基于约束学习的观测数据因果关系发现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类对自然的探索活动本质上是发现各种现象的原因,因果关系能够给出各种现象的解释,而这些解释能帮助我们理解和掌握自然规律。设计良好的实验研究是获得因果关系的最有效的方法,但是实验研究容易受伦理道德、实验代价等因素的限制而无法开展。随着数据收集和存储技术的快速发展,在工程、医疗和科学实验等领域每天都产生不可计量的观测数据。在随机实验方法无法开展时,可以转向基于观测数据的因果发现。基于观测数据的因果发现方法即是利用科学的理论和方法,揭示了蕴含在海量的观测数据中的因果关系。
     从观测数据中发现因果关系具有非常重要的意义,同时也面临着许多实际的困难。因果关系没有普遍被接受的定义,不同的领域中的因果关系有不同的解释,很难使用统一的形式表达因果关系。在数据因果充分的条件下因果图模型给出了观测数据中对应的因果关系的直观表示。然而当数据因果充分条件在所有观测变量下不满足时往往不能构造正确的因果图。同时对观测数据中的变量构建因果图模型的效率与变量的数量成指数关系,随着变量数量的增加,全局因果图模型的约束学习代价将变的非常高。在实际的应用背景下,用户可能并不需要了解整个观测数据中包含的所有因果关系,发现其中一部分感兴趣的因果关系具有更大的理论意义和实现价值。为了解决现有因果模型学习和利用效率不高的问题,本文以研究观测数据因果关系发现为基础,针对观测数据的变量的一个子集学习对应的模型,通过获得的模型来表达和推导直接因果关系。论文的主要研究内容如下:
     1.从因果关系理论出发,研究了不同的因果关系约束学习方法,针对现有因果关系约束方法需要大量条件独立性计算的问题,提出了因果关系一致性约束方法,通过融合目标变量在不同控制变量条件下的条件关联来实现变量约束,避免了大量条件独立计算。在一致性约束思想的基础上,提出了基于观测数据等价类的因果关系一致性约束方法,方法改进了观测数据中变量一致性约束策略,有效地降低了观测数据一致性约束实现的代价。对直接因果关系进行了明确的定义,并综合缺省逻辑和一阶谓词的特点,利用缺省逻辑的蕴含式扩展将直接因果关系用因果规则的形式进行表达,为变量的直接因果关系提供了一个简洁的语法和形式化表达的工具,并在因果规则的基础上构建了因果预测和因果诊断的模型。
     2.因果规则是直接因果关系的有效表达形式,利用直接因果关系的理论从海量的观测数据中发现实际的因果规则具有重大的现实意义。针对传统关联规则兴趣度评价方法的不足,将因果关系引入关联规则兴趣度评价,基于信息量提出了一种因果规则度量方法。方法将不同关联规则之间的关系作为先验知识来剔除虚假和错误的因果规则,以兴趣度评价的方式实现了直接因果关系发现;同时提出了相应的算法,并通过实际数据比较和分析了该算法的性能。在关联规则的基础上进行直接因果关系发现能充分了关联规则挖掘的技术,为海量观测数据的直接因果关系发现提供了有益的探索。
     3.针对基于因果贝叶斯网络的因果关系发现具有复杂度高、计算难度大等缺点,在直接因果关系的形式化表达基础上,构建了一个通用的直接因果关系发现框架。框架基于变量一致性约束的思想,利用关联和部分关联的分层约束实现直接因果关系的发现。同时框架将单一因素的直接因果关系发现扩展到组合变量的直接因果关系,解决了传统因果发现方法无法表示组合因果关系的问题。基于框架提出了一个高效的因果规则挖掘算法,设计了顺序等价类存储表和局部顺序等价类存储表,结合有效的数据表示和搜索空间剪枝技术,提高了发现因果规则的效率。通过充分的实验评估,算法在不同的数据集合中都实现了较好的性能表现,相对于传统的因果关系发现算法不仅提高了效率,并且在不同的数据集上具有良好的扩展性。
     因果关系发现是知识发现领域的一个重要的课题,本文从观测数据的角度研究了直接因果关系的约束方法,讨论了因果规则的表达和推理形式,对海量观测数据的直接因果关系挖掘进行了探索,对数据挖掘领域中利用观测数据进行因果关系发现的理论研究和具体实践具有重要意义。
The essence of human exploration of natural is to find the cause of a variety of phenomena, which can be used to explain various phenomena and help us to understand and master the laws of nature. A well-designed randomized controlled experiment is the most effective way to identify causality, which however may be infeasible to be conducted for restrictions of cost and ethics. Massive amounts of observational data have being generated from all kinds of areas with the fast development of data collection and storage technology, such as engineering, medical and scientific. People can turn to discover causal relationship based on observational data using these methods when the random experimental method cannot be carried out. The causal discovery methods based on observational data are designed to reveal the causality embedded on the vast data.
