recepter)in tongue squamous cell carcinoma cells. Biochem J,2010Oct25;432(1):199-205.
    25. Wong TS,Liu XB,Chung-Wai Ho A,et al. Ientification of pyruvate Kinase type M2(PKM2)as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling.Int J Cancer,2008Jul15;123(2):251-257.
    26. Jiang L, Liu X, Kolokythas A,et al. Downregulation of the Rho GTPase signaling pathwayis involved in the microRNA-138-mediated inhibition of cell migration and invasion intongue squamous cell carcinoma. Int J Cancer,2010Aug1;127(3):505-512.
    27. Liu X,Yu J,Jiang L,et al. MicreRNA-222regulates cell invasion by targeting matrixmetalloproteinase1(MMP1)and manganese superoxide dismutase2(SOD2) in tonguesquamous cell carcinoma cell lines.Cancer Genomics Proteomics,2009May-Jun;6(3):131-139.
    28. Pierlorenzo Pallante, Rosa Visone, Carlo Maria Croce,et al. Deregulation of microRNAexpression in follicular cell-derived human thyroid carcinomas. Endocr Relat Cancer,2010Jan29;17(1):F91-104.
    29. Braun J, Hoang-Vu C, Dralle H,et al. Downregulation of microRNAs directs the EMT andinvasive potential of anaplastic thyroid carcinomas. Oncogene,2010Jul22;29(29):4237-4244.
    30. Takakura S, Mitsutake N, Nakashima M,et al. Oncogenic role of miR-17-92cluster inanaplastic thyroid cancer cells. Cancer Sci,2008Jun;99(6):1147-1154.
    31. Cai KM, Bao XL, Kong XH,et al. Hsa-miR-34c suppresses growth and invasion of humanlaryngeal carcinoma cells via targeting c-Met. Int J Mol Med,2010Apr;25(4):565-571.
    32. Liu M, Wu H, Liu T,et al. Regulation of the cell cycle gene, BTG2, by miR-21in humanlaryngeal carcinoma. Cell Res,2009Jul;19(7):828-837.
    33. Long XB, Sun GB, Hu S,et al. Let-7a microRNA functions as a potential tumor suppressor inhuman laryngeal cancer. Oncol Rep,2009Nov;22(5):1189-1195.
    34.李琳,张宗敏,刘宇,魏明辉,薛丽燕,邹霜梅,邸雪冰,韩迺珺,张开泰,徐震纲,高燕宁.用基因芯片检测喉鳞状细胞癌甲醛固定石蜡包埋组织microRNA表达谱.中华病理学杂志,2010;6(39)6:391-395.
    35. Kikkawa N,Hanazawa T,Fujimura L et al. MiR-489is a tumor-suppressive miRNA targetPTPN11in hypopharyngeal squamous cell carcinoma(HSCC). Br J Cancer,2010Sep7;103(6):877-884.
    36. K Bryan J, Kane RE. Separation and interaction of the major components of sea urchin actingel. J Mol Biol,1978,125(2):207-224.
    37. Tubb B, Mulholland DJ, Vogl W, et al. Testis FSCN1(FSCN3): a novel paralog of theactin-bundling protein fascin expressed specifically in the elongate spermatid head. Exp CellRes.2002,275(1):92-109.
    38. De Arcangelis A, Georges-Labouesse E, Adams JC. Expression of FSCN1, the geneencoding the actin-bundling protein FSCN1, during mouse embryogenesis. Gene ExprPatterns.2004,4(6):637-643.
    39. Kureishy N,sap0un V,Prag S. Fascins,and their roles in cell structure andfunction.Bioessays,2002,24(4):350-361.
    40. Zhang FR, Tao LH, Shen ZY, Lv Z, Xu LY, Li EM. Fascin expression in human embryonic,fetal, and normal adult tissue. J Histochem Cytochem.2008,56(2):193-199.
    41. Grothey A, Hashizume R, Sahin AA, McCrea PD. Fascin, an actin-bundling proteinassociated with cell motility, is upregulated in hormone receptor negative breast cancer. Br JCancer.2000,83(7):870-873.
    42. Cao D, Ji H, Ronnett BM. Expression of mesothelin, fascin, and prostate stem cell antigen inprimary ovarian mucinous tumors and their utility in differentiating primary ovarianmucinous tumors from metastatic pancreatic mucinous carcinomas in the ovary. Int JGynecol Pathol.2005,24(1):67-72.
    43. Maitra A, Iacobuzio-Donahue C, Rahman A, et al. Immunohistochemical validation of anovel epithelial and a novel stromal marker of pancreatic ductal adenocarcinoma identifiedby global expression microarrays: sea urchin fascin homolog and heat shock protein47. AmJ Clin Pathol.2002,118(1):52-59.
    44. Hashimoto Y, Shimada Y, Kawamura J, Yamasaki S, Imamura M. The prognostic relevanceof fascin expression in human gastric carcinoma. Oncology.2004,67(3-4):262-270.
    45. Swierczynski SL, Maitra A, Abraham SC, et al. Analysis of novel tumor markers inpancreatic and biliary carcinomas using tissue microarrays. Hum Pathol.2004,35(3):357-366.
    46. Jawhari AU, Buda A, Jenkins M, et al. Fascin, an actin-bundling protein, modulates colonicepithelial cell invasiveness and differentiation in vitro. Am J Pathol.2003,162(1):69-80.
    47. Pelosi G, Pastorino U, Pasini F, et al. Independent prognostic value of fascinimmunoreactivity in stage I nonsmall cell lung cancer. Br J Cancer.2003,88(4):537-547.
    48.刘莉,丁彦青.结直肠癌组织FSCN1蛋白表达意义.第四军医大学学报,2007,28(2):108-110.
    49. Hashimoto Y, Ito T, Inoue H, et al. Prognostic significance of fascin overexpression inhuman esophageal squamous cell carcinoma. Clin Cancer Res.2005,11(7):2597-2605.
    50.荣举,许丽艳,蔡唯佳,熊兴东,李劲涛,方王楷,沈忠英,李恩民.Fascin-l基因在永生化食管上皮细胞癌变中的表达.癌症,2004,23(3):243-248.
    51. Xie JJ;Xu LY;Zhang HH;Cai WJ;Mai RQ;Xie YM;Yang ZM;Niu YD;Shen ZY;Li EM. Roleof fascin in the proliferation and invasiveness of esophageal carcinoma cells. BiochemBiophys Res Commun.2005,337(1):355-362.
    52. Hu W, McCrea PD, Deavers M, etal.Increased expression of fascin, motility associatedprotein, in cell cultures derived from ovarian cancer and in borderline and carcinomatousovarian tumors. Clin Exp Metastasis.2000,18(1):83-88.
    53. Iguchi T, Aishima S, Taketomi A, et al. Fascin overexpression is involved in carcinogenesisand prognosis of human intrahepatic cholangiocarcinoma: immunohistochemical andmolecular analysis. Hum Pathol.2009,40(2):174-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700