抑癌基因单核苷酸多态性与鼻咽癌遗传易感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     鼻咽癌是我国的高发肿瘤,也是我区高发肿瘤之一,其病因包括EB病毒的感染、化学致癌因素及遗传易感因素等,然而在同一地区同样的暴露条件下的不同人群并不都患肿瘤,其中必然存在个体差异,即遗传易感性。单核苷酸多态性(Single nucleotide Polymorphisms, SNPs)是人类可遗传的变异中最常见的一种,占所有已知多态性的90%以上,是近年来肿瘤研究热点之一。本项目的主要目的是研究相关抑癌基因的单核苷酸多态性与鼻咽癌的发生发展的关系,为鼻咽癌的诊治提供相关理论基础。选择与鼻咽癌相关的多个抑癌基因,包括p53、p16及Rb基因,通过对鼻咽癌患者与正常对照人群相关抑癌基因重要的SNP位点进行对比研究,期望阐明遗传易感性在鼻咽癌发生发展中的作用,也可以应用于鼻咽癌高危人群的筛选,为鼻咽癌的早期干预提供理论基础。
     本研究计划对鼻咽癌与正常对照人群p53、p16及Rb基因6个重要的SNP位点进行对比研究,期望阐明相关抑癌基因p53、p16及Rb基因在广西鼻咽癌发生发展过程中的作用及其相互关系,为进一步开发基因芯片实现高通量检测打下基础,对鼻咽癌的诊治提供新的思路,进一步降低鼻咽癌发生率和死亡率,以更好地为广大患者服务。
     材料与方法
     1.样本与资料的收集
     应用病例-对照研究的方法在广西南宁人群中,收集了2010年6月到2011年4月临床资料完整的在广西医科大学附属肿瘤医院放疗科住院患者的血液标本200例,男性100例,女性100例;正常对照组200例:男性100例,女性100例。两组人群血液标本都来源于广西南宁,均为南宁本地居民。鼻咽癌组和对照人群组界定标准:鼻咽癌组:经临床和病理学均确诊为癌,每位患者住院之前均未接受过化学治疗、放射治疗或生物治疗等治疗措施的干预。对照人群组:来源于同期身体健康的志愿献血者。
     2.实验方法
     用试剂盒法提取得到血液的DNA,经过定量分析后置于-20℃冰箱保存备用。用聚合酶链式反应-限制性片段长度多态性方法(polymerase chain reaction-restriction fragment length polymorphism, PCR-RFLP)及测序方法分析基因多态性及其基因突变分布频率。
     结果
     本实验研究主要对常见的抑癌基因的多态性与鼻咽癌的遗传易感性的关系进行的初步研究,所得的结果如下:
     1.p53、p16及Rb基因多态性与鼻咽癌遗传易感性的关联分析
     1.1 p53基因
     1.1.1在鼻咽癌组与对照人群组p53基因rs 117562731位点携带变异等位基因的频率分别为30.0%(60/200)和8.0%(16/200)。两组之间基因型分布比较,差异有统计学意义(χ2=31.449,P=0.000)。
     1.1.2在鼻咽癌组与对照人群的p53基因rs 114831472位点携带变异等位基因的频率分别为12.5%(25/200)和7.5%(15/200)。两组之间基因分布比较,差异无统计学意义(χ2=2.778,P=0.096)。
     1.2 p16基因
     1.2.1在鼻咽癌组与对照人群的p16基因rs 80235406位点携带变异等位基因的频率分别为26.5%(53/200)和9.0%(18/200)。两组之间基因分布比较,差异有统计学意义(χ2=20.977,P=0.000)。
     1.2.2在鼻咽癌组与对照人群的p16基因rs 121434309位点携带变异等位基因的频率分别为22.5%(45/200)和8.5%(17/200)。两组之间基因分布比较,差异有统计学意义(χ2=14.965,P=0.000)。
     1.3 Rb基因
     1.3.1在鼻咽癌组与对照人群的Rb基因rs 117538467位点携带变异等位基因的频率分别为34.5%(69/200)和11.5%(23/200)。两组之间基因分布比较,差异有统计学意义(χ2=29.870,P=0.000)。
     1.3.2在鼻咽癌组与对照人群的Rb基因rs 117538467位点携带变异等位基因的频率分别为28.0%(56/200)和12.5%(25/200)。两组之间基因分布比较,差异有统计学意义(χ2=14.877,P=0.000)。
     2.p53、p16及Rb基因多态性与鼻咽癌临床表型的关联研究
     2.1与AA基因型比较,p53基因rs114831472位点的GG基因型的频率在T1组中高于T2-4组(7.9% VS 1.2%),差异有显著性,提示GG基因型与局部侵袭(T分期)有显著性关联(p=0.017)。
     p53基因rs117562731 SNP位点CT基因型的频率与CC基因型频率比较,在M1组中高于Mo组(44.4% VS 15.7%),差异有显著性,提示CT基因型与远处转移(M分期)有显著性关联(p=0.030)。2.2 p16基因rs80235406 SNP位点TT基因型的频率与CC基因型频率比较,在No-1组中明显低于N2-N3组(1.6% VS 9.4%),差异有显著性,说明TT基因型与淋巴结转移(N分期)有显著性关联(p=0.011)。
     p16基因rs80235406 SNP位点TT基因型的频率与CC基因型频率比较,在Mo组中明显低于M1组(3.1% VS 33.3%),p16基因rs121434309 SNP位点GG基因型的频率与AA基因型频率比较,在M1组中高于Mo组(22.2% VS 2.1%),差异有显著性,说明这两个基因型与远处转移(M分期)均有显著性关联(p=0.000和p=0.001)。2.3 Rb基因rs117538467 SNP位点GG基因型的频率与CC基因型频率比较,在M0组中明显低于M1组(4.2% VS 33.3%),Rb基因rs117209587 SNP位点GG基因型的频率与AA基因型频率比较,在M1组中高于Mo组(22.2% VS 3.1%),差异有显著性,说明这两个基因型与远处转移(M分期)均有显著性关联(p=0.023和p=0.002)。
     结论
     1.鼻咽癌组与正常对照人群的p53基因rs 114831472位点基因突变与分布无明显差异,说明p53基因rs 114831472位点基因突变与鼻咽癌的发生无显著相关性。
     2.鼻咽癌组与正常对照人群的p53基因rs 117562731位点基因突变与分布有明显差异,说明p53基因rs 117562731位点基因突变与鼻咽癌的发生有显著相关性。
     3.鼻咽癌组与正常对照人群的p16基因rs 80235406位点和rs121434309位点基因突变与分布有明显差异,说明p16基因的两个位点基因突变与鼻咽癌的发生有显著相关性。
     4.鼻咽癌组与对照人群的Rb基因rs 117538467位点和rs 117538467位点基因突变与分布有明显差异,说明Rb基因的两个位点基因突变与鼻咽癌的发生有显著相关性。
     5.p53、p16及Rb基因多态性与鼻咽癌临床表型及疾病进展有显著相关性。
Background and Objectives
