内燃—直线发电集成动力系统储能装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃-直线发电集成动力系统储能装置的研究是内燃-直线发电集成动力系统应用的关键技术之一,内燃-直线发电集成动力系统是主要由四冲程自由活塞内燃机、永磁直线电机、储能装置以及控制单元等构成的新型动力系统,可用于电动混合动力汽车取代传统内燃机,实现清洁高效利用能源。储能装置的最大特点是能够实现短时间、大电流、感应电动势大范围变化条件下的储能以及电能的高效、双向流动,且响应快速准确。本文主要以内燃-直线发电集成动力系统储能装置为研究对象,依托国家高技术研究发展计划(863计划)“内燃-直线发电集成动力系统”(项目号:2006AA05Z236)和国家自然科学基金项目“内燃-直线发电集成动力系统中的发动机热力学分析与优化”(项目号:50876043),对内燃-直线发电集成动力系统储能装置的结构和参数设计、模型建立、能量流控制策略、实验验证及扩展应用等方面开展了系统深入的研究。
     根据内燃-直线发电集成动力系统储能装置的工作要求,以高效性和实用性为指导原则,对内燃-直线发电集成动力系统储能装置进行了研究、设计和开发,提出了一种新型储能装置及其控制方法,满足电能量双向流动的内燃-直线发电集成动力系统中高效率的能量变换和存储要求。所设计的储能装置采用新颖的超级电容器组串并联切换技术,与优化设计的双向DC-DC功率变换器(Bi-directional DC-DC power converter, BDPC)结合使用,实现了低电压值等级电源供电的可变电压系统的设计,在理论分析的基础上进行了仿真和实验研究,仿真与实验结果验证了设计的正确性和有效性。
     在对内燃-直线发电集成动力系统储能装置各组成部分进行分析、设计的基础上,建立了由蓄电池组和超级电容器组组成的混合电源模型、BDPC模型、H桥直流PWM变换器模型、永磁直线电机模型和控制器模型,并给出了整个储能装置的仿真模型,仿真结果证明了所建模型的正确性,能够满足储能装置实时控制的精度要求和能量流效率要求。
     能量流控制策略的设计是内燃-直线发电集成动力系统储能装置研究的关键环节,能量流控制策略是影响能量流效率的主要因素。为了保证储能装置稳定、可靠、高效工作,需要采用最优的能量流控制策略,使得储能装置在稳态时具有较高的精度,在瞬态时具有快速响应能力。本文提出了一个工作周期内四种工作模式的能量流控制策略,分别为:降压提供能量、升压提供能量、升压回馈能量和降压回馈能量。设计了基于模糊控制算法的BDPC控制器和H桥直流PWM变换器的数字PID控制器,并采用遗传算法对H桥直流PWM变换器的数字PID控制器的相关参数进行了优化设计,实现了能量流的合理有效控制,通过仿真分析验证了理论分析的正确性和控制策略的有效性,使得系统在安全可靠的基础上高效工作。
     为了进一步验证内燃-直线发电集成动力系统储能装置的相关理论分析、设计及控制策略的有效性和实用性,完成了基于TMS320F2812DSP的储能装置控制器的设计。在实验室搭建了储能装置小型实物原型,进行了原理性验证实验的研究,对某小型永磁直流电机两个方向运行模式分别进行了原理性验证实验。研制了内燃-直线发电集成动力系统储能装置样机,建立了储能装置实验系统,对储能装置样机的相关实验进行了研究,实验结果分析表明,所设计的储能装置以及提出的能量流控制策略能够满足内燃-直线发电集成动力系统的能量双向高效流动要求。
     所设计的内燃-直线发电集成动力系统储能装置及其控制方法基于改善能量的传输与转换效率的目的,可实现能量的储存、转换、传输、回馈,不只局限用于内燃-直线发电集成动力系统,对其扩展应用进行了部分研究工作。在与常规驱动系统实现能量回馈的方法比较分析的基础上,把该储能装置作为电动汽车(Electric vehicle, EV)电机驱动系统实现能量回馈制动,并通过计算机仿真对不同回馈制动方法进行了对比分析,结果验证了该方法的可行性和有效性。本储能装置适用于混合动力汽车(Hybrid electric vehicle, HEV)、纯电动汽车、功率缓冲系统、发电系统以及能量回馈系统等以电机作为动力系统且能量双向流动的场合,相对于传统方法有很大的优势,对于能量传输与转换效率技术的相关研究具有重要的理论意义和工程应用价值。
A research on Energy Storage System (ESS) is one of the key technologies of Internal Combustion-Linear Generator Integrated Power System (ICLGIPS) applications. As a new type hybrid power system, ICLGIPS is mainly consisted of Components of Combustion Chamber for Four-stroke Internal Combustion Engine, Linear Electric Generator, the reversible electric energy storage system and the control unit, and can be used in Hybrid electric vehicle to replace the traditional internal combustion engine to achieve clean and efficiency use of energy. The most significant characteristic of ESS is to achieve the objective of energy storage and bi-directional high efficiency energy flow under the conditions that short time, high current and wide EMF (Electromotive force) range, and to respond quickly and accurately. This dissertation follows ESS of ICLGIPS as the research object and has depth systematic analysis to structure and parameters design of ESS, modeling and simulation, energy flow control stategy, experimental verification and applications. The work is supported by the National Advanced Technology Research and Development Plan of China (863 No.2006AA05Z236) and National Natural Science Foundation of China (No.50876043).
