电动汽车再生制动若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生制动是电动汽车节能的重要途径之一。电动汽车再生制动的工程应用存在诸多关键问题有待解决。本文主要研究如下三个问题:1.如何提高城市工况下后驱型串联式混合动力电动公交车、纯电动公交车并联再生制动策略的制动稳定性与制动能回收能力;2.如何利用再生制动与行车制动系协同作用控制直流电动机驱动的电动客车恒速下坡;3.如何使无刷直流电机电动汽车在结冰等低附着系数路面上进行纯再生制动时驱动轮具有再生ABS功能。
     为增强城市工况下后驱型串联式混合动力电动公交车、纯电动公交车现有并联再生制动策略的制动稳定性与制动能回收能力,提出一种技术简单、附加成本小的新型并联再生制动策略。该策略在行车制动系中引入惯性比例阀等制动力调节装置,机电并行制动时,利用惯性比例阀适当缩小机械制动力的制动比例,相应提高了再生制动力的制动份额。同时,该策略结合典型城市工况下公交车的运行实际,以ECE R13制动法规为准则,将机电并行制动的制动强度确定在0.1与0.3之间,以确保车辆机电并行制动时的制动稳定性。为验证新型并联再生制动策略的能量回收效果,对advisor2002电动汽车仿真软件进行二次开发,建立后驱型电动汽车仿真平台,仿真结果表明该策略能显著提高城市工况下制动能回收率。
     为利用再生制动作为辅助制动控制直流电动机驱动的电动客车恒速下坡,根据电动汽车驱动电机控制方法具有双环控制结构的特征与直流电机PWM控制系统具有变结构的特点,提出采用双滑模面变结构控制方法来控制该车恒速下坡再生制动。分析了铅酸蓄电池长时间充电接受力对驱动电机再生制动力的影响。建立了电动客车下坡动力学模型。设计了该车恒速下坡再生制动双滑模面控制器。仿真结果表明系统具有足够的稳定性和强健的鲁棒性;受蓄电池充电接受力的限制,仅用再生制动,只能在极小的坡道上(如i2%)控制车速,而且动态特性不理想;当坡度较大(如i2%)时,在减速及恒速状态下,均需机电并行制动才能有效控制车速。
     为使无刷直流电机电动汽车具有再生ABS功能,提出通过调节PWM占空比的方法来实现驱动轮的再生ABS功能。建立了再生ABS的使能条件;推导了驱动轮动力学数学模型;设计出再生ABS双闭环控制模型,并搭建该系统的SIMULINK仿真模型。仿真结果表明,系统具有良好的动态特性与稳定性;与滑移率的PI控制相比,滑移率在变结构控制时,系统具有更强的鲁棒性;与单管PWM调制模式相比,双管调制时,系统的控制品质更好,制动距离更短,能量回收更多。
     根据单管调制模式下的无刷直流电机再生制动原理,设计并制作该电机驱动的电动汽车再生ABS半物理仿真试验平台。验证了试验台在结冰等低附着系数路面进行再生制动时具有ABS功能的工程可行性。
Regenerative braking is an important way to improve energy efficiency in electric vehicles. Thereare many key unresolved problems in the application of regenerative braking in electric vehicles (EV).The following three questions are studied in the dissertation. The first is how to improve the brakingstability and increase the recovery of the braking energy of a rear-drive series hybrid or pure electricurban bus using parallel regenerative braking strategy. The second is how to maintain a constant speeddownhill using cooperative braking realized by a service-brake and regenerative brake system for aDC motor driven electric bus (DCMEB). The third is how to make the drive wheels of an EV drivenby in-wheel Brushless Direct Current Motors (BLDCM) retain the anti-skid braking function whileonly performing regenerative braking actions on low adhesion coefficient roads (such as ice-orsnow-covered road).
     With aims of improving the parallel regenerative braking strategy for a rear-drive series hybrid orpure electric urban bus, a novel parallel regenerative braking strategy with a simple technique and asmall additional cost is proposed. According to this new strategy, Braking force distribution ratio of amechanical braking system during electro-mechanical parallel braking is adjusted to maximum withinEuropean Regulation13(ECE R13) permissible range by inertia proportional valve, and the amountof the regenerative braking force is corresponding increased. On the other hand, with a considerationon engineering practices of an electric urban bus, the braking intensity is determined between0.1and0.3to ensure the braking stability in this condition. To verify the effect of the new strategy, taking aseries hybrid electric bus simulation model in ADVISOR2002as an example, this model isredeveloped to a rear-wheel-drive series hybrid electric bus simulation model. Simulation results withthis strategy show a significant improvement of this bus braking energy reclaiming performance underthe typical urban driving cycles conditions.