     Nasopharyngeal carcinoma is the high incidence of cancer in China and is one of the high incidence of tumors in Guangxi. Nasopharyngeal carcinoma were caused by the Epstein-Barr virus infection, chemical carcinogens and genetic susceptibility factors.However, the different groups of people in the same area and the same exposure conditions are not suffered from cancer, which there are differences in individuals in genetic susceptibility.Single nucleotide polymorphism (SNP) is the most common form of human genetic variation, accounting for more than 90% of all known polymorphisms,which is research focus of the tumor in recent years.The main purpose of this project is study the relations between tumor suppressor gene single nucleotide polymorphisms and nasopharyngeal cancer occurrence and developments,to provide relevant theoretical basis for the diagnosis and treatment of nasopharyngeal carcinoma. Some tumor suppressor genes were selected, including p53, p16 and Rb. Related tumor-suppressor genes SNP site were studied in Nasopharyngeal carcinoma patients and Control group.The role of genetic susceptibility were expected to clarify in nasopharyngeal carcinoma occurrence and development,which can also be used for the screening the high risk group and provide a theoretical basis for early intervention of nasopharyngeal carcinoma.
     In this study,6 SNP sites of p53, p16 and Rb were studied in Nasopharyngeal carcinoma patients and Control group. The role and the mutual relationship were expected between the related tumor suppressor gene p53,p16 and Rb and Nasopharyngeal carcinoma occurrence and development in Guangxi. To lay the foundation for the further development of gene chips for high-throughput detection,to provide new ideas diagnosis and treatment of nasopharyngeal carcinoma,to further reduce the incidence and mortality of nasopharyngeal carcinoma and in order to better for the patients.
     Materials and Methods
     1.Sample and data collection
     A total of 200 NPC blood samples(100 cases of men and 100 cases of women) were selected from June 2010 to April 2011 in Affiliated Tumor Hospital of Guangxi Medical University, Department of Radiation Oncology,and clinical data were collected. A total of 200 Control group blood samples were selected from healthy voluntary blood donors(100 cases of men and 100 cases of women).The two group population's blood samples are derived from Nanning,Guangxi. The define standard of Nasopharyngeal carcinoma group and control group:Nasopharyngeal carcinoma groups:are diagnosed by the Clinical and Pathological;each of the patients were not received chemotherapy, radiation therapy or biological treatment of intervention treatment measures before hospitalization. Control group:from the healthy volunteer donors.
     2. Methads
     Genomic DNA were extracted from blood leukocytes of all participants,which be placed in a-20℃refrigerator after quantitative analysis. To observe the gene polymorphism and genetic mutation frequency distribution in the two groups, the SNP site were analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing methods.
     Results
     The experimental research focus on the relationship between the common tumor-suppressor gene polymorphism and the genetic susceptibility of nasopharyngeal carcinoma.The results as follows:
     1. p53、p16 and Rb gene polymorphism and the genetic susceptibility of nasopharyngeal carcinoma
     1.1 p53 gene
     1.1.1 Among the NPC group and Control group, the genetic mutation rate of SNP locus rs117562731 of p53 were 20.0%(40/200) and 7.0%(14/200) respectively. The allele and genotype frequency had significant difference between the patients with the normal population(x2=2.933, p=0.402).