     In order to meet the requirements of bi-directional high efficiency energy flow and conversion for ICLGIPS, a novel ESS and its control method for ICLGIPS are proposed with innovative, practicability and high efficiency as the guiding principle. The use of series-parallel switchover of Ultra-capacitor (UC) banks and optimization designed bi-directional DC-DC Power Converter (BDPC) combination in the novle ESS to achieve the design concept that a low-voltage level of the variable voltage power supply system. Based on theoretical analysis, simulation and experiment research are studied, all the simulation results and experimental results justify validities and effectiveness of design.
     The models are built based on anslysis and design of components for ESS, include hybrid power model that composed of batteries and UC banks, BDPC model, H-bridge converter model, linear generator (LEG) model and controller model. And simulation model of the whole ESS is schemed, the simulation results justify the correctness of the model. The accuracy of real-time control and efficiency of energy flow meet well the requirements of ICLGIPS.
     Energy flow control strategy is an important part in the design of ESS and the main factor to affect efficiency. In order to ensure a stable, reliable and efficient operation for the whole system, an optimal energy flow control strategy is needed generally to make ESS have high accuracy in the steady state and fast response capability in the transient state. Bi-directional four operating modes of energy control strategy are proposed, and the four operating modes are forward-buck provide energy, forward-boost provide energy, reverse-buck recovery energy and reverse-boost recovery energy. The BDPC controller based on fuzzy control algorithm and the digital PID controller of H-bridge converter are designed, and parameters of the digital PID controller are optimized with genetic algorithm. So reasonable and effective controlling of energy flow is achieved. The effectiveness of theoretical analysis and control strategy is verfied by simulation, and the system works safely and reliably with high efficiency.
     To further verify the effectiveness and practicality of theoretical analysis, design and control strategy for ESS, the ESS controller based on the Digital Signal Processor (DSP-TMS320F2812) is designed. The experimental research of a small physical prototype of the ESS is implemented by a DSP-based development platform in the laboratory, and the test is done in bi-dircetional operating modes with a small permanent magnet DC motor. An experimental prototype of ESS for ICLGIPS is developed, the experiment research is implemented by the experiment system, and the experiment results show that the novel ESS which designed and the energy flow control strategy which proposed can meet high efficiency requirements of the system.
     The novel ESS and its control method for ICLGIPS have been presented based on the objective of improving energy conversion efficiency and transfer efficiency, so the function of energy storage, energy conversion and energy recovery can be achieved. The application is not just limited to ICLGIPS, so this dissertation follows the application for ICLGIPS as the base case and extends the application research to other systems. Based on comparative analysis to conventional motor drive system, the proposed novel ESS as the motor drive system of Electric vehicle (EV) to achieve regenerative braking is studied, by means of simulation on Matlab/Simulink platform, the comparative analysis on three situations adopting different regenerative braking ways is performed, and the feasibility and effectiveness of the proposed method are verified by simulation results. The proposed ESS is suitable for the systems which based on motor as electrical power and bi-directional energy flow, such as Hybrid electric vehicle (HEV), pure EV, power buffer system, power system and regenerative, it has great advantages compared to conventional methods and has important theoretical guidance and practical application value to the domestic research for improving the energy conversion efficiency and transfer efficiency.
引文
[1]胡骅,宋慧.电动汽车(第二版)[M].北京:人民交通出版社,2006.
    [2]L. Wenlong, K. T. Chau. A Linear Magnetic-geared Free-piston Generator for Range-extended Electric Vehicles[J]. Journal of Asian Electric Vehicles,2010,8(1): 1345-1349.
    [3]J. M. Miller. Development of auxiliary power units for electric hybrid vehicles[R]. ADA325918,1997.
    [4]常思勤,徐照平.内燃-直线发电集成动力系统[P].中国发明专利,10019410.0.
    [5]常思勤.嵌套式内燃-直线发电集成动力系统[P].中国发明专利,200710132008.3.
    [6]常思勤,徐照平.内燃-直线发电集成动力系统概念设计[J].南京理工大学学报(自然科学版),2008,32(4):449-452.
