基于贝叶斯网络的知识发现与决策应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贝叶斯网络是概率理论和图论相结合的产物,它提供了一种自然的工具,可以用来处理贯穿于应用数学和工程中的两个问题。不确定性和复杂性。80年代,贝叶斯网络多用于专家系统中,成为表示不确定知识和推理问题的流行方法。随着近年来数据库规模的不断扩大,贝叶斯网络逐渐开始应用于大规模数据库的数据挖掘和知识发现,从而为决策支持提供了有力手段,贝叶斯网络已经成为数据库知识发现和决策支持系统的有效方法。
     本文以黑龙江省防汛指挥决策支持系统[黑龙江省政府黑讯字2001-8号文件]为背景,对贝叶斯网络的知识发现与决策理论进行了相关研究。本文研究了基于贝叶斯网络的知识发现与决策过程框架,在该框架基础上,研究了贝叶斯网络在知识发现和决策支持领域的应用理论,包括贝叶斯网络的结构学习、参数学习、推理和解释、以及应用贝叶斯网络进行防洪知识发现和决策的问题。本文主要研究成果归纳如下:
     提出了用于结构学习的一种新的附加约束的最大相互信息记分函数(MMI-R)。该记分函数以信息论中的KL距离、相互信息理论为基础,将最大相互信息原则引入贝叶斯网络的结构学习中,并使用网络模型的维数和网络结构的复杂度作为组合约束函数,将最大相互信息原则与组合复杂度约束函数相结合,提出了一种新的附加约束的最大相互信息记分函数。以该记分函数作为结构学习的评价标准,将贝叶斯网络的结构学习转化为一个优化问题。本文采用Cancer数据集,将提出的MMI-R记分函数与最大相互信息原则进行了对比,结果表明MMI-R函数解决了最大相互信息的完全图问题,采用4个典型的数据集Cancer、College、Asia和Alarm对提出的MMI-R记分函数同贝叶斯测度(BDE)和最小描述长度(MDL)记分方法进行了对比实验,结果表明本文提出的附加约束的最大相互信息记分函数在结构学习精度上具有更好的性能。
     提出了用于结构学习的一种改进的模拟退火算法(SA-MMI-R)。该算法以附加约束的最大相互信息记分函数作为模拟退火的能量优化函数,对基本模拟退火算法进行了三个方面的改进:一是邻近值产生策略,产生邻近值分为3个部分:交换结点、加入新结点和删除旧结点。这种邻近值产生方法尽可能使得所有的邻近值都能够被遍历并具有较高的效率;二是设置新的算法结束条件,采用一个与网络结点状态维数、温度下降系数、状态接受概率为组合条件的动态迭代次数控制策略,并增加了以网络结点状态维数和对父结点集的连续无效修正次数为附加条件的算法结束条件来提高收敛速度;三是对算法增加一个记忆变量,使得算法可以接受暂时的恶化解并能够跳出局部最优,尽可能使
    
     人连理工人学博卜学位论文
    算法趋近于全局最优解。为了满足先验知识,设计了修正算法用于SA一MMI一R
    算法的结果修正。本文采用典型的数据集对提出的SA一MMI一R算法’。
    Chickering提出的模拟退火算法和Larranaga提出的遗传算法进行了性能对比
    实验,实验结果表明SA一MMI一R算法在结构学习精度、计算速度上都具有较
    大的优势。
     提出了用于参数学习的改进的EM算法(ISA一EM)。为解决传统EM算
    法难以处理大规模数据集和高维变量以及收敛速度慢的问题,本文提出从期望
    计算E和最大化计算M两个步骤分别改进EM算法。首先在E步骤将大规模
    数据集划分为较小的数据块,分别对每个块进行块内优化处理,并且在块间进
    行合成。这样,一方面将处理大规模数据集转化为处理较小的数据块,降低了
    计算量,同时也适应了变量维数的增加;另一方面将期望值在块间进行合成,
    避免了重复计算。然后在M步骤采用改进的模拟退火算法进行期望最大化计
    算。在前面用于结构学习的改进的模拟退火算法基础上,又增加了两个方面的
    改进:一是初始温度选择策略优化,以问题信息和状态分布为指导确定初始温
    度,考虑了各状态的相对性能,能够赋予不同状态合适的突跳概率;二是采用
    Cauchy分布产生邻近值,尽可能使算法趋近于全局最优。本文采用Cancer、
    College、Asia和Alarm数据集对提出的ISA一EM算法与标准EM算法进行了
    性能对比实验,实验结果表明IsA一EM算法在参数学习精度、计算时间和算法
    收敛速度方面都优于标准的EM算法。
     研究了贝叶斯网络的在线学习问题,在可信度理论基础上,给出了在线参
    数学习的可信度EM算法并利用该算法与标准EM算法在计算速度方面进行了
     比较。
     研究了贝叶斯网络的推理与模型解释的方法和内容,给出了随机样本推理
    算法的一般形式;从证据解释、推理解释和模型解释三个方面对贝叶斯网络模
     型解释进行了分析,对概率依赖关系解释进行了详细描述。
     关于防洪决策问题,本文以贝叶斯网络为工具,针对洪水灾害预报和洪水
     灾害风险决策问题进行了研究。研究了防洪决策系统的分析和评价体系,给出
     了基于贝叶斯网络的降一雨汇流预报模型、河道洪水预报模型和洪水灾害风险决
     策模型,对预测模型的预测精度进行了分析并对洪水灾害风险决策模型的概率
     依赖关系进行了分析和解释,结果说明将贝叶斯网络应用于防洪知识发现与决
     策具有较大的应用价值。
A Bayesian network is a graphical model for probabilistic relationships among a set of variables. This paper provides a natural tool for dealing with two problems, uncertainty and complexity, in applying mathematics and engineering. Over the last two decade, the Bayesian network has become a popular representation for encoding uncertain expert knowledge in expert systems. With the expansion of database scales, Bayesian networks have been applied in large-scales database for data mining and knowledge discovery and become a powerful tool for decision-making. Bayesian networks play an increasingly important role in the fields of knowledge Discovery and decision-making. This paper first presents a model for knowledge Discovery and decision-making based on Bayesian networks. And the paper discusses Bayesian networks theoretic in learning Bayesian network and application.