     1.1.2 Among the NPC group and Control group, the genetic mutation rate of SNP locus rs114831472 of p53 gene were 12.5%(25/200) and 7.5%(15/200) respectively. The allele and genotype frequency had no significant difference between the patients with the normal population (χ2=2.933,P=0.402).
     1.2 p16 gene
     1.2.1 The Nasopharyngeal carcinoma group and Control group, the genetic mutation rate of SNP site rs80235406 of p16 gene were 26.5% (53/200) and 9.0%(18/200) respectively. The allele and genotype frequency had significant difference between the patients with the normal population(χ2=20.977, P=0.000).
     1.2.2 The Nasopharyngeal carcinoma group and Control group, the genetic mutation rate of SNP site rs 121434309 of p16 gene were 22.5%(45/200) and 8.5%(17/200) respectively. The allele and genotype frequency had significant difference between the patients with the normal population(χ2=14.965, P=0.000).
     1.3 Rb gene
     1.3.1 The Nasopharyngeal carcinoma group and Control group, the genetic mutation rate of SNP site rs 117538467 of Rb gene were 34.5%(69/200) and 11.5%(23/200) respectively. The allele and genotype frequency had significant difference between the patients with the normal population(x2=29.870, P=0.000).
     1.3.2 The Nasopharyngeal carcinoma group and Control group, the genetic mutation rate of SNP site rs 117538467 of Rb gene were 28.0%(56/200) and 12.5%(25/200)respectively. The allele and genotype frequency had significant difference between the patients with the normal population(χ2=14.877, P=0.000).
     2. p53、p16 and Rb gene and NPC clinical phenotypes
     We analyzed the distribution of p53,p16 and Rb gene genotypes among difference clinical characteristics and assessed the relationship between these gene polymorphism and clinical and characteristics in 200 NPC patients.
     2.1 We found a significant associated between the p53 gene SNP locus rs114831472 GG genotype frequency and primary tumor T stages. (GG versus AA,7.9% VS 1.2%,p=0.017). The significant associated between the p53 gene SNP locus rs117562731 CT genotype frequency and distant metastasis (M stage). (CT versus CC, 44.4% VS 15.7%,p=0.030).
     2.2 The p16 gene SNP locus rs80235406 TT polymorphism had significant difference with Lymph node metastasis (N stage)(TT versus CC,1.6% VS 9.4%,p=0.011).
     The p16 gene SNP locus rs80235406 TT and rs121434309 GG polymorphism had significant difference with distant metastasis (M stage). (TT versus CC,3.1% VS 33.3%,p=0.000; GG versus AA,22.2% VS2.1%,p=0.001).
     2.3 The Rb gene SNP locus rs117538467 GG and rs117209587 GG polymorphism had significant difference with distant metastasis (M stage). (GG versus CC,4.2% VS 33.3%,p=0.023; GG versus AA,22.2% VS3.1%,p=0.002).
     Conclusions
     1. Among the NPC group and Control group, the genetic mutation and distribution of SNP locus rs114831472 of p53 gene had no significant difference between the patients with the normal population. The result indicates that the SNP locus rs114831472 of p53 gene polymorphism is not significantly associated with Nasopharyngeal carcinoma.
     2. Among the NPC group and Control group, the genetic mutation and distribution of SNP locus rs117562731 of p53 gene had significant difference between the patients with the normal population. The result indicates that the SNP locus rs117562731 of p53 gene polymorphism is significantly associated with Nasopharyngeal carcinoma.
     3. Among the NPC group and Control group, the genetic mutation and distribution of SNP locus rs80235406 and rs121434309 of p16 gene had significant difference between the patients and the normal population. The result indicates that the SNP locus rs80235406 and rs 121434309 of pi6 gene polymorphism is significantly associated with Nasopharyngeal carcinoma.
     4. Among the NPC group and Control group, the genetic mutation and distribution of SNP locus rs117538467 and rs117538467 of Rb gene had significant difference between the patients and the normal population. The result indicates that the SNP locus rs117538467 and rs117538467 of Rb gene polymorphism is significantly associated with Nasopharyngeal carcinoma.
     5. The p53, p16 and Rb genetic polymorphism had significant difference with clinical phenotype and progression of nasopharyngeal carcinoma.
引文
[1]Shanmugaratnam K,Sobin L H,Barnes L,et al.1991 World Health Organization histological classification of tumors. Histological typing of tumors of the upper respiratory tract and ear,2nd edn.springer-Verlag,Berlin,p32-33.
    [2]Chan J K C,Bray F,McCarron P,et al.2005 Nasopharyngeal carcinoma. In:Barnes L,Eveson J,Reichart et al.(eds) World Health Organization histological classification of tumors.Pathology and genetics of head and neck tumors.Lyon,France,IARC Press,p87-89.
    [3]殷蔚伯,余子豪,徐国镇,等.编著.肿瘤放射治疗学.第四版.北京:中国协和大学出版社2008,443-449.
    [4]Huang D P1991 Epidemiology and aetiology.In:Van Hasselt C A,Gibb A G (eds) Nasopharyngeal carcinoma.The Chinese Free Press,Hong Kong,p23-35.