     To use regenerative braking to act as an auxiliary brake to maintain the constant speed of aDCMEB on downhill, based on the feature of double-loop control structure of the control method forelectric vehicle traction motor and the variable structural characteristics of PWM Control System forDC Motor, a double-manifold variable structure control method to control regenerative braking isproposed for the bus cruising downhill. The impact of lead-acid batteries charge acceptance abilityover a long charging period on the regenerative braking force of a driving motor is analysed. Dynamicmodel of the bus on long downhill is established. A double-manifold variable structure controller is designed for the DCMEB on long downhill. The simulation results show that the control systemmaintains enough stability and strong robustness. It may be achieved for the bus to maintain aconstant speed downhill only by regenerative braking on a smaller slope(such as i<2%). But thedynamic process is very slow. When deceleration or constant speed is desire on a larger slope(such asi>2%), only by electro-mechanical parallel braking can the bus track the target speed precisely andquickly.
     A novel method of anti-skid braking is proposed to control the duty cycle of the PWM powerconverter to retain the anti-skid braking function of an EV driven by BLDCM while only performingregenerative braking actions on ice-or snow-covered road. An enable condition is designed forregenerative and mechanical braking to coordinately active. A single wheel vehicle dynamics model isderived. A double-loop control model of regenerative ABS (anti-skid braking system) is established.On this basis, a simulation model of regenerative ABS is established in MATLAB/SIMULINKenvironment. The simulation results show that slip rate can be quickly stabilized at the target slip rateon whether ice-or snow-covered road in spite of the existence of the modeling error caused by themodel uncertainty. By comparing the VSC controller and the traditional PI controller to control thewheel slip rate, the simulation results show that the system has stronger robustness and disturbancerejection capability with the former controller. The comparative analysis of the regenerative ABS usedsingle and double switching modulation scheme, respectively, shows the advantages of a higherquality control, a shorter braking distance and more energy recovery for the latter.
     Finally, a semi-physical test bench of regenerative ABS of an EV driven by BLDCM is designedand produced based on the principle of BLDCM regenerative braking under single-tube modulationmode. The engineering feasibility of regenerative braking as anti-skid braking system on the lowfriction coefficient road as ice-covered road is verified for this EV.
引文
[1]欧阳明高.我国节能与新能源汽车发展战略与对策.汽车工程,2006,28(04):317-321.
    [2]国家863计划节能与新能源汽车重大项目办公室,《机械工程学报》编辑部.加强科技研发工作,推进节能与新能源汽车快速发展.机械工程学报,2009,45(2):1.
    [3]弋亚群,向琴.我国新能源汽车产业分析.中国软科学,2009(S1):60-63.
    [4]赵国柱,杨正林,魏民祥,等.电动微型客车的机电复合制动稳定性分析.汽车工程,2006,28(7):681-684.
    [5]秦大同,李江,杨阳.全轮驱动混合动力汽车再生制动系统控制策略.重庆大学学报,2008,31(9):971-976.
    [6] YEO H, KIM H. Hardware-in-the-loop simulation of regenerative braking for a hybrid electricvehicle. Proceedings of the Institution of Mechanical Engineers Part D-Journal of AutomobileEngineering,2002,216(D11):855-864.
    [7] HOON Y, SUNGHO H, HYUNSOO K. Regenerative braking algorithm for a hybrid electricvehicle with CVT ratio control. Proceedings of the Institution of Mechanical Engineers, Part D(Journal of Automobile Engineering),2006,220(D11):1589-600.
    [8] QIN D, DENG T, YANG Y, et al. Regenerative braking simulation research for CVT hybridelectric vehicle with ISG based on forward modeling. China Mechanical Engineering,2008,19(5):618-624.
    [9]邓涛,孙冬野,秦大同,等. CVT混合动力汽车再生制动系统仿真.机械工程学报,2009,45(9):214-220.
    [10]叶明,秦大同,刘振军.基于AMT的轻度混合动力系统再生制动控制.机械工程学报,2006,42(10):156-160.
    [11]陈清泉,孙逢春,祝嘉光编著.现代电动汽车技术.北京:北京理工大学出版社,2002:95-98.
    [12]孙逢春.德国和法国电动汽车的现状和发展.科技潮,2004,(8):38-39.