     It is very important and challenging to discover causal relationships from large databases of observational data. There is no generally acceptable definition for causal relationships, which may have different meanings in different areas, making it difficult to be expounded in a unified form. Causal Bayesian network is an important causal model, which can visually represent the causality embedded in observational data under causal sufficiency condition. However, an ideal causal graph usually cannot be constructed without causal sufficiency condition hold in all the observed variables. In addition, the cost of learning a causal Bayesian network exponentially increases with the number of variables, making the learning of a full causal Bayesian network infeasible with large number of variables. In practical, people may not interest to know all the causal relationship among the variables, therefore finding causal structures on a subset of the variables shows much greater significance. To address the problem in learning and using of current causal models, this dissertation aims to learn causal relationships from a subset of the variables underlies the big content of causal discovery from observational data. The major content of this dissertation are as follows:
     1. This dissertation studies various constrain-based methods for causal discovery, and proposes a new method based on persistent constrain for the calculation of a large number of conditional independence in current constrain-based methods. The method integrates the partial association of a variable under distinct covariates, which avoiding to measuring the conditional independence. On the basis of persistent constrain, an improved method based on equivalence class is proposed, which effectively reduce the cost of conducting the persistent constrain. A formal definition of direct causal relationship is given, and formalized using causal rules based on extended default logic. It provides concise syntax and formal expression for direct causal relationship, and can be applied to structure models for causal prediction and causal diagnosis.
     2. It is of great practical significance to find causal rules from observational data based on the foundational theory of direct causal relationship, since causal rules are effective expression of direct causal relationship. Causality is introduced into the interestingness measure of association rules and a new method for evaluating the causal rules using information entropy is proposed for the shortcomings and deficiencies of traditional interestingness measures. The interaction of different association rules are considered as prior knowledge to eliminate false and fake causal rule and find real causal rules using the interestingness measure. An algorithm is implemented on a real data and shows efficiency in mining causal rules from association rules. Causal rules discovery based on association rule provides a feasible solution to find causal relationship from observational data by taking full advantage of techniques in associate rule mining.
     3. As the causal Bayesian network is too complex and difficult to learn and infer the causality, this dissertation presents a general framework for direct causal relationship discovery based on formalized causal rules. With layered means, the framework applies positive association and zero partial association to determine the causal rules, which sticking to the thought of persistent constrain. Causal relationship of single variables is extended to combined case, which has not been solved in traditional causal discovery methods. An efficient algorithm is presented according to the framework, and it improves the efficiency of mining causal rules using a well designed ordinal equivalence storage table and ordinal local equivalence storage table, as well some pruning technology. Through numerous experiments, the algorithm shows well performance and improves the efficiency of causal rules mining in relative to current methods.