    [5]Vasef M A,Ferlito A,Weiss L M 1997 Nasopharyngeal carcinoma with emphasis on its relationship to Epstein-Barr virus.Ann Otol Rhinol Laryngol 106:348-356.
    [6]Raab-Traub N 2002 Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12:431-441.
    [7]Henderson B E,Louie E,Jing S et al.1976 Risk factors associated with Nasopharyngeal carcinoma.N Engl J Med 295:1101-1106.
    [8]Zeng Y,Zhang L G,Li H Y et al.1982 Serological mass survey for early detection of Nasopharyngeal carcinomain Wuzhou City,China.Int J cancer 29:139-141.
    [9]De-Vaithaire F,Sancho-Garnier H,de-The H et al.1988 Prognostic value of EBV markers in the clinical management of Nasopharyngeal carcinomain(NPC):a multicenter follow-up study.Int J Cancer 42:176-181.
    [10]Young L S,Dawson C W,Clark D et al.1988 Epstein-Barr virus gene expression in Nasopharyngeal carcinomain.J Gen Virol 69:1051-1065.
    [11]Gasmi J,Bachouchi M,Cvitkovic E et al.1990 Nasopharyngeal carcinomain:a medical oncology viewpoint:the Gustave Roussy experience.Ann Oncol 1:245-253.
    [12]Feinmesser R,Miyazaki I,Chueng R et al.1992 Diagnosis of Nasopharyngeal carcinomain by fine-needle aspiration. N Engl J Med 326:17-21.
    [13]Tam J S 1991 Epstein-Barr virus serologic markers.In:van C A,Gibb A G(eds) Nasopharyngeal carcinomain.The Chinese Free Press, Hong Kong,p147-156.
    [14]朱广迎,编著.放射肿瘤学.第二版.北京:科学技术文献出版社2007,231-232.
    [15]Marks JE,Philips JL,Menck HR.The National Cancer Data Base report on The relationship of race and national origion to the histology of nasopharyngeal carcinomal.Cancer,1998,83(3):582-588
    [16]Lee JT,Ko CY.Has survival improved for nasopharyngeal carcinomal in the Unite States?Otolaryngol Head Neck Surg,2005,132(2):303-308.
    [17]高黎,徐国镇.编著.鼻咽癌.第二版.北京:北京大学医学出版社2007.
    [18]Wang DG, Fan JB, Siao CJ et al. Largescaleidentification, mapping and genotyping of single nucleotide polymorp-hisms in the human genome[J]. Science,1998,280:1077-1082.
    [19]The International SNP Map Working Group. A map of human geno-me sequence variation containing 1.42 million single nucleotide po-lymorphisms[J]. Nature 2001,409:928-933.
    [20]Hutsell SQ and Sancar A.Nucleotide excision repair,oxidative damage,DNA sequence polymorphisms,and cancer treatment.Clin cancer Res,2005,11(4):1355-1357.
    [21]MacAuley A and Ladiges WC.Approaches to determine clinical significance of genetic variants,Mutat Res,2005,573(1-2):205-220.
    [22]Shirai o,Ohmiya N,Taguchi A,et al. P53, p21, and p73 gene polymorphisms in gastric carcinoma. Hepatogastroenterology.2010 Nov-Dec;57(104):1595-601.
    [23]Sun T, Lee GS, Oh WK,et al. Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a Caucasian population. Clin Cancer Res.2010 Nov 1;16(21):5244-51. Epub 2010 Sep20.
    [24]Quintela-Fandino M,Hitt R,Medina PP,et al.DNA-repair gene polymorphisms predict favorable clinical outcome among pqtients with advanced squamous cell carcinoma of the head and neck treated with cisplatin-based induction chemotherapy.J ClinOncol.2006,24 (26):4333-4339.
    [25]Isla D,Sarries C,Rosell R,et al. Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol,2004,15(8):1194-1203.
    [26]Wunderlich V,Rajewsky MF. Tumour suppressor genes in disease and therapy.Lancet,1995;345:1570-1571.
    [27]Charles DR et al. Cancer Res,1942;2:261.
    [28]Knudson AGJr. Antioncogene and human cancer.Proc Acad Natl Sci USA,1993,90:10914-10921.
    [29]汤钊猷.现代肿瘤学上海:上海医科大出版社,2009.
    [30]曾益新.肿瘤学北京:人民卫生出版社,1999.
    [31]Marshall CJ.Tumur suppressor genes.Cell,1991,64:313.
    [32]Marx J. Science,1994; 264:1840.
    [33]陈杰,李甘地.病理学北京:人民卫生出版社,2005.
    [34]Sunpaweravong S, Sunpaweravong O.Recent developments in critical genes in the molecular biology of brest cancer.Asian J Surg,2005,28 (1):75-75.Review.
    [35]范文红,詹启敏.抑癌基因与人类肿瘤.詹启敏.分子肿瘤学.北京人民卫生出版社,2005.109-155.
    [36]郑杰,编著.肿瘤的细胞和分子生物学.第二版.上海:上海科学技术出版社2011,104-108.
    [37]Kastan MB,Berkovich E.p53:a two-faced gene.Nat cell Biol,2007,9 (5),489-491.