    [7]徐照平.内燃-直线发电集成动力系统的关键技术研究及其系统实现[D].南京理工大学博士论文,2010.
    [8]欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程,2006,28(4):317-321.
    [9]E. D. Tate, O. Michael, J. Peter. The Electrification of the Automobile:From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2009,1(1):156-166.
    [10]V. W. Matt, P. I. Remon. Development of a dual-fuel power generation system for an extended range plug-in hybrid electric vehicle[J]. IEEE Transactions on Industrial Electronics,2010,57(2):641-648.
    [11]W. Jochem, R. Kevin, J. David. Development of Electric and Range-Extended Electric Vehicles Through Collaboration Partnerships [J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems,2010,3(2):215-219.
    [12]L. Hanmin, E. Joung, G. Kim. A study on the effects of energy storage system[C]. Proceedings of the 2009 International Conference on Information and Multimedia Technology,2009:28-32.
    [13]W. Rahul, J. Apt. Market Analysis of Emerging Electric Energy Storage Systems[R]. National Energy Technology Laboratory,2008.
    [14]F. R. Paulo, K. J. Brian, L. C. Mariesa. Energy storage systems for advanced power applications[J]. Proceedings of the IEEE,2001,89(12):1744-1756.
    [15]A. Joseph, M. Shahidehpour. Battery Storage Systems in Electric Power Systems[J]. Proceedings of IEEE Power Engineering Society General Meeting,2006:1-8.
    [16]K. C. Divya, J. Qstergaard. Battery energy storage technology for power systems-An overview[J]. Electric Power System Research,2009,79(4):511-520.
    [17]A. Oudalov, D. Chartouni, C. Ohler. Optimizing a Battery Energy Storage System for Primary Frequency Control[J]. IEEE Transactions on Power Systems,2007,22(3): 1259-1266.
    [18]李立伟,陈伟斌,马平.独立光伏电站蓄电池优化管理研究[J].电力自动化设备,2009,29(4):110-114.
    [19]陈维,沈辉,邓幼俊.太阳能光伏应用中的储能系统研究[J].蓄电池,2006,(1):21-27.
    [20]史云鹏,王莹莹,李培芳.光伏系统中蓄电池充放电控制方案的探讨[J].太阳能学报,2005,26(1):86-897.
    [21]任柱,陈渊睿,张淼.独立光伏系统中蓄电池充电控制策略[J].控制理论与应用,2008,25(2):361-363.
    [22]陈维,沈辉.带蓄电池的光伏系统中MPPT充电效果理论分析[J].太阳能学报,2006,27(12):1196-1201.
    [23]J. M. Miller. Energy storage system technology challenges facing strong hybrid, plug-in and battery electric vehicles [J]. Proceedings of IEEE Vehicle Power and Propulsion Conference,2009:4-10.
    [24]S. Kusdogan. Evaluation of battery energy storage system for hybrid and electric vehicle [C]. Proceedings of International Aegean Conference on Electrical Machines and Power Electronics,2001:79-82.
    [25]W. Buckles, W. V. Hassenzhal. Superconducting magnetic energy storage [J]. IEEE Power Engineering Review,2000,20(5):16-20.
    [26]S. Suzuki, J. Baba, K. Shutoh. Effective application of superconducting magnetic energy storage (SMES) to load leveling for high speed transportation system [J]. IEEE Transactions on Applied Superconductivity,2004,14(2):713-716.
    [27]M. Fabbri, D. Ajiki, F. Negrini. Tilted toroidal coils for superconducting magnetic energy storage systems[J]. IEEE Transactions on Magnetics,2003,39(6): 3546-3550.
    [28]F. Guastavino, P. Ferrari, M. Mariani. Partial discharges measurements performed on cryogenic joints [superconducting magnetic energy storage] [C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2004:458-461.
    [29]郭文勇,张志丰,肖立业.基于共直流电压母线级联型超导储能系统的动态电压恢复器最小能量控制[J].电网技术,2009,33(5):69-74.
    [30]戴银明,王秋良,王厚生.高电流密度超导储能磁体的研制[J].中国电机工程学报,2009,29(9):124-128.
    [31]刘昌金,胡长生,李霄.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化,2008,32(16):83-88.
    [32]K. Ryu, H.J. Kim, K. C. Seong. Recovery current characteristics of a kA class conductor for a superconducting magnetic energy storage device[J]. IEEE Transactions on Applied Superconductivity,2002,12(1):796-799.
    [33]蒋晓华,褚旭.20kJ/15kW可控超导储能实验装置[J].电力系统自动化,2004,28(4):88-91.
    [34]樊冬梅,雷金勇,甘德强.超导储能装置在提高电力系统暂态稳定性中的应用[J].电网技术,2008,32(18):82-86.