    This paper discusses the structure learning for Bayesian networks. The paper proposes a Maximum Mutual Information Metric with Restriction (MMI-R) based on Kullback-Leibler divergence, Mutual Information Metric, and Maximum Mutual Information Metric. This paper proposes using dimension and complexity of networks to be the combined restriction function. The function of MMI-R is composed of the restriction and Maximum Mutual Information. This paper proves that the function of MMI-R is the best choice in all structures and complexities. With the function of MMI-R, the problem of searching the best structure is turn to the optimization of MMI-R.
    This paper proposes an algorithm of Simulating Anneal (SA-MMI-R) to optimize the metric. The paper proposes three technologies to improve the algorithm in optimization. Firstly, contiguous states generating mechanisms is proposed. The mechanisms include three parts, exchanging, joining and deleting. Secondly, a new ending condition is proposed. Thirdly, a new variable is used to
    
    
    
    memorize optimizations. Variational end is used to improve convergence speeds. Several experiments on standard data sets, such as Cancer, College, Asia and Alarm, are used to prove the advantages of SA-MMI-R proposed in the paper. The results indicated that the algorithm of Simulating Anneal with Restriction (SA-MMI-R) has more advantages than others.
    This paper discusses the parameter learning for Bayesian networks. The paper proposed a new algorithm to improve EM. Firstly, This algorithm divided the whole sample database into smaller blocks and deal with them respectively at E-Step. The algorithm composes their results outside the blocks. Secondly, an algorithm of Simulating Anneal is used to calculate Maximum. Several improvements are applied in algorithm, such as selection of initialization, neighborhood values and reiteration numbers. This paper also discusses the problem of Online Learning Parameter for Bayesian networks. Several experiments on standard data sets, such as Cancer, College, Asia and Alarm, are used to prove the advantages of improved EM proposed in the paper. The results indicated that the algorithm of improved EM has more advantages than standard EM.
    This paper discusses the inference and explanation of Bayesian networks. The paper discusses the basic metric of stochastic sampling algorithms and proposes a general stochastic sampling algorithm for Bayesian networks inference. This paper describes explanation of Bayesian networks from three ways, evidence explanation, inference explanation and explanation. This paper gives a detailed explanation of probability relationship.
    This paper applies the Bayesian networks in Flood Decision Supporting System. Three models based on Bayesian networks are proposed. Rainfall forecast model is presented for accordant rainfall junction conflux. Flood forecast model is presented for forecasting flood level and flux. Flood risk model is presented for analyzing risk and possible economic losing. The entire models are used for Flood Decision Supporting. In the end, the paper gives a particular explanation of Flood risk model for knowledge Discovery and decision-making
引文
[1]史忠植.知识发现.北京清华大学出版社.2000.
    [2]史忠植.高级人工智能.北京科学出版社.1998.
    [3]W. Klosgen, J.M. Zytkow. Knowledge Discovery in Database Terminology. In U.M Fayyad, G. Piatetsky-Shapiro, P. Smyth. R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press. Menlo Park. California. 1996. 573-592.
    [4]U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth. From Data Mining to Knowledge Discovery in Databases. AI Magazine. 1996. 17:37-54.
    [5]R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules. 20th Intl Conf. on Very Large Data Bases. Santiago, Chile. Sept. 1994. 487-499.
    [6]R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. Verkamo. Fast Discovery of Association Rules. Advances in Knowledge Discovery and Data Mining. Chapter 12, AAAI/MIT Press. 1995.
    [7]S.A. Sarabjot, A.B. David, G.H. John. EDM: A General Framework for Data Mining Based on Evidence Theory. DKE 1996. 18(3): 189-223.
    [8]S.A. Sarabjot, A.B. David, G.H. John, C.M. Shapcott. A High-Performance Data Mining Server. HPCN Europe. 1996. 907-908.
    [9]Wei-Min Shen, Bing Leng. A Metapattern-based Automated Discovery Loop for Integrated Data Mining-unsupervised Learning of Relational Patterns. Knowledge and Data Engineering. IEEE Transactions on. 1996. 8(6): 898-910.
    [10]G. Piatetsky-Shapiro, R. Brachman. T. Khabaza, W. Kloesgen, E. Simoudis. An Overview of Issues in Developing Industrial Data Mining and Knowledge Discovery Applications. In KDD-96 Conference Proceedings. AAAI Press. 1996.
    [11]G. Piatetsky-Shapiro. Data Mining and Knowledge Discovery in Business Databases. Communications of ACM. 1996. 39(11): 42-48.