    [38]Serrano M,Hannon GJ,Beach D. A new regulatory motif incell-cycle control causing specific inhibition of cyclinD/CDK4[J]. Nature, 1993,366(6456):704-707.
    [39]Kamb A, Gruis NA,Weaver J, et al. A cell cycle regulator potentially involved in genesis of many tumor types [J]. Science, 1994,264(5157):436-440.
    [40]Wang X, Li W, Zheng J, et al.Tumor suppressor gene alterations of spontaneously malignant transformed cells from human embryonic muscle in vitro[J]. Oncol Rep.2010,24(2):555-61.
    [41]Demirhan O, Tastemir D, Hastiirk S, et al.Alterations in p16 and p53 genes and chromosomal findings in patients with lung cancer: fluorescence in situ hybridization and cytogenetic studies [J]. Cancer Epidemiol.2010 Aug;34(4):472-7.
    [42]Ye Y, Wang D, Su C, et al.Combined detection of p53, p16, Rb, and EGFR mutations in lung cancer by suspension microarray[J]. Genet Mol Res 2009,23;8(4):1509-18.
    [43]Scaini MC, Rossi E, de Siqueira Torres PL, et al.Functional impairment of p16(INK4A) due to CDKN2A p.Gly23Asp missense mutation[J]. Mutat Res.2009 Dec 1;671(1-2):26-32.
    [44]Chou J, Lin YC, Kim J, et al.Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis[J]. Head Neck.2008 Jul;30(7):946-63.
    [45]杨吉成主编.现代肿瘤基因治疗实验研究方略.北京,化学工业出版社,2008,12-13
    [46]Song Y, Wang L, Huang G, et al. The expression of tumor suppressorgene p53 and Rb gene in nasopharyngeal carcinoma[J]. Hua Xi yi Ke Da Xue Xue Bao1997 Sep;28(3):268-71.
    [47]Claudio PP,Howard CM, Fu Y, et al.Mutations in theretinoblastoma-related gene RB2/p130 in primary nasopharyngeal carcinoma[J]. Cancer Res.2000 Jan 1;60(1):8-12.
    [1]Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature.1979;278:261-3.
    [2]Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell.1979;17:43-52.
    [3]Kress M, May E, Cassingena R, May P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol.1979;31:472-83.
    [4]Melero JA, Stitt DT, Mangel WF, Carroll RB. Identification of new polypeptide species (48-55K) immunoprecipitable by antiserum to purified large T antigen and present in SV40-infected and transformed cells. Virology.1979;93:466-80.
    [5]Smith AE, Smith R, Paucha E. Characterization of different tumor antigens present in cells transformed by simian virus 40. Cell. 1979;18:335-46.
    [6]DeLeo AB, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A.1979;76:2420-4.
    [7]Eliyahu D, Raz A, Gruss P, Givol D, Oren M. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature.1984;312:646-9.
    [8]Jenkins JR, Rudge K, Currie GA. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature.1984;312:651-4.
    [9]Parada LF, Land H, Weinberg RA, Wolf D, Rotter V. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature.1984;312:649-51.
    [10]Eliyahu D, Michalovitz D, Oren M. Overproduction of p53 antigen makes established cells highly tumorigenic. Nature.1985;316:158-60.
    [11]Wolf D, Harris N, Rotter V. Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell.1984;38:119-26.
    [12]Wolf D, Rotter V. Inactivation of p53 gene expression by an insertion of Moloney murine leukemia virus-like DNA sequences. Mol Cell Biol.1984;4:1402-10.
    [13]David Y. Ben, Prideaux VR, Chow V, Benchimol S, Bernstein A. Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene.1988;3:179-85.
    [14]Mowat M, Cheng A, Kimura N, Bernstein A, Benchimol S. Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature.1985;314:633-6.
    [15]Wolf D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci U S A.1985;82:790-4.
    [16]Eliyahu D, et al. Meth A fibrosarcoma cells express twotransforming mutant p53 species. Oncogene.1988;3:313-21.
    [17]Finlay CA, et al. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol.1988;8:531-9.
    [18]Halevy O, Rodel J, Peled A, Oren M. Frequent p53 mutations in chemically induced murine fibrosarcoma. Oncogene.1991;6:1593-600.
    [19]Lane DP. Cancer. p53, guardian of the genome. Nature.1992;358:15-6.
    [20]Sunpaweravong S, Sunpaweravong O.Recent developments in critical genes in the molecular biology of brest cancer.Asian J Surg, 2005,28(1):75-75.Review
    [21]范文红,詹启敏.抑癌基因与人类肿瘤.詹启敏.分子肿瘤学.北京:人民卫生出版社,2005.109-155
    [22]郑杰,编著.肿瘤的细胞和分子生物学.第二版.上海:上海科学技术出版社2011,104-108.
    [23]Knudson AGTwo genetic hits(more or less)to cancer. Nat Rev Cancer,2011,1:157-162.
    [24]Michael D,Oren M.The p53-Mdm2 module and the ubiquitin system. Semin Cancr Biol,2003,13:49-59.