    [13]孙逢春,杨为琛,张承宁. BJD6100-EV型电动公交车直流驱动系统研究.北京理工大学学报,2002,22(1):45-48.
    [14]张承宁,李红林,孙逢春,等.电动公交大客车用新型电机驱动控制系统特性分析.中国电机工程学报,2003(8):110-114.
    [15]孙立清,陈伟,白文杰,等.纯电池电动客车超级电容器系统匹配和控制策略研究,2002中国电动汽车研究与开发,中国北京:中国电工技术学会,2002年:101-108.
    [16]林程,王文伟,孙逢春.纯电动公交客车结构与设计.机械工程学报,2005,41(12):25-29.
    [17] ZHENG J P, JOW T R, DING M S. Hybrid power sources for pulsed current applications.IEEE Trans on Aerospace and Electronic Systems,2001,37(1):288-292.
    [18] DOUGAL R A, SHENGYI L, WHITE R E. Power and life extension of battery-ultracapacitorhybrids. IEEE Trans on Components and Packaging Technologies,2002,25(1):120-131.
    [19]杨寅,熊鹏,陈统卓,等.基于超级电容的电动车制动能量回收技术研究.电子技术应用,2009(3):73-76.
    [20] MELLOR P H, SCHOFIELD N, HOWE D. Flywheel and supercapacitor peak powerbuffertechnologies. in IEE Seminar-Electric, Hybrid and Fuel Cell Vehicles. Durham, UK, New York:IEEE,2000:81-85.
    [21] GAO L, DOUGAL R A, LIU S. Power enhancement of an actively controlledbattery/ultracapacitor hybrid. IEEE Trans on Power Electronics,2005,20(1):236-243.
    [22]曹秉刚,曹建波,李军伟,等.超级电容在电动车中的应用研究.西安交通大学学报,2008,42(11):1317-1322.
    [23] HOLLAND C E, WEIDNER J W, DOUGAL R A, et al. Experimental characterization ofhybrid power systems under pulse current loads. Journal of Power Sources,2002(109):32-37.
    [24] SMITH T A, MARS J P, TURNER G A, Using supercapacitors to improve battery performance,Proc. IEEE33rd annual Power Electronics Specialists Conference, Vol.1. Cairns, Australia,June23-27,2002:124–128.
    [25] LEE J, NELSON D J. Rotating inertia impact on propulsion and regenerative braking forelectric motor driven vehicles. In Proceedings of the IEEE Vehicle Power and PropulsionConference (VPPC'05), Chicago, Illinois, USA, New York: IEEE,2005, pp.308–314.
    [26] R APTER M P, Regeneration of power in hybrid vehicle, in Vehicular Technology Conference,2002. New York: IEEE,2002: p.2063-2069.
    [27]刘明辉,赵子亮,李骏.混合动力汽车节油机理研究.汽车技术,2005(5):11-13.
    [28] SOVRAN G, BLASER D. Quantifying the potential impacts of regenerative braking on avehicle’s tractive-fuel consumption for the U.S., European, and Japanese driving schedules.SAE Technical Paper Series,2006-01-0664,2006.
    [29] PATERSON J, RAMSAY, M. Electric vehicle braking by fuzzy logic control. IndustryApplications Society Annual Meeting, Toronto, Ont. Canada, New York: IEEE,1993: pp.2200-2204.
    [30] LAPLANTE J, ANDERSON C J, AULD J. Development of a hybrid electric vehicle for theUS marine corps. SAE Technical Paper Series,951905,1995.
    [31] WICKS F, DONNELLY K, HALL S. Modeling regenerative braking and storage for vehicles.Proceedings of the199732nd Intersociety Energy Conversion Engineering Conference.Honolulu, HI, USA, New York: IEEE,1997:2030-2035.
    [32] CLARKE P, MUNEER T, CULLINANE K. Cutting vehicle emissions with regenerativebraking. Transportation Research Part D-Transport and Environment,2010,15(3):160-167.
    [33]赵国柱,杨正林,魏民祥,等.基于ECE法规的电动汽车再生制动控制策略的建模与仿真.武汉理工大学学报(交通科学与工程版),2008,32(1):149-152.
    [34] GAO Y, CHEN L, EHSANI M. Investigation of the effectiveness of regenerative braking forEV and HEV. SAE Technical Paper Series,1999-01-2910,1999.