    [12]J.P. Yoon, L. Kerschberg. A Framework for Knowledge Discovery and Evolution in Databases. In IEEE Transactions on Knowledge and Data Engineering. 1993. 5(10): 979-984.
    [13]Hongjun Lu; R. Setiono, Huan Liu. Effective Data Mining Using Neural Networks. Knowledge and Data Engineering. IEEE Transactions on. 1996. 8(6): 957-961.
    [14]D. Cheung, V. Ng, A. Fu. Efficient Mining of Association Rules in Distributed Database. IEEE Transaction on Knowledge and Data Engineering. 1996. 8: 911-922.
    [15]王珊.数据仓库技术与联机分析处理.北京科学出版社.1998.
    [16]杨炳儒.知识工程与知识发现.北京冶金工业出版社.2000.
    [17]V. Vapnik, S. Golowich. Support Vector Method for Function Approximation. Regression Estimation and Signal Processing. Advances in Neural Information Processing Systems.
    
    Cambridge, MA. MIT Press. 1997. 9: 281-287.
    [18]Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers. 1992.
    [19]J. Hopfield. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceeding of the National Academy of Sciences of the USA, 1982. 79: 2554-2588.
    [20]R. Agrawal, T. Imielinski, A. Swami. Mining Associations between Sets of Items in Large Databases. ACM SIGMOD Int'l Conf. on Management of Data. Washington D.C.. May 1993.
    [21]J.R. Quinlan. Generating Production Rules from Decision Trees. Proceedings of IJCAI-87. Milan, Tialy. 1987.
    [22]史忠植.智能主体与应用.北京科学出版社.2000.
    [23]D. Heckerman. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery. 1997. 1(1): 79-119.
    [24]史忠植.后基因组年代的生物信息学研究.中国青年学者生命科学学术讨论会-生物信息学研究与应用.1999.
    [25]K. Morik, K. Imho, P. Brockhausen, T. Joachims, U. Gather. Knowledge Discovery and Knowledge Validation in Intensive Care. Art. Int. Med. 2000. 19(3): 225-249.
    [26]U.M. Fayyad. Data Mining and Knowledge Discovery: Making Sense Out of Data. IEEE Expert 1996. 11(5): 20-25.
    [27]U.M. Fayyad, R. Uthurusamy, Data Mining and Knowledge Discovery in Databases (Introduction to the Special Section). CACM. 1996. 39(11): 24-26.
    [28]U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth. Knowledge Discovery and Data Mining. Towards a Unifying Framework. KDD 1996. 82-88.
    [29]H.J. George. Enhancements to the Data Mining Process. PhD Thesis. Computer Science Department. School of Engineering. Stanford University. March 1997.
    [30]R.J Brachman, T. Anand. The Process of Knowledge Discovery in Databases. Advances in Knowledge Discovery and Data Mining. 1996. 37-57.
    [31]E.H. Shortliffe. Computer Based Medical Consultation: MYCIN. American Elsevier. 1976.
    [32]G. Schafer. A Mathematical Theory of Evidence. NEW Jersey. Prinon University Press. 1976.
    [33]L.A. Zadeh. The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems. Fuzzy Sets and Systems. 1983. 2: 199-227.
    [34]G. F. Coope, E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning. 1992. 9(4): 309-347.
    [35]J. Pearl, Evidential Reasoning Using Stochastic Simulation of Causal Models. Artificial Intelligence. 1987. 32(2): 245-257.
    [36]J. Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference.
    
    Morgan Kaufmann, San Mateo, CA. 1988.
    [37]D.M. Chickering. Learning Equivalence Classes of Bayesian Networks Structure. In E. Horvitz, F. Jensen, ed. Proceeding of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA. Morgan Kaufmann Publishers. Inc.. 1996. 54-61.
    [38]D. Heckerman. Bayesian Networks for Knowledge Discovery. Advances in Knowledge Discovery and Data Mining. AAAI Press/MIT Press. 1996. 273-305.
    [39]D. Heckerman. A Bayesian Approach to Learning Causal Networks. Technical Report MSR-TR-95-04, Microsoft Research. 1995.
    [40]D. Heckerman. Decision-Theoretic Foundations for Causal Reasoning. Joumal of Artificial Intelligence Research. 1995. 3: 405-430.
    [41]D. Heckerman. A Tutorial on Learning With Bayesian Networks. Technical Report MSR-TR-95-06, Microsoft Research. 1995.
    [42]D. Heckerman. A Bayesian Approach to Causal Discovery. Technical Report MSR-TR-97-05, Microsoft Research. 1997.
    [43]E. Horvitz, J. Breese, D. Heckerman, D. Hovel, K. Rommelse. The Lumiere Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98). San Francisco, CA. Morgan Kaufmann Publishers. 1998. 256-265.
    [44]J. Locke. Microsoft Bayesian Networks Basics of Knowledge Engineering. Kindred Communications Troubleshooter Team Microsoft Support Technology. December 1999.
    [45]S.A. Musman, L.W. Chang, L.B. Booker. Application of a Real-Time Control Strategy for Bayesian Belief Networks to Ship Classification Problem Solving. INTL J. Pattern Recognition and Artificial Intellgence. 1993. 7(3): 513-526.
    [46]R. Fung, B. D. Favero. Applying Bayesian Networks to Information Retrieval. Comm. ACM. 1995. 38(3): 42-48.