     Causality discovery is one of the most important topics in the field of knowledge discovery. Constrain-based methods for causal relationship from the perspective of observational data are studied in this dissertation, the formalization and inference of causal rules are discussed, and the practical mining of direct causal relationship from massive observational databases are explored. Those systematic works may be helpful for the research of theory and practice on causal discovery from observational data.
引文
Agrawal R, Srikant R.1994. Fast Algorithms for Mining Association Rules in Large Databases[C]. Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, USA,487-499.
    Aggarwal CC, Yu PS.2001. Mining Associations with the Collective Strength Approach[J]. IEEE Transactions on knowledge and Data Engineering,13(6):863-873.
    Alexander S, Tsamardinos I.2008. Causal explorer:A matlab library of algorithms for causal discovery and variable selection for classication[J]. In JMLR Workshop and Conference Proceedings.
    Berzuini C, Dawid P, Bernardinelli L.2012. Causality, Statistical Perspectives and Application[M]. John Wiley&Sons.
    Borboudakis G, Triantafilou S, Lagani V, Tsamardinos I.2011. A constraint-based approach to incorporate prior knowledge in causal models[C]. Proceedings of the 19th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 321-326.
    Borboudakis G, Tsamardinos I.2012. Incorporating causal prior knowledge as path-constraints in Bayesian networks and maximal ancestral graphs[C]. In Proceedings of the 29th International Conference on Machine Learning, Omnipress,1799-1806.
    Brin S, Motwani R, Silverstein C.1997. Beyond market baskets:generalizing association rules to correlations[C]. Proceedings of 1997 ACM SIGMOD International Conference on Management of Data. New York, USA:255-264.
    Bui AT, Jun CH.2012. Learning Bayesian network structure using Markov blanket decomposition[J]. Pattern Recognition Letters.33(16):2134-2140.
    Cai RC, Zhang ZJ, Hao ZF.2013. Causal gene identification using combinatorial V-structure search[J]. Neural Networks,43:63-71
    Chen MS, Han JW, Yu PS.1996. Data Mining:An Overview from a Database Perspective [J]. IEEE Transactions on Knowledge and Data Engineering,8(6):866-883.
    Cheng J, Bell D, Liu WR.1998. Learning Bayesian Networks from data:An Efficient Approach Based on Information Theory[R]. Technical report, University of Alberta Canada.
    Chichering DM.2002. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research,3:507-554.
    Chickering DM.1996. Learning Bayesian network is NP-complete[J]. Learning from Data: Artificial Intelligence and Statistics, Fisher D and Lentz H, editors, Springer-Verlag,121-130.
    Claassen T, Hekes T.2012. A Bayesian approach to constraint based causal discovery[C]. In Proceedings of Twenty-Eight Conference on Uncertainty in Artificial Intelligence, AUAI Press, 207-216.
    Claassen T, Heskes T.2010. Causal discovery in multiple models from different experiments[J]. In Advances in Neural Information Processing Systems 23:41-423.
    Cole SR, Frangakis CE.2009. On the consistency statement in causal inference:a definition or an assumption?[J]. Epidemiology,20(1):3-5.
    Constantin FA, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD.2010a. Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation[J]. The Journal of Machine Learning Research archive,11: 171-234.
    Constantin FA, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD.2010b. Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions[J]. The Journal of Machine Learning Research archive,11:235-284.
    Cooper G, Yoo C.1999. Causal discovery from a mixture of experimental and observational data[C]. In Proceedings of Fifteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann,116-125.
    Cooper GF, Herskovits E.1992. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning,9:309-347.
    Cooper GF.1997. A simple constraint-based algorithm for efficient mining observational databases for causal relationships[J]. Data Mining and Knowledge Discovery, I:203-224.
    Cox D, Wermuth N.2004. Causality:A statistical view[J]. International Statistical Review,72: 285-305.
    Daly R, Shen Q, Aitken S.2011. Learning Bayesian networks:approaches and issues[J]. The Knowledge Engineering Review archive,26(2):99-157.