    [35] BRAY J T, WALKER G R, SIMPSON A G, et al. Brake system performance requirements of alightweight electric/hybrid rear wheel drive vehicle. International Journal of VehicleAutonomous Systems,2003,1(3):436-448.
    [36]王军,熊冉,杨振迁.纯电动大客车制动能量回收系统控制策略研究.汽车工程,2009,31(10):932-937.
    [37] WALKER A M, LAMP RTH M U, WILKINS S. On friction braking demand with regenerativebraking. SAE Technical Paper Series,2002-01-2581,2002.
    [38] TUR O, USTUN O, TUNCAY R N. An introduction to regenerative braking of electricvehicles as anti-lock braking system. IEEE Intelligent Vehicles Symposium, Istanbul, TURKEY,New York: IEEE,2007:944-948.
    [39] GAO Y, EHSANI M. Electronic braking system of EV and HEV—integration of regenerativebraking, automatic braking force control and ABS. SAE Technical Paper Series,2001-01-2478,2001.
    [40] KIM D H, KIM J M, HWANG S H, et al. Optimal brake torque distribution for afour-wheel-drive hybrid electric vehicle stability enhancement. Proceedings of the Institutionof Mechanical Engineers Part D-Journal of Automobile Engineering,2007,221(D11):1357-1366.
    [41] KIM D, HWANG S, KIM H. Vehicle stability enhancement of four-wheel-drive hybrid electricvehicle using rear motor control. IEEE Transactions on Vehicular Technology,2008,57(2):727-735.
    [42] FALCONE P, KHOSHFETRAT S, SOLYOM S, Predictive approaches to rear axle regenerativebraking control in hybrid vehicles, in2009Joint48th IEEE Conference on Decision andControl (CDC) and28th Chinese Control Conference (CCC2009), Shanghai, China, New York:IEEE,2009:7627-7632.
    [43] ISERMANN R, SCHWARZ R, STOLZL S. Fault-tolerant drive-by-wire systems. IEEEControl System Magazine,2002,22(5):64-81.
    [44]陈庆樟,何仁,商高高.汽车能量再生制动技术研究现状及其关键技术.拖拉机与农用运输车,2008(06):9-11.
    [45]赵国柱.电动汽车再生制动稳定性研究[硕士论文].南京:南京航空航天大学,2006:50-51.
    [46] DUOBA M, BOHN T, H. L-B. Investigating possible fuel economy bias due to regenerativebraking in testing HEVS on2WD and4WD chassis dynamometers. SAE Technical PaperSeries,2005-01-0685,2005.
    [47]张俊智,薛俊亮,陆欣,等.混合动力城市客车串联式制动能量回馈技术.机械工程学报,2009,45(6):102-106.
    [48] AHN J K, JUNG K H, KIM D H, et al. Analysis of a regenerative braking system for hybridelectric vehicles using an electro-mechanical brake. International Journal of AutomotiveTechnology,2009,10(2):229-234.
    [49]耿聪,刘溧,张欣,等. EQ6110混合动力电动汽车再生制动控制策略研究.汽车工程,2004,26(03):253-256.
    [50]张俊智,陆欣,张鹏君,等.混合动力城市客车制动能量回收系统道路试验.机械工程学报,2009,45(2):25-30.
    [51]刘宏伟,赵文平,吕奉阳. CA6700EV纯电动公交车再生制动控制策略研究.汽车技术,2009(08):25-30.
    [52] SANGTARASH F, ESFAHANIAN V, NEHZATI H, et al. Effect of different regenerativebraking strategies on braking performance and fuel economy in a hybrid electric bus employingcruise vehicle simulation. SAE Technical Paper Series,2008-01-1561,2008.
    [53]刘成晔.汽车辅助制动装置发展综述.中国安全科学学报,2008,8(1):105-111.
    [54]舒红,袁景敏,胡明辉,等.中度混合动力汽车匀速下坡再生制动策略优化.重庆大学学报(自然科学版),2008,39(1):965-970.
    [55]舒红,潘文军,袁景敏,等.混合动力汽车匀速下坡再生制动模型预测控制.公路交通科技,2011,28(2):137-143.
    [56] TAKAHASHI K, SEKI H, TADAKUMA S. Safety driving control for electric power assistedwheelchair based on regenerative brake. IEEE International Conference on InformationTechnology, New York: IEEE,2007:2492-2497.
    [57] SEKI H, ISHIHARA K, TADAKUMA S. Novel regenerative braking control of electricpower-assisted wheelchair for safety downhill road driving. IEEE Transactions on IndustrialElectronics,2009,56(5):1393-1400.