    [47]C. Cristina, S. Abigail, K. VanLehn, M.J. Druzdzel. On-line Student Modeling for Coached Problem Solving Using Bayesian Networks. In Proceedings of the Sixth International Conference on User Modeling (UM-96). Vienna, New York. Springer Verlag. 1997. 231-242.
    [48]K.G. Schulze, R.N. Shelby, D.J. Treacy, M.C. Wintersgill. A Coached Learning Environment for Classical Newtonian Physics. In Proceedings of the 11th International Conference on College Teaching and Learning. Jacksonville, FL. April 2000.
    [49]B. Abramson. ARCOl: An Application of Belief Networks to the Oil Market. Proc. Conf. Uncertainty in Artificial Intelligence. 1991. 1: 1-8.
    [50]E. Horvitz, M. Barry. Display of Information for Time-critical Decision Making. Proc. Conf. Uncertainty in Artificial Intellgence. 1995. 296-305.
    [51]M. Morjaia, J. Rink, W. Smith, G. Klempner, C. Burns, J. Stein. Commercialization of EPRI's Generator Expert Monitoring System (GEMS). Expert System Application for the
    
    Electric Power Industry. 1993. Also: GE techs report GER-3790.
    [52]D. Heckerman, J. Breese, B. Nathwani. Toward Normative Expert System Ⅰ: The PATHFINDER Project. Methods of Information in Medicine. 1992. 31: 90-105.
    [53]M.A. Shwe, G.F. Cooper. An Empirical Analysis of Likelihood-weighting Simulation on a Large Multiply Connected Medical Belief Network. Computers and Biomedical Research. 1991. 24(5): 453-475.
    [54]M. Pradhan, G. Provan, B. Middleton, M. Henrion. Knowledge Engineering for Large Belief Networks. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94). San Francisco, CA. Morgan Kaufmann Publishers. 1994. 484-490.
    [55]胡玉胜,涂序彦,崔晓瑜,程乾生.基于贝叶斯网络的不确定性知识的推理方法,计算机集成制造系统.2001.7(12):65-68.
    [56]A. Dawid. Conditional Independence in Statistical Theory. SLAM Joural on Computing. 1979, 41: 1-31.
    [57]J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers. 1988.
    [58]S. Ferat. A Bayesian Network Approach to the Self-organization and Learning in Intelligent Agents. Dissertation. Blacksburg, University Libraries, Virginia Polytechnic Institute and State University. 2000.
    [59]D. Geiger, T. Verma, J. Pearl. Identifying Independence in Bayesian Networks. Networks. 1990, 20: 507-534.
    [60]P. Spirtes, C. Glymour, R. Scheines. Causation, Prediction, and Search. Lecture Notes in Statistics 81. Springer-Verlag. 1993.
    [61]P. Spirtes, C. Glymour, R. Scheines. An Algorithm for Fast Recovery of Sparse Causal Graphs. Social Science Computer Review. 1991. 9: 62-72.
    [62]S. Acid, D. Campos, L.M. et al. Fast Algorithms for Learning Simplified Graphical Models. Ⅱ Symposium on Artificial Intelligence. CIMAF99. Special Session on Distributions and Evolutionary Optimization. 1999. 425-331.
    [63]S. Acid, D. Campos, L.M. et al. Approximations of Causal Networks by Polytrees: an Empirical Study. In B. Bouchon-Meunier, editor. Advances in Intelligent Compiting, Lectures Notes in Computer Science 945. Springer-Verlag, 1995. 149-158.
    [64]J. Cheng, R. Greiner, J. Kelly, D.A. Bell, W. Liu. Learning Bayesian Networks from Data: An Information-Theory Based Approach. The Artificial Intelligence Journal. 2002. 137: 43-90.
    [65]J. Cheng, D.A. Bell, W. Liu. Learning Bayesian Networks from Data: An Efficient Approach Based on Information Theory. Tech. Rep. Department of Computer Science University of Alberta. 1998.
    [66]J. Cheng, D.A. Bell, W. Liu. Learning Bayesian Networks from Data: An Efficient
    
    Approach Based on Information Theory. In Proceedings of the Sixth ACM International Conference on Information and Knowledge Management. 1997.
    [67]D.M. Chickering, D. Geiger, D. Heckerman. Learning Bayesian Networks is NP-Hard. Microsoft Research Technical Report MSR-TR-94-17. 1994.
    [68]李刚.知识发现的图模型方法.中国科学院软件研究所.博士学位论文.2001.
    [69]D. Heckerman, D. Geiger, D.M. Chickering. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning. 1995. 20(3): 197-24.
    [70]D. Heckerman, E. H. Mamdani, P. Michael. Real-world Applications of Uncertain Reasoning. International Journal of Human Computer Studies. 1995. 42(6): 573-574.
    [71]G.E. Cooper, E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning. 1992. 9: 309-347.
    [72]D.M. Chickering, D. Geiger, D. Heckerman. Learning Bayesian Networks: Search Methods and Experimental Results. In Proceedings of Fifth Conference on Artificial Intelligence and Statistics. Ft, Lauderdale, FL. Society for Artificial Intelligence in Statistics. 1995. 112-128.
    [73]P. Larranaga, et al. Structure Learning of Bayesian Networks by Genetic Algorithms: A performance Analysis of Control Parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996. 18b(9): 912-926.
    [74]P. Larranaga, et al. Searching for the Best Ording in the Structure Learning of Bayesian Networks. IEEE Transactions on System, Man and Cybernetics. 1996. 26c(4): 487-493.