    [35]王少荣,彭晓涛,唐跃进.电力系统稳定控制用高温超导储能装置及实验研究[J].中国电机工程学报,2007,27(22):44-50.
    [36]程时杰,余文辉,文劲宇.储能技术及其在电力系统暂态稳定控制中的应用[J].电网技术,2007,31(20):97-108.
    [37]陈星莺,刘梦觉,单渊达.超导储能单元在并网型风力发电系统中的应用[J].中国电机工程学报,2001,21(12):63-66.
    [38]蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状[J].太阳能学报,2000,21(3):427-433.
    [39]戴兴建,于涵,李奕良.飞轮储能系统充放电效率实验研究[J].电工技术学报,2009,24(3):20-24.
    [40]荀尚峰,李铁才,周兆勇.飞轮储能系统放电单元无源化控制方法研究[J].电机与控制学报,2010,14(7):7-12.
    [41]魏克银,刘德志,欧阳斌.一种带线性动态负载的十二相飞轮储能发电机系统[J]电工技术学报,2010,25(1):37-42.
    [42]M. Kerry. NASA flywheel system development[R]. Space Power Workshop,2001.
    [43]W. Jewell, W. Kansas. Evaluation of Distributed Electric Energy Storage and Generation[R]. Power System Engineering Research Center,2004.
    [44]H. Mrugowsky, H. Cordt, C. Sihler. Investigation of the stability of a 600MJ energy storage system based on paralleled flywheel generators [J]. Electrical Energy Storage Systems Applications and Technologies,2002:1-6.
    [45]M. R. Melissa. Flywheel Energy Storage System[R]. California Energy Commission, 2004.
    [46]汤双清.飞轮储能技术及应用[M].武汉:华中科技大学出版社,2007.
    [47]房建成,王志强,刘刚.磁悬浮姿控储能两用飞轮能量转换系统PI协同控制[J].宇航学报,2009,30(5):1907-1912.
    [48]H. I. Becker. Low voltage electrolytic capacitor[P]. USP:2800616,1957-07-23.
    [49]D. L. Boos. Electrolytic capacitor having carbon paste electrodes[P]. USP:3536963, 1970-10-27.
    [50]A. F. Burke. Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles[C]. Proceedings of the IEEE,2007,95(4):806-820.
    [51]A. F. Burke, M. Miller. Supercapacitor technology-present and future[R]. Advanced Capacitor World Summit, San Diego, California,2006.
    [52]A. F. Burke. The present and projected performance and cost of double-layer and pseudo-capacitive ultracapacitors for hybrid vehicle applications[J]. Proceedings of Vehicle Power and Propulsion System,2005:356-366.
    [53]A. Khaligh, Z. Li. Battery, Ultracapacitor, Fuel Cell and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell and Plug-In Hybrid Electric Vehicles: State of the Art[J]. IEEE Transactions on Vehicular Technology,2010,59(6): 2806-2814.
    [54]S. Breban, M. Nasser, A. Vergnol. Hybrid wind/microhydro power system associated with a supercapacitor energy storage device-experimental results [C]. Proceedings of International Conference on Electrical Machines,2008:1-6.
    [55]C. Abbey, G. Joos. Supercapacitor energy storage for wind energy applications[J]. Proceedings of IEEE Transactions on Industry Applications,2007,43(3):769-776.
    [56]M. Becherif, M.Y. Ayad, A. Djerdir. Electrical train feeding by association of supercapacitors, photovoltaic and wind generators [C]. Proceedings of IEEE International Conference on Clean Electrical Power,2007:55-60.
    [57]W. Koczara, Z. Chodnicki. Energy management and power flow of decoupled generation system for power conditioning of renewable energy sources[C]. Proceedings of International Power Electronics and Motion Control Conference, 2008:2150-2155.
    [58]A. Abedini, A. Nasiri. Applications of super capacitors for PMSG wind turbine power smoothing[C]. Proceedings of IEEE Industrial Electronics Society Annual Conference,2008:3347-3351.
    [59]卢继平,白树华.风光氢联合式独立发电系统的建模及仿真[J].电网技术,2007,31(22):75-79.
    [60]侯世英,房勇,曾建兴.应用超级电容提高风电系统低压穿越能力[J].电机与控制学报,2010,14(5):26-31.
    [61]Z. Chlodnicki, W. Koczara. Hybrid UPS based on supercapacitor energy storage and adjustable speed generator[C]. Proceedings of Compatibility in Power Electronics, 2007:1-10.
    [62]Z. Zhe, O. C. Thomsen, M. Andersen. Analysis and Design of Bi-directional DC-DC Converter in Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor[C]. Proceedings of Applied Power Electronics Conference and Exposition,2009:714-719.
    [63]R. R. Bush way. Electromagnetic aircraft launch system development considerations [J]. IEEE Transactions on Magnetics,2001,37(1):52-54.