    Danks D.2002. Learning the causal structure of overlapping variable sets[J]. In Discovery Science. Lecture Notes in Computer Science 2534, Springer,178-191.
    Dawid AP.1979. Conditional independence in statistical theory[J]. Journal of the Royal Statistical Society. Series B,41 (1):1-31.
    Dawid AP.2010. Beware of the DAG![C]. In Proceedings of the NIPS 2008 Workshop on Causality, Journal of Machine Learning Research Workshop and Conference Proceedings 6: 59-86.
    Dawid A.2002. Influence diagrams for causal modeling and inference[J]. International Statistical Review 70:161-189.
    Dimitris M, Sebastian T.1999.Bayesian Network Induction via local Neighborhood[J]. Advances in Neural Information Processing Systems 12:505-511.
    Duncan O.1975. Introduction to Structural Equation Models[M]. New York:Academic Press.
    Eberhardt F.2008. Almost optimal intervention sets for causal discovery[C]. In proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, AUAI Press,161-168.
    Entner D, Hoyer PO.2011. Discovering unconfounded causal relationships using linear non-Gaussian models[J]. In New Frontiers in Artificial Intelligence:JSAI 2010 Workshops, Leature Notes in Computer Science 6797, Springer Berlin Heidelberg,181-195.
    Erwin A, Gopalan RP, Achuthan NR.2008. Efficient Mining of High-utility Itemsets from Large Datasets[C]. Proceedings of the 12th Pacific-Asia conference on Advances in knowledge discovery and data mining. Heidelberg, Berlin:554-561.
    Evans RJ, Richardson TS.2010. Maximum likelihood fitting of acyclic directed mixed graphs to binary data[J]. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, AUAI Press,177-184.
    Falcon A.2008. Aristotle on Causality[M]. Stanford Encyclopedia of Philosophy.
    Fiser RA.1935. The Design of Experiment[M]. Edinburgh:Oliver&Boyd.
    Frehas AA.1999. On rule Interestingness measures[J]. Knowledge-Based Systems,12(5): 309-315.
    Fu S, Desmarais MC.2008. Fast markov blanket discovery algorithm via local learning within single pass[C]. Proceedings of the Twenty-First Canadian Conference on Artificial Intelligence, 96-107.
    Geng LQ, Hamilton HJ.2006. Interestingness Measure for Data Mining:A Survey[J]. ACM Computing Surveys,38(3).
    Glymour M, Greenland S.2008. Causal diagrams. In Modern Epidemiology[M].3rd Lippincott Williams & Wilkins, Philadelphia, PA,183-209.
    Goethals B.2013. Frequent itemset mining dataset repository [EB/OL]. http://fimi.ua.ac.be/data/.
    Goldberger A.1973. Structural equation models:An overview. In Structural Equation Models in the Social Sciences [J]. New York:Seminar Press,1-18.
    Greenland S, Pearl J, Robins J.1999. Causal diagrams for epidemiologic research[J]. Epidemiology,10:37-48.
    Gretton A, Fukumizu K, Teo CH, Song L, Scholkopf B, Smola AJ.2008. A kernel statistical test of independence[J]. In Advances in Neural Information Processing Systems 20, MIT Press, 585-592.
    Han JW, Kamber M, Pei J.2011. Data Mining:Concepts and Techniques[M]. Third Edition. USA: Morgan Kaufmann.
    Hauser A, Buhlmann P.2012. Two optimal strategies for active learning of causal models models from interventions[C]. In Proceedings of the 6th European Workshop on Probabilistic Graphical Models,123-130.
    Hausman DM, Woodward J.1999. Independence, invariance and the causal Markov condition[J]. British Journal of Philosophy of Science,50:521-583.
    He Y, Geng Z.2008. Active learning of causal network with intervention experiments and optimal designs[J]. Journal of Machine Learning Research,9:2523-2547.