    [58] ZHANG J, YIN C, ZHANG J. Design and analysis of electro-mechanical hybrid anti-lockbraking system for hybrid electric vehicle utilizing motor regenerative braking. ChineseJournal of Mechanical Engineering,2009,20(1):42-49.
    [59]李骏,赵子亮,刘明辉,等. CA6100SH8并联混合动力客车制动能量再生系统开发.汽车工程,2008,30(10):911-913+904.
    [60]周磊,罗禹贡,李克强,等.电动汽车回馈制动与防抱死制动集成控制.清华大学学报(自然科学版),2009,49(5):728-732.
    [61]周磊,罗禹贡,杨殿阁,等.基于滑移率试探的电动车辆制动控制策略.清华大学学报(自然科学版),2008,48(5):883-887.
    [62] EIJI N, MASAYUKI S, AKIRA S, et al. Development of electronically controlled brake systemfor hybrid vehicle. SAE Technical Paper Series,2002-01-0300,2002.
    [63]王鹏宇,王庆年,胡安平,等.基于SIMULINK-AMESIM联合仿真的混合动力客车再生制动系统分析[J].吉林大学学报(工学版),2008(S1):7-11.
    [64]陈庆樟,何仁,赵连生.汽车能量再生制动防抱死集成控制方法研究.中国机械工程,2009,20(02):245-248.
    [65]彭栋,殷承良,张建武.混合动力汽车制动力矩动态分配控制策略研究.系统仿真学报,2007,19(22):5254-5259.
    [66]彭栋,殷承良,张建武.基于模糊控制的并联式混合动力汽车制动控制系统.吉林大学学报(工学版),2007,37(4):756-761.
    [67] SAKAI S, SADO H, HORI Y. Anti-skid control with motor in electric vehicle. In Proceedings.6th International Workshop on Advanced Motion Control. Nagoya, Japan, New York: IEEE,2000. p.317-322.
    [68] HORI Y. Future vehicle driven by electricity and control research on four wheel motored “UOTelectric march П”. IEEE Advanced Motion Control,2002(7):1-14.
    [69] HSIAO M, LIN C. Antilock braking control of electric vehicles with electric brake. SAETechnical Paper Series,2005-01-1581,2005.
    [70] MI C T, LIN H, ZHANG Y. Iterative learning control of antilock braking of electric and hybridvehicles. IEEE Transactions on Vehicular Technology,2005,54(2):486-494.
    [71] HENNING W著.汽车工程学Ι:汽车纵向动力学(英文版).北京:机械工业出版社,2009:149-153.
    [72]赵国柱,魏民祥.缓速器与行车制动系复合制动稳定性的定量评价.兵工学报,2009,30(2):185-189.
    [73]詹迅,秦大同,杨阳,等.轻度混合动力汽车再生制动控制策略与仿真研究.中国机械工程,2006,17(03):321-324.
    [74] CIKANEK S R, BAILEY K E. Regenerative braking system for a hybrid electric vehicle.American Control Conference, New York: IEEE,2002. vol.4:3129-3134
    [75]马建,陈荫山,余强,等.缓行器对汽车制动稳定性影响评价.交通运输工程学报,2002,2(1):105-109.
    [76]张立军,朱博,贾云雷.依ECE法规进行汽车制动力分配新方法.辽宁工程技术大学学报,2005,24(2):276-279.
    [77]何仁,胡青训.带有制动能量再生系统的公共汽车制动过程.江苏大学学报(自然科学版),2005,26(5):389-392.
    [78]陈家瑞,马天飞.汽车构造(下册).北京:人民交通出版社,2006:373-374.
    [79] WIPKE K B, CUDDY M R, BURCH S D. Advisor2.1: A user-friendly advanced powertrainsimulation using a combined backward/forward approach. IEEE Transactions on VehicularTechnology,1999,48(6):1751-1761.
    [80] GUZZELLA L, AMSTUTZ A. CAE tools for quasi-static modeling and optimization of hybridpowertrain. IEEE Transactions Vehicular Technology,1999,48(6):1762-1769.
    [81]张翔,赵韩,钱立军,等.混合动力轿车的建模与仿真.计算机仿真,2005,22(1):233-237.
    [82]秦大同,邓涛,杨阳,等.基于前向建模的ISG型CVT混合动力系统再生制动仿真研究.中国机械工程,2008,19(5):618-624.