    [64]胡庆波.混合动力汽车驱动的电功率管理研究[D].浙江大学博士论文,2007.
    [65]王志福,陈伟,叶辉萍.加装超级电容纯电动汽车的性能分析[J].机械工程学报,2005,41(12):82-86.
    [66]曹秉刚,曹建波,李军伟.超级电容在电动车中的应用研究[J].西安交通大学学报,2008,42(11):1317-1322.
    [67]许爱国,谢少军,姚远.基于超级电容的城市轨道交通车辆再生制动能量吸收系统[J].电工技术学报,2010,25(3):117-123.
    [68]李海冬,李希南,齐智平.超级电容器用于建立强脉冲磁场的可行性研究[J].高电压技术,2007,33(5):14-17.
    [69]钟思正,王问斯.高压脉冲装置中储能电容器数量之讨论[J].高电压技术,2004,30(6):49-50.
    [70]祝文彪,张步涵,庞璐.超级电容器储能动态电压恢复器的仿真研究[J].武汉理工大学学报,2008,30(8):97-100.
    [71]俞红祥,沈亚强,马世平.一种基于超级电容器储能的新型交流动态调节器[J].电力系统自动化,2008,32(1):52-55.
    [72]Z. Chlodnicki, W. Koczara. Supercapacitor storage application for reduction drive negative impact on supply grid[C]. The 4th International Conference Compatibility in Power Electronics,2005:78-84.
    [73]张步涵,曾杰,毛承雄.串并联型超级电容器储能系统在风力发电中的应用[J].电力自动化设备,2008,28(4):1-4.
    [74]李霄,胡长生,刘昌金.基于超级电容器储能的风电场功率调节系统建模与控制 [J].电力系统自动化,2009,33(9):86-90.
    [75]D. Cadadei, G. Grandi, C. Rossi. A Supercapacitor-based power conditioning system for power quality improvement and uninterruptible power supply[C]. Proceedings of IEEE Industrial Electronics Specialists Conference,2002:1247-1252.
    [76]I. Galkin, A. Stepanov, J. Laugis. Outlook of usage of supercapacitors in uninterruptible power supplies [C]. Proceedings of Baltic Electronics Conference, 2006:1-4.
    [77]瞿楠松,张东来,徐殿国.超级电容国内外研究及应用现状[J].仪器仪表学报,2007,28(8):1-4.
    [78]M. Steiner, M. Klohr, S. Pagiela. Energy storage system with ultracaps on board of railway vehicles [C]. Proceedings of Power Electronics and Applications,2007: 1-10.
    [79]唐西胜.超级电容器储能应用于分布式发电系统的能量管理及稳定性研究[D].中国科学院博士论文,2006.
    [80]张慧研.超级电容器直流储能系统分析与控制技术的研究[D].中国科学院博士论文,2006.
    [81]J. M. Miller, T. Bohn, T. J. Dougherty. Why hybridization of energy storage is essential for future hybrid, plug-in and battery electric vehicles [C]. Proceedings of IEEE Energy Conversion Congress and Exposition,2009:2614-2620.
    [82]A. W. Stienecker, M. A. Flute, T. A. Stuart. Improved Battery Charging in an Ultracapacitor-Lead Acid Battery Hybrid Energy Storage System for Mild Hybrid Electric Vehicles[C]. Proceedings of SAE Word Congress,2006:88-93.
    [83]R. M. Sclupbach, S. Y. Liu, R. E. White. Design methodology of a combined battery-ultracapacitor energy storage unit for vehicle power management[C]. Proceedings of Power Electronics Specialist Conference,2003:88-93.
    [84]J. P. Zheng, T. R. Jow, M. S. Ding. Hybrid power sources for pulsed current applications [J]. IEEE Transactions on Aerospace and Electronic System,2001,37(1): 288-292.
    [85]石庆升,张承慧,崔纳新.新型双能量源纯电动汽车能量管理问题的优化控制[J].电工技术学报,2008,23(8):137-142.
    [86]田德文,谢大纲,崔淑梅.军用汽车混合电力驱动系统复合能源控制策略[J].机械工程学报,2009,45(2):41-47.
    [87]于远彬,王庆年,王加雪.混合动力汽车车载复合电源参数匹配及其优化[J].吉林大学学报(工学版),2008,38(4):764-768.
    [88]S. G. Kadwane, S. P. Vepa, B. M. Karan. Converter Based DC Motor Speed Control Using TMS320LF2407A DSK[C]. Proceedings of 1st IEEE Conference on Industrial Electronics and Applications,2006:1-5.
    [89]A. B. Yildiz, M. Z. Bilgin. Speed Control of Averaged DC Motor Drive System by Using Neuro-PID Controller[J]. Lecture Notes in Computer Science,2006,4251: 1075-1082.