    Heckerman D, Breese JS.1994. A new look at causal independence[C]. In Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann,286-292.
    Heckerman D, Geiger D, Chickering DM.1995. Learning Bayesian networks:The combination of knowledge and statistical data[J]. Machine Learning,20(3):197-243.
    Heckerman D, Geiger D, Chickering DM.1994. Learning Bayesian networks:the combination of knowledge and statistical data[R]. Technical Report MSR-TR-94-09, Microsoft Research.
    Herskovits E.1991. Computer-based probabilistic network construction[D]:[PhD], Stanford, CA: Stanford University.
    Hoyer PO, Hyvarinen A, Scheines R, Spirtes P, Ramsey J, Lacerda G.2008. Causal discovery of linear acyclic models with arbitrary distributions[C]. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, AUAI Press,282-289.
    Ioannidis JP.2001. Comparison of evidence of treatment effects in randomized and nonrandomized studies[J]. JAMA,286:821-830.
    Jaroszewicz S, Simovici DA.2001. A general measure of rule interestingness. In Proceedings of PKDD' 2001, Springer-Verlag,253-265.
    John A.1995. Correlations Genuine and Spurious in Pearson and Yule[J]. Statistical Science, 10(4):364-376.
    Knol MJ, VanderWeele TJ.2012. Recommendations for presenting analyses of effect modification and interaction[J]. Int J Epidemiol.41(2):514-20.
    Lacerda G, Spirtes P, Ramsey J, Hoyer PO.2008. Discovering cyclic causal models by independent components analysis[C]. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, AUAI Press,366-374.
    Lalonde RJ.1986. Evaluating the econometic evaluations of training programs with experimental data[J]. Am. Econ. Rev.76:604-620.
    Lam W, Bacchus F.1994. Learning Bayesian belief networks:An approach based on the MDL principle[J]. Computational Intelligence,10:4.
    Lauritzen S. (2001). Causal inference from graphical models[J]. In Complex Stochastic Systems, Boca Raton:Chapman and Hall CRC Press,63-107.
    Lauritzen S.1996. Graphical Models[M]. Oxford:Clarendon Press.
    Lauritzen SL, D. J. S.1988. Local computations with probabilities on graphical structures and their application to expert systems[J]. Journal of the Royal Statistical Society,50(2):157-224.
    Lenca P, Meyer P, Vailant B, Lallich S.2008. On selecting interestingness measures for association rules:User oriented description and multiple criteria decision aid[J]. European Journal of Operational Research,184(2):610-626.
    Lieberson S.1985. Making it Count:The Improvement of Social Research and Theory[M]. Berkeley:Univ. Calif. Press.
    Mackie JL.1988. The Cement of the Universe:A study in Causation[M]. England, Oxford: Clarendon Press.
    Mani S, Aliferis CF, Statnikov A.2008. Bayesian Algorithms for Causal Data Mining[C]. JMLR Workshop and Conference Proceedings 6:121-136.2008
    Mani S, Cooper GF.2001. A simulation study of three related causal data mining algorithms [J]. In International Workshop on Artificial Intelligence and Statistics, San Francisco, California: Morgan Kaufmann Publishers,73-80.
    Mani S, Cooper GF.2004. Casual Discovery Using A Bayesian Local Causal Discovery Algorithm[J]. Medinfo,11(1):731-735.
    Mani S, Spirtes P, Cooper GF.2006. A theoretical study of Y structures for causal discovery[C]. Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, AUAI Press:314-323.
    Margaritis D, Thrun S.2000. Bayesian network induction via local neighborhoods[J]. Advances in Neural Information Processing Systems, Cambridge, MA:MIT Press,12:505-511.
    Masegosa AR, Moral S.2013. New skeleton-based approaches for Bayesian structure learning of Bayesian networks[J]. Applied Soft Computing,13(2):1110-1120.