    [25]Shirai o,Ohmiya N,Taguchi A,et al. P53, p21, and p73 gene polymorphisms in gastric carcinoma. Hepatogastroenterology.2010 Nov-Dec;57(104):1595-601.
    [26]Phang BH, Chua HW, Li H,et al. Characterization of novel and uncharacterized p53 SNPs in the Chinese population--intron 2 SNP co-segregates with the common codon 72 polymorphism. PLoS One. 2011 Jan 10;6(1):e15320.
    [27]SaekiH, Kitao H, Yoshinaga K,et al. Copy-neutral loss of heterozygosity at the p53 locus in carcinogenesis of esophageal squamous cell carcinomas associated with p53 mutations. Clin Cancer Res.2011,1; 17(7):1731-40. Epub 2011 Feb 15.
    [28]Liu J, Desai KV, Li Y, Banu S,et al. Germ-line variation at a functional p53 binding site increases susceptibility to breast cancer development. Hugo J.2009 Dec;3(1-4):31-40. Epub 2010 Apr 13.
    [29]Sun T, Lee GS, Oh WK,et al. Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a Caucasian population. Clin Cancer Res.2010 Nov 1;16(21):5244-51. Epub 2010 Sep20.
    [30]Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature.1997;387:296-9.
    [31]Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett.1997;420:25-7.
    [32]Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature.1997;387:299-303.
    [33]Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE. Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol.2006;363:433-50.
    [34]Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A.2003;100:12009-14.
    [35]Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature.1995; 378:206-8.
    [36]de Oca Luna R. Montes, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature.1995;378:203-6.
    [37]Parant J, et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet.2001;29:92-5.
    [38]Wade M, Wahl GM. Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res.2009;7: 1-11.
    [39]Bond GL, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell.2004; 119:591-602.
    [40]Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms:cancer implications. Nat Rev Cancer.2009;9:95-107.
    [41]Hu W, et al. A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res. 2007;67:2757-65.
    [42]Lahav G, et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet.2004;36:147-50.
    [43]Zhang Y, Xiong Y, Yarbrough WG. et al. ARF promotes MDM2 degradation and stabilizes p53:ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell.1998 Mar 20;92(6):725-34.
    [44]Itoshima T, Fujiwara T, Waku T, et al. Induction of apoptosis in human esophageal cancer cells by sequential transfer of the wild-type p53 and E2F-1 genes:involvement of p53 accumulation via ARF-mediated MDM2 down-regulation. Clin Cancer Res.2000 Jul;6(7):2851-9.
    [45]Takemoto S, Trovato R, Cereseto A, et al. p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells. Blood.2000 Jun 15;95(12): 3939-44.
    [46]Llanos S, Clark PA, Rowe J, et al. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol.2001 May;3(5):445-52.
    [47]Yarbrough WG, Bessho M, Zanation A, et al.Human tumor suppressor ARF impedes S-phase progression independent of p53. Cancer Res.2002 Feb 15;62(4):1171-7.
    [48]Lin J, Zhu MH.[Interactive pathway of ARF-mdm2-p53]. Ai Zheng. 2003 Mar;22(3):328-30.
    [49]O'Leary KA, Mendrysa SM, Vaccaro A, et al. Mdm2 regulates p53 independently of p19(ARF) in homeostatic tissues.Mol Cell Biol. 2004 Jan;24(1):186-91.
    [50]Zhang X, Berger FG, Yang J, et al.USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1.2011 Jun 1;30(11):2177-89. Epub 2011 Apr 26.
    [51]Li L, Tao Q, Jin H, van Hasselt A, et al.The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res.2010 Jun 1;16(11):2949-58. Epub 2010 Apr 15.
    [52]Roth JA, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med.1996;2:985-91.
    [53]Peng Z. Current status of gendicine in China:recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther.2005; 16: 1016-27.
    [54]Bykov VJ, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med.2002;8: 282-8.
    [55]Boeckler FM, et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci U S A.2008; 105: 10360-5.
    [56]Vassilev LT, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science.2004;303:844-8.
    [57]Vassilev LT. MDM2 inhibitors for cancer therapy. Trends Mol Med. 2007;13:23-31.
    [58]Rogler A, Rogenhofer M, Borchardt A, et al. P53 codon 72 (Arg72Pro) polymorphism and prostate cancer risk:association between disease onset and proline genotype. Pathobiology. 2011;78(4):193-200.Epub 2011 Jul 19.
    [59]Sumbul AT, Akkiz H, Bayram S, et al. p53 codon 72 polymorphism is associated with susceptibility to hepatocellular carcinoma in the Turkish population:a case-control study. Mol Biol Rep.2012 Feb;39(2):1639-47. Epub 2011 May 24.
    [60]Rizzato C, Scherer D, Rudnai P, et al. POMC and TP53 genetic variability and risk of basal cell carcinoma of skin:Interaction between host and genetic factors. J Dermatol Sci.2011 Jul;63(1):47-54.
    [1]Serrano M, Hannon GJ, Beach D. A new regulatory motif incell-cycle control causing specific inhibition of cyclinD/CDK4[J]. Nature,1993, 366(6456):704-707.
    [2]Kamb A, Gruis NA, Weaver J, et al. A cell cycle regulator potentially involved in genesis of many tumor types [J].Science,1994,264(5157): 436-440.