    [90]Y. L. Ke, Y. C. Chuang, H. S. Chuang. Energy Recovery Electric Bicycle with Two-Quadrant DC Motor Drivers[C]. Proceedings of IEEE Industry Applications Society Annual Meeting,2009:1-7.
    [91]张毅,杨林,李立明.电动汽车无刷直流电动机的回馈制动控制[J].上海交通大学学报,2005,39(9):1457-1460.
    [92]A. Sharaf, W. Chen. A Novel Control Scheme for Electric Vehicle EV-Drive[J]. International Journal of Electric and Hybrid Vehicles,2008,1(4):364-377.
    [93]F. Rodriguez, A. Emadi. A Novel Digital Control Technique for Brushless DC Motor Drives [J]. IEEE Transactions on Industrial Electrics,2007,54(5):2365-2373.
    [94]V. K. Chinnaiyan, J. Jerome, J. Karpagam. Design and Implementation of High Power DC-DC Converter and Speed Control of DC Motor Using TMS320F240 DSP[C]. Proceedings of India International Conference on Power Electronics,2006: 388-392.
    [95]S. Onoda, A. Emadi. PSIM-based modeling of automotive power systems: conventional, electric and hybrid electric vehicles [J]. IEEE Transactions on Vehicular Technology,2004,53(2):390-400.
    [96]C. C. Chan. The state of the art of electric, hybrid and fuel cell vehicles[J]. Proceedings of the IEEE,2007,95(4):704-718.
    [97]M. Amrhein, P. T. Krein. Dynamic simulation for analysis of hybrid electric vehicle system and subsystem interactions including power electronics [J]. IEEE Transactions on Vehicular Technology,2005,54(3):825-836.
    [98]J. R. Anstrom, B. Zile, K. Smith. Simulation and field-testing of hybrid ultra-capacitor/battery energy storage systems for electric and hybrid-electric transit vehicles[J]. Proceedings of Applied Power Electronics Conference and Exposition, 2005:491-497.
    [99]E. Ozatay, B. Zile, J. R. Anstrom. Power distribution control coordinating ultracapacitors and batteries for electric vehicles[J]. Proceedings of American Control Conference,2004,5:4716-4721.
    [100]S. Pay, Y. Baghzouz. Effectiveness of battery-supercapacitor combination in electric vehicles[C]. Proceedings of Power Technology Conference,2003,3:1-6.
    [101]Z. Amjadi, S. S. Williamson. Power-Electronics-Based Solutions for Plug-in Hybrid Electric Vehicle Energy Storage and Management Systems[J]. IEEE Transactions on Industrial Electronics,2010,57(2):608-616.
    [102]M. Ortuzar, J. Dixon, J. Moreno. Design construction and performance of a buck-boost converter for an ultracapacitor-based auxiliary energy system for electric vehicles[C]. Proceedings of the IEEE Industrial Electronics Conference,2003,3: 2889-2894.
    [103]K. C. Tseng, T. J. Liang. Novel high-efficiency step-up converter[J]. Proceedings of IEEE Electric Power Applications,2004,151(2):182-190.
    [104]S. Lu, K. A. Corzine, M. Ferdowsi. A New Method of Utilizing Ultra-Capacitor Energy Sources in Hybrid Electric Vehicles Over a Wide Speed Range[C]. Proceedings of Applied Power Electrics Conference and Exposition,2007:222-228.
    [105]S. Lu, K. A. Corzine, M. Ferdowsi. A New Battery/UltraCapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles [J]. IEEE Transactions on Vehicular Technology,2007,56(4):1516-1523.
    [106]K. Munehiro. Development of traction drive motors for the toyota hybrid system[J]. Transactions of the Institute of Electrical Engineers of Japan,2006,26(9): 473-479.
    [107]B. Jeanneret, R. Trigui, F. Badin, et al. New Hybrid concept simulation tools, evaluation on the Toyota Prius car[C]. The 16th International Electric Vehicle Symposium,1999:1-11.
    [108]R. H. Staunton, C. W. Ayers, L. D. Marlino. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System[R]. USA:Osk Ridge National Laboratory,2006.
    [109]王兆安,刘进军.电动汽车(第五版)[M].北京:机械工业出版社,2009.
    [110]M. Ortuzar, J. Moreno, J. Dixon. Ultracapacitor-Based Auxiliary Energy System for an Electric Vehicle:Implementation and Evaluation[J]. Proceedings of IEEE Transactions on Industrial Electronics,2007,54(4):2147-2156.
    [111]J. N. Marie, H. Gualous, A. Berthon. DC to DC converter with neural network control for on-board electrical energy management[C]. Proceedings of Power Electronics and Motion Control Conference,2004,2:521-525.