    [75]J. Suzuki, A Construction of Bayesian Networks from Databases Based on An MDL Principle. Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence. Washington D.C.. 1993. 266-273.
    [76]W. Lam, F. Bacchus. Using Causal Information and Local Measures to Learning Bayesian Networks. Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence. Washington D.C.. 1993. 243-250.
    [77]W. Lam. Alberto Maria Segre: A Distributed Learning Algorithm for Bayesian Inference Networks. TKDE. 2002. 14(1): 93-105.
    [78]M.L. Wong, W. Lam, K.S. Leung. Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999. 21(2): 174-178.
    [79]P. Sebastiani, M. Ramoni. Bayesian Inference with Missing Data Using Bound and Collapse. Technical Report KMi-TRo58. Knowledge Median Institute. The Open University. November 1997.
    [80]N. Friedman. The Bayesian Structural EM Algorithm. UAI 1998. 129-138.
    [81]N. Friedman, The Bayesian structural EM algorithm, in G.F. Cooper and S. Moral (Eds.). Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI'98). San Francisco, CA. Morgan Kaufmann. 1998.
    
    
    [82]D.J, Spiegelhalter, S.L, Lauritzen. Sequential Udating of Probabilities on Directed Graphical Structures Networks. 1990. 20: 579-605.
    [83]慕春棣,戴剑彬,叶俊.用于数据挖掘的贝叶斯网络.软件学报.2000.11(5):660-666.
    [84]J.L. Golmard, A. Mallet. Learning Probabilities in Causal Trees from Incomplete Databases. Revue Intelligence Artificielle. 1991. 5: 93-106.
    [85]S.L. Lauritzen. The EM Algorithm for Graphical Association Models with Missing Data. Technical Report TR-91-05. Department of Statistics, Aalborg University. 1991.
    [86]S.L. Lauritzen. The EM algorithm for Graphical Association Models with Missing Data. Computational Statistics and Data Analysis. 1995. 19: 191-201.
    [87]K.G. Olesen, S.L. Lauritzen, F.V. Jensen. HUGIN: A System for Creating Adaptive Causal Probabilistic Networks. In Proceedings of the Eighth Conference on Uncertainty in AI (UAI'92). Stanford, CA. Morgan Kaufmann. 1992.
    [88]D.J. Spiegelhalter, R.G. Cowell. Learning in Probabilistic Expert Systems. In J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith (Eds.). Bayesian Statistics 4. 1992.
    [89]D. Heckerman. A Tutorial on Learning Bayesian Networks. Technical Report MSR-TR-95-06. Microsoft Research. 1995.
    [90]M. Ramoni, P. Sebastiani. Learning Bayesian Networks from Incomplete Data. Technical Report KMi-TR-43. Knowledge Median Institute, The Open University. February 1997.
    [91]N. Murata, K. Muller, A. Ziehe, S. Amari. Adaptive On-line Learning in Changing Enviroments. Advances in Neural Information Processing Systems (NIPS). MIT Press. 1996. 599-605.
    [92]E. Bauer, D. Koller, Y. Singer. Update Rules for Parameter Estimation in Bayesian Networks. Uncertainty in Artificial Intelligence (UAI). 1997. 3-13.
    [93]I. Cohenl, A. Bronstein, F.G. Cozman. Online Learning of Bayesian Network Parameters. Internet Systems and Storage Laboratory HP Laboratories Palo Alto HPL-2001-55 (R.1). June 5th. 2001.
    [94]M. Henrion. Propagating Uncertainty in Bayesian Networks by Probabilistic Logic Sampling. In Uncertainty in Artificial Intelligence 2. Eds. J. Lemmer, L. Kanai. New York. Elsevier Science. 1988. 149-163.
    [95]M. Ramoni, P. Sebastiani. Learning Bayesian Networks from Incomplete Databases. In Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers. 1997.
    [96]B. Thiesson, C. Meek, D. Heckerman. Accelerating EM for Large Databases. Technical Report MSR-TR-99-31. Microsoft Research. Redmond, WA. 2001.
    [97]P. Bradley, U. Fayyad, C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Database. Tech. Rep. MSR-TR-98-35. Microsofe Research. 1998.
    [98]A. Moore. Very fast EM-based Mixture Model Clustering Using Multi resolution Kd-tree. In M.S Kearns, S.A. Solla, D.A. Cohn. Advances in Neural Information Processing
    
    Systems 11. Proceedings of the 1998 Conference. MIT Press. 1999. 543-549.
    [99]A.M. Callum, K. Nigam, L.H. Ungar. Efficient Clustering of High-dimensional Data Sets with Application to Reference Matching. In R. Ramakrishnan, S. stolfo. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2000. 169-178.
    [100]A.P. Dempster, N. Laird, D.B. Rubin. Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society. Series B. 1977. 39: 1-38.
    [101]X.L. Meng, D.B. Rubin. Maximum likelihood Estimation Via the ECM Algorithm: A General Fromework. Biometrika. 1993. 80(2): 267-278.
    [102]X.L. Meng, D.D. Van. The EM Algorithm: An old Folksong Sung to a Fast New Tune. Journal of the Royal Statistical Society. Series B. 1997. 59:511-567.
    [103]T.A. Louis. Finding the Observed Information Matrix when Using the EM Algorithm. Journal of the Royal Statistical Society. Series B. 1992. 44(2): 226-233.