    [3]Lukas J.Angaard L,Strauss M,et al.Oncogenic aberrations of P16 and Cyclin D1 cooperate to deregulate G1 control.Cancer Res,1995,55: 4818-4828.
    [4]Sherr CJ,Roberts JM.Inhibitors of mammalian G1 Cyclin-dependent Kinases.Genes Dev.1995,9:1149-1163.
    [5]Hunter T,Pines J.Cyclins and cancer:cyclin D and CDK inibitors come of age. Cell 994,79:573-582.
    [6]Motokura T,Arnold A.Cyclins and oncogenesis.Biochim. Biophys, Acta,1993,1155:63-78.
    [7]Bammidi LS, Neerukonda GN, Murthy S, et al.p16 Gene Alterations in Human Ovarian Cancers:Comparison Between Tissue and Blood Samples. Int J Gynecol Cancer.2012 Feb 16. [Epub ahead of print]
    [8]Jia-Jie Zang, Feng Xie, Jin-Fang Xu, et al. P16 gene hypermethylation and hepatocellular carcinoma:a systematic review and meta-analysis [J]. World J Gastroenterol.2011,17(25):3043-8.
    [9]Hou L, Zhang X,Tarantini L,Ambient PM exposure and DNA methylation in tumor suppressor genes:a cross-sectional study [J]. Part Fibre Toxicol.2011 Aug 30;8:25.
    [10]Koh VM, Shi YX, Tang QH. P16 and retinoblastoma protein expression in endometrial carcinoma and clinical significance[J]. Eur J Gynaecol Oncol.2011;32(3):309-15.
    [11]Hu YH, Zhang CY, Tian Z, et al. Aberrant protein expression and promoter methylation of p16 gene are correlated with malignant transformation of salivary pleomorphic adenoma[J].Arch Pathol Lab Med.2011 Jul;135(7):882-9.
    [12]Chae SW, Sohn JH, Kim DH, et al.Overexpressions of Cyclin B1, cdc2, p16 and p53 in human breast cancer:the clinicopathologic correlations and prognostic implications[J]. Yonsei Med J.2011 May;52(3):445-53.
    [13]Li J, Poi MJ, Tsai MD.Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer[J]. Biochemistry.2011 Jun 28;50(25):5566-82.
    [14]Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16[J]. Int J Cancer.2011 Oct 25. doi:10.1002/ijc. 27316.
    [15]Fukuyo Y, Takahashi A, Hara E, et al.E2FBP1 antagonizes the p 16(INK4A)-Rb tumor suppressor machinery for growth suppression and cellular senescence by regulating promyelocytic leukemia protein stability [J]. nt J Oral Sci.2011 Oct;3(4):200-8.
    [16]Wang X, Li W, Zheng J, et al.Tumor suppressor gene alterations of spontaneously malignant transformed cells from human embryonic muscle in vitro[J]. Oncol Rep.2010,24(2):555-61.
    [17]Demirhan O, Tastemir D, Hastiirk S, et al.Alterations in p16 and p53 genes and chromosomal findings in patients with lung cancer: fluorescence in situ hybridization and cytogenetic studies[J]. Cancer Epidemiol.2010 Aug;34(4):472-7.
    [18]Ye Y, Wang D, Su C, et al.Combined detection of p53, p16, Rb, and EGFR mutations in lung cancer by suspension microarray[J]. Genet Mol Res.2009,23;8(4):1509-18.
    [19]Scaini MC, Rossi E, de Siqueira Torres PL, et al.Functional impairment of p16(INK4A) due to CDKN2A p.Gly23Asp missense mutation[J]. Mutat Res.2009 Dec 1;671(1-2):26-32.
    [20]Chou J, Lin YC, Kim J, et al.Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis[J]. Head Neck.2008 Jul;30(7):946-63.
    [21]梁朝晖,胡少为,何青莲.P16和cyclinD1在鼻咽癌及癌前病变中表达的临床意义[J].国际医药卫生导报,2009,15(12):18-21.
    [22]Bammidi LS, Neerukonda GN, Murthy S, et al. p16 Gene alterations in Human Ovarian Cancers:Comparison Between Tissue and Blood Samples[J]. Int J Gynecol Cancer.2012 Feb 16.
    [23]Cerski MR, Pereira F, Matte US, et al. Exon 11 mutations, Ki67, and p16(INK4A) as predictors of prognosis in patients with GIST[J]. Pathol Res Pract.2011 Nov 15;207(11):701-6.
    [24]纪红,何侠,陈森清,等.鼻咽癌p16和CyclinD1表达及其临床意义[J].肿瘤学杂志,2010,16(5):370-373.
    [25]Xiang YN, Zhang WY. The clinical significance of p16 protein non-expression and p16 gene inactivation by deletions and hypermethylation in nasopharyngeal carcinoma[J]. Zhonghua Bing Li Xue Za Zhi.2005 Jun;34(6):358-61.
    [26]薛开先,肿瘤表观遗传学.北京:科学出版社,2011.58-73.
    [27]Lee M,Sup Han W,Kyoung Kim O,et al.Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer.Pathol Res Pract,2006,202:415-424.