    [83]王庆年,刘志茹,王伟华,等.混合动力汽车正向建模与仿真.汽车工程,2005,27(4):392-394,398.
    [84]童毅,欧阳明高.前向式混合动力汽车模型中传动系建模与仿真.汽车工程,2006,25(5):419-423.
    [85]曾小华,王庆年,李骏,等.基于ADVISOR2002混合动力汽车控制策略模块开发.汽车工程,2004,26(4):394-416.
    [86]赵国柱,魏民祥,杨正林.基于制动稳定性要求的ADVISOR再生制动模块的开发.机械与电子,2007(6):10-14.
    [87] SAME A, STIPE A, GROSSMAN D, et al. A study on optimization of hybrid drive train usingadvanced vehicle simulator (advisor). Journal of Power Sources,2010,195(19):6954-6963.
    [88]罗玉涛.电动车制动能量再生反馈控制研究.机床与液压,2002(2):162-164.
    [89] ZHANG C W, BAI Z F, CAO B G, et al. Study on regenerative braking of electric vehicle.Ipemc2004: The4th International Power Electronics and Motion Control Conference, Vols1-3,Conference Proceedings, Xi an: Xi an Jiaotong University Press,2004:836-839.
    [90]钟仁人.无刷直流电动机脉宽调速系统泵升电压计算.微特电机,1994(3):6-11.
    [91]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005,10:2-3.
    [92]高为炳.变结构控制的理论及设计方法.北京:科学出版社,,1998:34-35.
    [93]姚琼荟,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997:5-8.
    [94] SLOTINE J E,LI W-P著.程代展译.应用非线性控制.北京:机械工业出版社,2006,4:186-187.
    [95]胡剑波,庄开宇.高级变结构控制理论及应用.西安:西北工业大学出版社,2008:6-7.
    [96]杨苹,吴捷,刘明建.基于变结构理论的DC-DC功率变换器建模.华南理工大学学报(自然科学版),2002,30(12):6-11.
    [97] SIRA-RAMIREZ H. Sliding mode control on slow manifolds of DC-to-DC power converters.International Journal of Control,1988,47(5):1323-1340.
    [98] RUHLMANN T E. Lead acid batteries for stationary float service and cycling service part2:Selection criteria. in Power Engineering Society General Meeting,2003,13–17July2003,Toronto, Canada. New York: IEEE,2003(1):146-151.
    [99]张万奎.汽车铅酸蓄电池快速充电方法.湖南理工学院学报(自然科学版),2005,18(3):70-72.
    [100] VALERIOTE E M, CHANG T G, JOEHIM D M. Fast charging of lead-acid batteries. In9thAnnual Battery Conf. Applications and Advances, California State University, New York,1994,Jan.11-13.
    [101]余志生.汽车理论(第四版).北京:机械工业出版社,2009:14-15.
    [102]张承宁.电动大客车驱动电机控制及能量管理研究[博士学位论文].北京:北京理工大学,2001:55-57.
    [103]陈伯时.电力拖动自动控制系统(第3版).北京:机械工业出版社,2008:30-31.
    [104]孙逢春,程夕明.电动汽车动力驱动系统现状及发展.汽车工程,2000,22(4):222-224.
    [105] SIRA-RAMIREZ H. Differential geometric methods in variable-structure control. InternationalJournal of Control,1988,48(4):1359-1390.
    [106]胡庆波,郑继文,吕征宇.混合动力中无刷直流电机反接制动PWM调制方式的研究.中国电机工程学报,2007,27(30):87-91.
    [107]黄斐梨,王耀明,姜新建,等.电动汽车无刷直流电机驱动系统低速能量回馈制动的研究.电工技术学报,1995,(3):28-32.
    [108]钟仁人.关于直流脉宽调速系统在制动中泵升电压及能量回馈情况的讨论.电气传动,1990,(5):46-51.
    [109] LU C, SHIH M. Application of the Pacejka magic formula tyre model on a study of a hydraulicanti-lock braking system for a light motorcycle. Vehicle System Dynamics200441(6):431-448.
    [110] UNSAL C K P. Sliding mode measurement feedback control for antilock braking systems.IEEE Transactions on Control Systems Technology,1999,7(2):271-281.
    [111] CHAN C C, CHAU K T, JIANG J Z, et al. Novel permanent magnet motor drives for electricvehicles. IEEE Transactions on Industrial Electronics,1996,43(2):331-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700