    [112]A. C. Baisden, A. Emadi. Advisor-Based Model of a Battery and an Ultracapacitor Energy Source for Hybrid Electric Vehicles [J]. Proceedings of IEEE Transactions on vehicular technology,2004,53(1):199-205.
    [113]M. Amirabadi, S. Farhangi. Fuzzy Control of a Hybrid Power Source for Fuel Cell Electric Vehicle using Regenerative Braking Ultracapacitor[C]. The 12th Power Electronics and Motion Control Conference,2006:1389-1394.
    [114]C. H. Zhang, Q. S. Shi, N. X. Cui. Particle Swarm Optimization for energy management fuzzy controller design in dual-source electric vehicle[C]. The 38th IEEE Power Electronics Specialists Conference,2007:1405-1410.
    [115]B. J. Arnet, L. P. Haines. High power DC-to-DC converter for supercapacitors[C]. The IEEE International Electric Machines and Drives Conference,2001:985-990.
    [116]N. Hiroshi, P. A. Ioannou. Development of a regenerative braking system using UC for EV[J]. Journal of Asian Electric Vehicles,2003,1(2):429-432.
    [117]Y. M. Gao, M. Ehsani. Parametric design of the traction motor and energy storage for series hybrid off-road and military vehicles[J]. Proceedings of the IEEE Transactions on Power Electronics,2006,21(3):749-755.
    [118]袁国辉.电化学电容器[M].北京:化学工业出版社,2006.
    [119]M. Pagano, L. Piegari. Supercapacitor Flywheel for High Power Electrochemical Sources[C]. IEEE 35th Annual Power Electronics Specialists Conference,2004,1: 718-723.
    [120]Z. H. Yu, D. Zinger, A. Bose. An innovative optimal power allocation strategy for fuel cell, battery and supercapacitor hybrid electric vehicle [J]. Journal of Power Sources,2011,196(4):2351-2359.
    [121]D. Hoelscher, A. Skorcz, Y. M. Gao. Hybridized Electric Energy Storage Systems for Hybrid Electric Vehicles[C]. Vehicle Power and Propulsion Conference,2006:1-6.
    [122]R. A. Dougal, S. Liu, R. E. White. Power and life extension of battery-ultracapacitor hybrids [J]. IEEE Transcations on Components and Packaging Technologies,2002, 25(1):120-131.
    [123]G. Guidi, T. M. Undeland. An optimized converter for battery-supercapacitor interface[C]. IEEE 38th Annual Power Electronics Specialists Conference,2007: 2976-2981.
    [124]J. U. Jeong, Y. S. Kim, S. D. Lee. A Development of an Energy Storage System for Hybrid Electric Vehicles Using Supercapacitor[C]. The 20th International Electric Vehicle Symposium and Exposition,2003:1379-1389.
    [125]M. B. Camara, H. Gualous, F. Gustin. Control strategy of Hybrid sources for Transport applications using supercapacitors and batteries[C]. The 5th International Power Electronics and Motion Control Conference,2006:515-519.
    [126]A. D. Napoli, F. Crescimbini, L.Solero. Multiple-input DC-DC power converter for power-flow management in hybrid vehicles[C]. IEEE Industry Applications Society Conference,2002,3:1578-1585.
    [127]L. Solero, A. Lidozzi, J. A. Pomilio. Design of Multiple-Input Power Converter for Hybrid Vehicles[J]. IEEE Transactions on Power Electronics,2005,20(5): 1007-1016.
    [128]S. M. Lukic, S. G. Wirasingha, F. Rodriguez. Power Management of an Ultracapacitor/Battery Hybrid Energy Storage System in an HEV[C]. IEEE Vehicle Power and Propulsion Conference,2006:1-6.
    [129]张慧妍,韦统振,齐智平.超级电容器储能装置研究[J].电网技术,2006,30(8):92-96.
    [130]张莉,宋金岩,邹积岩.基于混合型超级电容器的电动车动力电源的特性研究[C]. The 6th World Congress on intelligent Control and Automation,2006, 6:8283-8287.
    [131]E. Takahara, H. Sato, J. Yamada. Series and parallel connections change over system for electric double layer capacitors(EDLCs) to electric vehicle energy saving[C]. Proceedings of Power Conversion Conference,2002,2:577-581.
    [132]H. Nomura, T. Imai. Development of a regenerative braking system using super-capacitors for electric vehicles [J]. Journal of Asian Electric Vehicles,2003, 1(2):429-432.
    [133]R. M. Schupbach, J. C. Balda. Comparing DC-DC converters for power management in hybrid electric vehicles[C]. IEEE International Electric Machines and Drives Conference,2003,3:1369-1374.
    [134]H. F. Fard, D. S. Beyragh, E. Adib. A Fully Soft Switched Converter for Ultracapacitors Interface Circuit[C]. IEEE International Conference on Industrial Technology,2006:796-800.