    [28]Hong Y S,Roh M S,Kim N Y,et al. Hypermethylation of p16INK4a in Korean non-small cell lung cancer patients.J Korean Med Sci,2007,22(suppl):S32-37.
    [29]Martone T,Gillio-Tos A,De Marco L,et al.Association between hypermethylated tumor and paired surgical margins in head and neck squamous cell carcinomas.Clin Cancer Res,2007,13:5089-5094.
    [30]Sharma QMirza S,Prasad C P,et al.Promoter hypermethylation of p16INK4a, p14ARF CyclinD2 and Slit2 inserum and tumor DNA from breast cancer patients.Life Sci,2007,80:1873-1881.
    [1]Lee WH,Bookstein R,Hong F,et al. Human retinoblastoma susceptibilitygene:cloning, identification and sequence [J]. Science, 1987,235(4794):1394-1399.
    [2]杨吉成主编.现代肿瘤基因治疗实验研究方略.北京,化学工业出版社,2008,12-13.
    [3]Song Y, Wang L, Huang G, et al. The expression of tumor suppressor gene p53 and Rb gene in nasopharyngeal carcinoma[J]. Hua Xi yi Ke Da Xue Xue Bao1997 Sep;28(3):268-71.
    [4]Claudio PP,Howard CM, Fu Y, et al.Mutations in theretinoblastoma-related gene RB2/p130 in primary nasopharyngeal carcinoma[J]. Cancer Res.2000 Jan 1;60(1):8-12.
    [5]Knudson AG.Mutation and cancer:statistical study of retinoblastoma [J].Proc Natl Acad Sci USA,1971,68(4):820-823.
    [6]Knudson AG.Two genetic hits (more or less) to cancer[J].Nat Rev Cancer,2011,1:157-162.
    [7]Liu H,Dibling B,Spike B, et al.New roles for the Rb tumor suppressor Protein[J].Curr Opin Genet Dev,2004,14:55-64.
    [8]Kolupaeva V, Janssens V.PP1 and PP2A phosphatases-cooperating partners in modulating retinoblastoma protein activation[J]. FEBS J. 2012 Feb 2.
    [9]Johnson JL, Pillai S, Pernazza D, et al.Regulation of matrix metalloproteinase genes by E2F transcription factors:Rb-Raf-1 interaction as a novel target for metastatic disease[J]. Cancer Res. 2012 Jan 15;72(2):516-26.
    [10]Saenz Robles MT, Case A, Chong JL, et al. The retinoblastoma tumor suppressor regulates a xenobiotic detoxification pathway[J]. PLoS One.2011;6(10):e26019.
    [11]Fukuyo Y, Takahashi A, Hara E, et al.E2FBP1 antagonizes the p16(INK4A)-Rb tumor suppressor machinery for growth suppression and cellular senescence by regulating promyelocytic leukemia protein stability[J]. Int J Oral Sci.2011 Oct;3(4):200-8.
    [12]詹启敏,刘芝华,主译.癌生物学.北京,科学技术出版社2009,269-280.
    [13]郑杰,编著.肿瘤的细胞和分子生物学.第二版.上海:上海科学技术出版社2011,101-104.
    [14]Dick FA, Dyson N.pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separatel from other E2F activities.Mol Cell,2003,12(3):639-649.
    [15]Polager S,Ginsberg D.E2F-at the crossroad of life and death.Treads Cell Biol,2008,18(11):528-535.
    [16]Yamasaki L. Role of RB tumor supressor in cancer[J]. Cancer Treat Res,2003,5(9):209-239.
    [17]Li CG, Nyman JE, Braithwaite AW, et al.PAX8 promotes tumor cell growth by transcriptionally regulating E2F1 and stabilizing RB protein[J]. Oncogene.2011 Dec 1;30(48):4824-34.
    [18]Carriere C, Gore AJ, Norris AM, et al.Deletion of Rb accelerates pancreatic carcinogenesis by oncogenic Kras and impairs senescence in premalignant lesions[J]. Gastroenterology.2011,Sep;141(3):1091-101.
    [19]李世德,张向敏,卓祥龙.Rb基因、Rb2/p130基因在骨肉瘤中的表达与相关性[J].肿瘤防治研究,2008,35(9):18-20.
    [20]刘小琦,宾晓农,曾波航,等.E2F-1基因和Rb基因在人肺癌组织中的表达及临床意义[J].广州医学院学报,2005,33(6):52-55.
    [21]Lin CT, Chan WY, Chen W, et al.Nasopharyngeal carcinoma and retinoblastoma gene expression[J]. Lab Invest.1992 Jul;67(1):56-70.
    [22]Claudio PP, Howard CM, Fu Y, Cinti C, et al.Mutations in the retinoblastoma-related gene RB2/p130 in primary nasopharyngeal carcinoma[J]. Cancer Res.2000 Jan 1;60(1):8-12.
    [23]Gulley ML, Nicholls JM, Schneider BG, et al.Nasopharyngeal carcinomas frequently lack the p16/MTS1 tumor suppressor protein but consistently express the retinoblastoma gene product[J]. Am J Pathol.1998 Apr; 152(4):865-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700