    Morgan S, Winship C.2007. Counterfactuals and Causal Inference:Methods and Principles for Social Research [M]. New York:Cambridge University Press.
    Neyman J.1923. On the application of probability theory to agricultural experiments [J]. Essay on principles. Section 9. Statistical Science,5:465-480.
    Neyman JS.1935. Statistical problems in agricultural experiments[J]. J. R. Stat. Soc,2:107-180.
    Park JS, Chen MS, Yu PS.1995. An effective hash-based algorithm of mining association rules[C]. Proceedings of ACM SIGMOD International Conference on Management of Data, San Jose, CA:175-186.
    Pearl J, Dechter R.1996. Identifying independencies in causal graphs with feedback[C]. In Proceedings of 12th Conference in Uncertainty in Artificial Intelligence, Margan Kaufmann, 420-426.
    Pearl J, Verma TS.1991. A Theory of inferred causation[C]. In Knowledge Representation and Reasoning:Proceedings of the Second International Conference. New York:Morgan Kaufmann, 441-452.
    Pearl J.1988. Probabilistic Reasoning in Intelligent Systems[M]. USA:Morgan-Kaufmann.
    Pearl J.1995. Causal diagrams for empirical research[J]. Biometrika,82:669-710.
    Pearl J.1995b. From Bayesian Network to Causal network[C]. Probabilistic reasoning and Bayesian networks, Alfred Walter.
    Pearl J.2009a. Causality:Models, Reasoning, and Inference[M]. Second Edition. USA: Cambridge University Press.
    Pearl J.2009b. Causal inference in statistics:An overview[J]. Statist. Surv,3:96-146.
    Pearl J.2010. On the Consistency Rule in Causal Inference:Axiom, Definition, Assumption, or Theorem?[J]. In Epidemiology,21(6):872-875.
    Pena JM, Nilsson R, Bjorkegren J, Tegner J.2007. Towards scalable and data efficient learning of markov boundaries[J]. International Journal of Approximate Reasoning,45(2):211-232.
    Peters J, Mooij JM, Janzing D, Scholkopf.2011. Identifiability of causal graphs using functional models[C], In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, AUAI Press,589-598.
    Ramoni M, Sebastiani P. Robustlearning with missing data[R].Technical report, KMI-TR-28.
    Rebane G, Pearl J.1987. The Recovery of Causal Poly-trees from Statistical Data[C]. Proceedings, 3rd Workshop on Uncertainty in AI, Seattle, WA,222-228.
    Reiter R.1980. A logic for default reasoning[J], Artificial Intelligence,13:81-132.
    Rothman K.1976. Causes[J]. American Journal of Epidemiology,104:587-592
    Rubin DB.1974. Estimating causal effect of treatments in randomized and nonrandomized studies[J]. J. Educ. Paychol,66:688-701.
    Rubin DB.1978. Bayesian inference for causal effects:the role of randomization[J]. Ann. Star,6: 34-58.
    Rubin DB.1986. Which ifs have causal answer? Discussion of "Statistics and Causal inference" by Holland[J]. J. Am. Stat. Assoc,83:396.
    Rubin DB.1990. Formal models of statistical inference for causal effects[J]. J. Stat. Plan. Inference,25:279-292.
    Salmon WC.1998. Causality and Explanation[M]. New York:Oxford University Press.
    Savesere A, Omiericnski E, Navathe S.1995. An efficient algorithm for mining association rules in large databases[C]. Proceedings of 21th International Conference on Very Large Database.
    Shadish, WR.2002. Experimental andquasi-experimental designs for generalized causal inference[M]. Houghton Miin and Company, Boston and MA.
    Shapiro PG.1991. Discovery, Analysis, and Presentation of Strong Rules[M]. MIT, USA:AAAI Press.
    Silverstein C, Brin S, Motwani R.2000. Scalable Techniques for Mining Causal Structures[J]. Data Mining and Knowledge Discovery,4:163-192.