    [135]A. Lidozzi, L. Solero, A. D. Napoli. Synergetic control for ultracapacitors based high dynamic converters[C]. IEEE Applied Power Electronics Conference and Exposition, 2005:1976-1982.
    [136]F. Mihali, D. Kos. Reduced Conductive EMI in Switched-Mode DC-DC Power Converters Without EMI Filters:PWM Versus Randomized PWM[J]. IEEE Transactions on Power Electronics,2006,21(6):1783-1794.
    [137]B. W. Williams. Basic DC-to-DC Converters [J]. IEEE Transactions on Power Electronics,2008,23(1):387-401.
    [138]王志强,郑俊杰.开关电源设计与优化[M].北京:电子工业出版社,2007.
    [139]赵修科.实用电源技术手册磁性元器件分册[M].沈阳:辽宁科学技术出版社,2002.
    [140]V. H. Johnson. Battery performance models in ADVISOR[J]. Journal of Power Sources,2002,110(2):321-329.
    [141]J. Chiasson, B. Vairamohan. Estimating the state of charge of a battery[J]. IEEE Transactions on Control Systems Technology,2005,13(3):465-470.
    [142]O. Tremblay, L. A. Dessaint, A. I. Dekkiche. A generic battery model for the dynamic simulation of hybrid electric vehicles [C]. Vehicle Power and Propulsion Conference,2008:1-6.
    [143]R. L. Spyker, R. M. Nelms, S. A. Merryman. Evaluation of double-layer capacitors for power electronic application[C]. Proceedings of Applied Power Electronics Conference,1996,2:725-730.
    [144]R. L. Spyker, R. M. Nelms. Classical equivalent circuit parameters for a double-layer capacitor[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(3): 829-836.
    [145]R. L. Spyker, R. M. Nelms. Analysis of double-layer capacitors supplying constant power loads[J]. IEEE Transactions on Aerospace and Electronic Systems,2000, 36(4):1439-1443.
    [146]R. M. Nelms, D. R. Cahela, B. J. Tatarchuk. Modeling double-layer capacitor behavior using ladder circuits [J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(2):430-438.
    [147]R. L. Spyker, R. M. Nelms. High Current Performance of 470F Double-Layer Capacitors [C]. Proceedings of Applied Power Electronics Conference and Exposition,1997,2:590-595.
    [148]L. Zubieta, R. Bonert. Characterization of double-layer capacitors for power electronics applications [J]. IEEE Transactions on industry Applications,2000,36(1): 199-205.
    [149]H. Gulous, D. Bouquain, A. Berthon. Experimental study of supercapacitor serial resistance and capacitance variations with temperature [J]. Journal of Power Sources, 2003,123(1):86-93.
    [150]F. Marie, H. Gualous, A. Berthon. Supercapacitor thermal-and electrical-behavior modeling using ANN[J]. IEEE Proceedings of Electric Power Applications,2006, 153(2):255-262.
    [151]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社,2006.
    [152]蔡宣三,龚绍文.高频功率电子学[M].北京:科学出版社,1993.
    [153]A. Diordiev, O. Ursaru, M. Lucanu. A hybrid PID-fuzzy controller for dc/dc converters[C]. Proceedings of International Symposium on Signals, Circuits and Systems,2003(1):97-100.
    [154]M. Sarvi, N. P. Namazy. A new PID-fuzzy controller for DC/DC converters[C]. Proceedings of the 43th International Universities Power Engineering Conference, 2008:1-4.
    [155]曾洁如,谷正气,李伟平,等.基于遗传算法的半主动悬架模糊PID控制研究[J].汽车工程,2010,32(5):429-433.
    [156]J. H. Holland. Adaptation in natural and artificial systems[M]. MA, USA:MIT Press, 1992.
    [157]叶正华,谢勇,郑金华.一种改进的基于实数编码的遗传算法[J].湘潭大学学报自然科学版,2004,24(3):32-35.
    [158]P. O. Vlad, T. Fukuda, G. Vachkov. Neuro-fuzzy motion controller design using improved simple genetic algorithm[C]. Proceeding of IEEE International Symposium on Computational Intelligence in Robotics and Automation,2003, (3): 1469-1474.
    [159]Y. P. Wang, N. R. Watson, H. H. Chong. Modified genetic algorithm approach to design of an optimal PID controller for AC-DC transmission systems[J]. International Journal of Electrical Power & Energy Systems,2002, (24)1:59-69.
    [160]苏奎峰,吕强,常天庆TMS320X281xDSP原理及C语言程序开发[M].北京:北京航空航天大学出版社,2008.
    [161]白志峰,曹秉刚,李舒欣.电动汽车再生制动H∞鲁棒控制仿真研究[J].系统仿真学报,2005,17(12):2975-2978.
    [162]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海交通大学博士论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700