    [104]I. Meilijison. A Fast Improvement to the EM Algorithm on its Own Terms. Journal of the Rouyal Statistical Society. Series B. 1989. 51(1): 127-138.
    [105]M. Jamshidian, R.L. Jennrich. Conjugate Gradient Acceleration of the EM Algorithm. Journal of the American Statistical Association. 1993. 221-228.
    [106]B. Thiesson. Accelerated Quantification of Bayesian Networks with Incomplete Data. In U.M. Fayyad, R. Uthurusamy. Proceedings of First International Conference on Knowledeg Discovery and Data Mining. AAAI Press. 1995. 306-311.
    [107]R. Neal, G. Hinton. Aview of the EM Algorithm that Justifies Incremental, Sparse, and other Variants. In M. Jordan. Learning in Graphical Models. Kluwer Academic Publishers. The Netherlands. 1998. 355-371.
    [108]王凌,郑大钟.基于Cauchy和Gaussian分布状态发生器的模拟退火算法.清华大学学报(自然科学版).2000,40(9):109-112.
    [109]D. Spiegelhalter, S. Lauritzen. Sequential Updating of Conditional Probabilities on Directed Graphical Structures. Networks. 1990. 20: 579-605.
    [110]E. Bauer, D. Koller, Y. Singer. Update Rules for Parameter Estimation in Bayesian Networks. Uncertainty in Artificial Intelligence (UAI). 1997. 3-13.
    [111]B. Xavier, K. Daphne. Approximate Learning of Dynamic Models In Advances In Neural Information Processing Systems (NIPS-11). Denver, Colorado. December 1998. 396-402.
    [112]I. Cohenl, A. Bronstein, G, Fabio. Online Learning of Bayesian Network Parameters Cozman2 Internet Systems and Storage Laboratory. HP Laboratories Palo Alto HPL-2001-55 (R.1). June 5th. 2001.
    [113]P. Malcolm, P. Gregory, M. Blackford, H, Henrion. Knowledge Engineering for Large Belief Networks. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94). San Francisco, CA. Morgan Kaufmann Publishers. 1994.
    
    484-490.
    [114]G.F. Cooper. The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks. Artificial Intelligence. 1990. 42(2-3): 393-405.
    [115]D. Paul, L. Michael. Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard. Artificial Intelligence. 1993. 60(1): 141-153.
    [116]D. Ross. Shachter, A.P. Mark. Simulation Approaches to General Probabilistic Inference on Belief Networks. In Uncertainty in Artificial Intelligence 5. New York, N.Y. Elsevier Science Publishing Company Inc. 1989. 221-231.
    [117]F. Robert, K.C. Chang. Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks. In Uncertainty in Artificial Intelligence 5. New York, N.Y.. Elsevier Science Publishing Company. Inc.. 1989. 209-219.
    [118]F. Robert, B.D. Favero. Backward Simulation in Bayesian Networks. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94). San Francisco, CA. Morgan Kaufmann Publishers. 1994. 227-234.
    [119]S. Geman, D. Geman. Stochastic Relaxations, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984. 6(6): 721-742.
    [120]W. Gilks, S. Richardson, D. Spiegeihaiter. Markov Chain Monte Carlo in Practice. Chapman and Hall. 1996.
    [121]D. MacKay. Intro to Monte Carlo Methods. In I.J. Michael, editor. Learning in Graphical Models. The MIT Press. Cambridge. Massachusetts. 1998.
    [122]J. Cheng. Efficient Stochastic Sampling Algorithms for Bayesian Networks. Ph.D. Dissertation. School of Information Sciences. University of Pittsburgh. 2001.
    [123]E. Santos. On the Generation of Alternative Explanations with Implications for Belief Revision. In Proceedings of 7th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers. San Mateo, CA. 1991. 339-347.
    [124]S.E. Shimony. A Probabilistic Framework for Explanation. PhD thesis. Department of Computer Science, Brown University. Technical Report CS-91-57. 1991.
    [125]P. Sember, I. Zukerman. Strategies for Generation Micro Explanations for Bayesian Belief Networks. In Uncertainty in Artificial Intelligence 5. Elsevier Science Publishers. 1990. 295-302.
    [126]C. Elsaesser. Verbal Expressions for Probability Updates. How Much More Probable is Much More Probable. In L.N. Kanai, T.S.Levitt, J.F. Lemmer, editors. Uncertainty in Artificial Intelligence 5. Elsevier Science Publishers. Amsterdam. 1990. 287-400.
    [127]H.J. Suermondt. Explanation in Bayesian Belief Networks. Ph.D. thesis. Dept. of Computer Science, Stanford University. 1992. STAN-CS-92-1417.
    [128]H.J. Suermondt, G. Cooper. An Evaluation of Explanations of Probabilistic Inference. Computers and Biomedical Research. 1993. 26: 242-254.
    
    
    [129]M. Druzdzel. Probabilistic Reasoning in Decision Support Systems: From Computation to Common Sense. Ph.D. thesis. Department of Engineering and Public Policy. Carnegie Mellon University. 1993.
    [130]M. Druzdzel and M. Henrion. Using Scenarios to Explain Probabilistic Inference. In Working Notes of the AAAI-90 Workshop on Explanation. Boston, MA. July 1990. 133-141.
    [131]M. Henrion and M. Druzdzel. Qualitative Propagation and Scenario-based Approaches to Explanation of Probabilistic Reasoning. In Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence. 1990. 17-32.