    Simpson EH.1951. The Interpretation of Interaction in Contingency Tables[J].Journal of the Royal Statistical Society.13(2):238-241.
    Smyth P, Goodman RM.1991. Rule induction using information theory, in:Gregory Piatetsky-Shapiro[M]. William Frawley (Eds.), Knowledge Discovery in Databases, MIT Press, Cambridge, MA,159-176.
    Spirtes P, Glymour C, Scheines R.1993. Causation, Prediction, and Search[M]. New York: Springer-Verlag.
    Spirtes P, Glymour C, Scheines R.2000. Causation, Prediction and Search[M].2nd. New York: Springer-Verlag.
    Spirtes P, Glymour C.1991. An algorithm for fast recovery of sparse causal graphs[J]. Social Science Computer Review,9:62-72.
    Suppes P.1970. A Probabilistic Theory of Causality[M]. Helsinki:North-Holland Publishing Company Amsterdam
    Suzuki J.1996. Learning Bayesian belief networks based on the MDL principle:An efficient algorithm using the branch and bound technique[C]. Proceedings of the international conference on machine learning, Bari, Italy.
    Tan PN, Kumar V, Srivastava J.2004. Selecting the right objective measure for association analysis[J]. Information Systems,29(4):293-313.
    Tan PN, Kumar V.2000. Interestingness measures for association patterns:a perspective [C]. KDD 2000 Workshop on Post processing in Machine Learning and Data Mining, Boston, USA.
    Tashiro T, Shimizu S, Hyvarinen A, et al.2012. Estimation of causal orders in a linear non-gaussian acyclic model:a method robust against latent confounders[J]. In Artificial Neural Networks and Machine Learning, Lecture Notes in Computer Science 7552, Springer,491-498.
    Tillman RE, Danks D, Glymour C.2009. Integrating locally learned causal structures with overlapping variables[J]. In Advances in Neural Information Processing System 21,1665-1672.
    Toivonen H.1996. Sampling large databases for association rules[C]. Proceedings of 22th International Conference on Very Large Database, Bombay, India.
    Triantafillou S, Tsamardinos I, Tollis IG.2010. Learning causal structure from overlapping variable sets[C]. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Journal of Machine Learning Research Workshop and Conference Proceedings,9: 860-867.
    Tsamardinos I, Aliferis CF, Statnikov AR.2003a. HITON:A Novel Markov Blanket Algorithm for Optimal Variable Selection[C]. AMIA Annu Symp Proc.
    Tsamardinos I, Aliferis CF, Statnikov AR.2003b. Time and sample efficient discovery of Markov blankets and direct causal relationships[C]. Proceedings of SIGKDD 2003.
    Tsamardinos I, Aliferis CF. Statnikov AR.2003c. Algorithms for large scale markov blanket discovery[C]. Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference,376-381.
    Tsamardinos I, Brown LE, Aliferis CF.2006. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning,65(1):31-78.
    Tsamardinos I, Aliferis CF.2003. Towards principled feature selection:Relevancy, filters and wrappers[C], Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics.
    Tufte, ER.2003. The Cognitive Style of PowerPoint[M]. Cheshire, CT:Graphics Press.
    Verma TS, Pearl J.1991. Equivalence and Synthesis of Causal Models[C]. Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Uncertainty in Artificial Intelligence 6, Amsterdam:Elsevier Science Publishers,225-268.
    Wallace C, Korb KB, Dai H.1996. Causal discovery via MML[C]. Proceedings of the thirteenth international conference on machine learning, San Francisco CA USA:Morgan Kaufmann Publishers,516-524.
    Wermuth N, Lauritzen SL.1983. Graphical and Recursive Models for Contingency Tables[J]. Biometrika 72:357-552.
    William EM.1970. Knowledge of Causality in Hume and Aquinas[J]. The Thomist 34(2): 254-288.
    Woodward J.2003. Making Things Happen[M]., New York, NY:Oxford University Press.