    [132]S.L. Dittmer, F.V. Jensen. Tools for Explanation in Bayesian Networks with Application to An Agricultural Problem. In Proceedings of the 1st European Conference for Information Technology in Agriculture. Copenhagen, Denmark. 1997.
    [133]M. Druzdzel, Verbal Uncertainty Expressions: Literature Review. Technical Report. Carnegie Mellon University. 1989.
    [134]M. Druzdzel. Qualitative Verbal Explanations in Bayesian Belief Networks. In Artificial Intelligence and Simulation of Behaviour Quarterly.Special Issue on Bayesian Belief Networks. 1996. 94: 43-54.
    [135]魏一鸣.金菊良等.洪水灾害风险管理理论.北京科学出版社.2002.
    [136]苑希民等.神经网络和遗传算法在水科学领域的应用.中国水利水电出版社.2002.
    [137]水利部长江水利委员会水文局.1998年长江洪水及水文检测预报.中国水利水电出版社.2000.
    [138]国家防汛指挥系统工程防洪工程数据库设计报告,内部材料,北京勘测设计研究院.
    [139]R. Krzysztofowicz. Why should a Forecaster and a Decision Maker Use Bayes Theorem. Mon. Wea. Rev.. 1983. 19(2): 327-336.
    [140]L. Duckstein. Bayesian Forecasting of Hydrologic Variables Under Changing Climatology. IAHS Publications. 1987. 168: 301-304.
    [141]R. Krzysztofowicz. Bayesian Decision Principle for Flood Warnings. Optimizing the Resources for Water Management. Proceedings of the 17th Annual National Conference, ASCE, New York. 1990. 454-455.
    [142]R. Krzysztofowicz. H.D. Herr. Hydrologic Uncertainty Processor for Probabilistic River Stage Forecasting: Precipitation-dependent Model. J. Hydrology. 2001. 249: 46-68.
    [143]L.M. Berliner. A. Levine, D.J. Shea. Bayesian Climate Change Assessment. J. Climate. 2000 13: 3805-3820.
    [144]L.M. Berliner, C.K. Wikle, N. Cressie. Long-lead Prediction of Pacific SSTs Via Bayesian Dynamic Modeling. J. Climate. 2000. 13: 3953-3968.
    [145]B. Rajagopalan, U. Lall, S.E. Zebiak. Categorical Climate Forecasts Through Regularization and Optimal Combination of Multiple GCM Ensembles. CLIVAR Scientific Issues. International CLIVAR Project Office. Exchanges. Newsletter of the
    
    Climate Variability and Predictability Program (CLIVAR). 2002.
    [146]K. Hewitt, I. Burton. The Hazard of a Place: A Regional Ecology of Damaging Events. University of Toronto Press. 1971.
    [147]J.P. Willian, A. Arthur. A National Hazard Risk Assessment and Public Policy. Anticipating the Unexpected. Springer-Verlag. 1982.
    [148]王劲峰等.中国自然灾害影响评价方法研究.北京中国科技出版社.1993.
    [149]刘燕华等.中国近期自然火害程度的区域特征.地理研究.1995.14(3):14-25.
    [150]R. Chen, K. Sivakumar, H. Kargupta. Distributed Web Mining Using Bayesian Networks from Multiple Data Streams. Data Mining. ICDM2001. Proceedings IEEE International Conference on. 2001. 75-82.
    [151]ZHANG Shao-zhong, DING Hua, WANG Xiu-kun, LIU Hong-bo. Research and Application of Structure Learning Algorithm for Bayesian Networks from Distributed Data. Machine Learning and Cybernetics. Proceedings of International Conference on. 2003. 3: 1667-1671.
    [152]周明,孙树栋.遗传算法原理及应用.北京国防工业出版社.2002.
    [153]黄解军,潘和平,万幼川.数据挖掘的体系框架研究.计算机应用研究.2003.5:1-3.
    [154]杨炳儒等.KDD中因果关联规则的评价方法.软件学报.2002.13(6):1142-1147.
    [155]樊兴华,张勤,黄席樾.可能性传播图模型的专家知识获取方法.计算机科学.2001.28(11):53-56.
    [156]曾勇,唐小我,郑维敏.组合预测贝叶斯模型研究.管理科学学报.1999.2(3):14-21.
    [157]任明仑,杨善林,朱卫东.智能决策支持系统:研究现状与挑战.系统工程学报.2002.17(5):430-440.
    [158]吉根林,孙志挥.数据挖掘技术.中国图象图形学报.2001.6(A8):715-721.
    [159]马江洪,张文修,徐宗本.数据挖掘与数据库知识发现统计学的观点.工程数学学报.2002.19(2):1-13.
    [160]许兆新,周双峨,都燕玲.决策支持系统相关技术综述.计算机应用研究,2001.2:35-39.
    [161]林士敏,王双成,陆玉昌.Bayesian方法的计算学习机制和问题求解.清华大学学报自然科学版.2000.40(9):61-64.
    [162]李伟生,王宝树.基于贝叶斯网络的态势评估.系统工程与电子技术.2003.25(4):80-83.
    [163]王天树,郑南宁,袁泽剑.机器智能与模式识别研究中的统计学习方法.自动化学报.2002.28:103-116.
    [164]王飞,刘大有,卢奕男,薛万欣.Bayesian网中的独立关系.计算机科学 2001.28(12):33-36.