    Wright S.1921.Correlation and causation[J]. Journal of Agricultural Research,20:557-585
    Zeng YF, He X.2011.Dynamic ordering-based search algorithm for markov blanket discovery[C].Proceedings of the 15th PAKDD,420-431.
    Zhang JJ, Spirtes.2003. Strong Faithfulness and Uniform Consistency in Causal Inference[C]. Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence,632-639.
    Zhang K, Hyvarinen A.2009. On the identifiability of the post-nonlinear causal model[C]. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, AUAI Press, 647-655.
    Zhang K, Peters J, Janzing D, Scholkopf B.2011. Kernel-based conditional independence test an application in causal discovery[C]. In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, AUAI Press,804-813.
    单娜,董小刚.2012.用扩充的因果网来识别随机干预的因果效应[J].应用概率统计,28(6):601-613.
    樊兴华,张勤,孙茂松,黄席樾.2003.多值因果图的推理算法研究[J].计算机学报,26(3):310-322.
    付剑锋,刘宗田,刘炜,周文.2011.基于层叠条件随机场的事件因果关系抽取[J].模式识别与人工智能,24(4):567-573.
    干红华,潘云鹤.2001.基于事件的因果关系的结构分析方法[J].模式识别与人工智能,16(1):56-62.
    郝娟.2009.社会科学研究中因果分析方法的比较与应用[J].统计与决策,24:34-36.
    贺炜,潘泉,陈玉春,张洪才.2005.关联规则挖掘与因果关系发现的比较研究[J].模式识别与人工智能,18(5):328-333.
    林海,孙吉贵.2004.因果知识的表示和推理[J].计算机科学,31(5):123-126.
    卿素兰,罗杰,方富熹.2004.反事实思维与因果推理的关系[J].湖南大学学报,18(1):95-98.
    王洪春.2006.基于因果图的一种知识获取方法[J].计算机仿真,3:126-128.
    王立平,龙志和.2005.基于Granger原因的因果关系检验方法评析[J].合肥工业大学学报,28(4):430:-434.
    魏歌.2006.基于并行关系与因果关系的关联规则[J].航空计算技术,36(2):50-52.
    魏岳嵩,田铮,陈占寿.2011.向量自回归模型Granger因果图的条件互信息辨识与应用[J].控制理论与应用,28(7):979-986.
    谢有辉.2010.统计图形和模拟视角下的模型理论解析:硕士.北京:北京大学.
    辛涛,李峰.2009.社会科学背景下因果推理的统计方法[J].北京师范大学学报,1:47-51.
    徐欣,李德玉.2008.贝叶斯网络中因果链搜索算法及其应用研究[J].计算机科学,35(4):154-156.
    杨炳儒,李欣,李卫东,张克君.2006.基于知识发现的因果自动机[J].计算机工程与应用,1:17-20.
    杨炳儒,綦艳霞.2001.KDD中因果关联规则的评价方法[J].软件学报,13(6):1142-1147.
    章奇.2008.社会科学中的因果关系及其分析方法[J].浙江社会科学,3:2-12:
    赵慧,郑忠国.2008. Gauss因果模型中因果效应识别方法的比较[J].数学物理学报,28(5):808-817.
    赵树心.2007.因果关系的类型和概率分布[J].中国海洋大学学报,1:32-44.
    郑忠国,童行伟,张艳艳.2001.因果模型中因果效应的可识别性研究[J].中国科学,12:1080-1086.
    钟智,苏毅娟,张师超.2002.数据库中的因果规则挖掘[J].广西师范学院学报,19(4):77-80.
    周冬梅,王浩,姚宏亮,李俊照,张赞.2012.一种基于因果强度的局部因果结构主动学习方法[J].计算机科学,39(11):237-242.
    周建,李子奈.2004.Granger因果关系检验的适用性[J].清华大学学报,44(3):358-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700