    [165]郑忠国,孙丽丽.带有反馈的因果模型中的独立性识别.应用数学学报.2000.23(2):299-310.
    [166]詹原瑞,谢秋平,李雪.贝叶斯网络在因果图中的应用.管理工程学报.2003.17(2):
    
    118-121.
    [167]董雁适,程翼宇,潘云鹤.基于逐步条件相关性分析的因果关系发现方法.模式识别与人工智能.2002.15(4):478-484.
    [168]王君圣,李敏强.基于数据库信息构建贝叶斯网络的GA方法.系统工程与电子技.2000.22(9):54-57.
    [169]王玮,蔡莲红.贝叶斯网络拓扑结构确定方法的研究.小型微型计算机系统.2002.23(4):435-437.
    [170]王玮,陈恩红,王煦法.基于贝叶斯方法的知识发现.中国科学技术大学学报.2000.30(4):467-471.
    [171]周颜军,王双成,王辉.基于贝叶斯网络的分类器研究.东北师大学报自然科学版.2003.35(2):21-27.
    [172]郑建军,刘炜,刘玉树,王蕾.基于粗集的贝叶斯分类器算法.北京理工大学学报.2002.23(1):83-87.
    [173]王玮,陈恩红,王煦法.基于贝叶斯方法的知识发现.小型微型计算机系统.2000.21(7):703-705.
    [174]张忠玉,刘惟一,张玉琢.Bayesian网的信息熵.云南大学学报自然科学版.2002.24(3):183-185.
    [175]刘洁,陈小平,蔡庆生,范焱.不确定信息的认知结构表示推理和学.软件学报.2002.13(4):649-651.
    [176]田凤占,张宏伟,陆玉昌,石纯一.多模块贝叶斯网络中推理的简化.计算机研究与发展.2003.40(8):1230-1237.
    [177]汪荣贵,张佑生,彭青松.分组样本下Bayes网络条件概率的学习算法.小型微型计算机系统.2002.23(6):687-690.
    [178]杨欣斌,孙京浩,黄道.基于Bayesian网络的缺损数据处理方法.华东理工大学学报.2002.28:41-45.
    [179]刘大有,王飞,卢奕南,薛万欣,王松昕.基于遗传算法的Bayesian网结构学习研究.计算机研究与发展.2001.38(8):916-922.
    [180]王双成,林士敏,陆玉昌.用Bayesian网络处理具有不完整数据的问题分析.清华大学学报自然科学版.2000.40(9):65-68.
    [181]赵卫东,戴伟辉,蔡斌.遗传算法在决策表连续属性离散化中的应用研究.系统工程理论与实践.2003.1:62-68.
    [182]王飞,刘大有,薛万欣.基于遗传算法的Bayesian网中连续变量离散化的研究.计算机学报.2002.25(8):794-800.
    [183]冀俊忠,刘椿年,江川,杨文盛.贝叶斯网及其概率推理在智能教学中的应用.北京工业大学学报.2002.28(3):333-357.
    [184]林士敏,田凤占,陆玉昌.贝叶斯网络的建造及其在数据采掘中的应用.清华大学学报自然科学版.2001.41(1):49-52.
    [185]宫秀军,史忠植.基于Bayes潜在语义模型的半监督Web挖掘.软件学报.2002.
    
    13(8):1508-1515.
    [186]姜宁,史忠植.文本聚类中的贝叶斯后验模型选择方法.计算机研究与发展.2002.39(5):580-587.
    [187]欧海涛,张卫东,许晓鸣.基于RMM和贝叶斯学习的城市交通多智能体系统.控制与决策.2001.16(3):291-296.
    [188]阮彤,冯东雷,李京.基于贝叶斯网络的信息过滤模型研究.计算机研究与发展.2002.39(12) 1564-1571.
    [189]霍利民,朱永利,范高锋,刘军,苏海锋.一种基于贝叶斯网络的电力系统可靠性评估新方法.电力系统自动化.2003.27(5):36-40.
    [190]李俭川,陶俊勇,胡莺庆,温熙森.基于贝叶斯网络的智能故障诊断方法.中国惯性技术学报.2002.10(4):24-29.
    [191]欧洁,林守勋.基于贝叶斯网络模型的信息检索.微电子学与计算机.2003.5:83-87.
    [192]刘启元,张聪,沈一栋.信度网推理方法及问题.计算机科学.2001.28(1):74-77.
    [193]邓勇,施文康,陈良州.基于模型诊断的贝叶斯解释及应用.上海交通大学学报.2003.37(1):5-9.
    [194]Bo Thiesson, Christopher Meek, David Heckerman. Accelerating EM for Large Databases. Machine Learning. 2001. 45(3): 279-299.
    [195]N. Friedman, D. Koller. Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks. Machine Learning. 2002. 50(1-2): 95-125.
    [196]D.M. Chickering, C. Meek. Finding Optimal Bayesian Networks. UAI 2002. 94-102
    [197]C. Lacave, J.D. Francisco. Areview of Explanation Methods for Bayesian Networks. Dept. Inteligencia Artificial. UNED, Madrid. 2001.
    [198]Fengzhan Tian, Hongwei Zhang; Yuchang Lu. Learning Bayesian Networks From Incomplete Data Based on EMI Method. Data Mining. 2003. ICDM 2003. Third IEEE International Conference on. Nov. 2003. 19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700