基于团簇加连接原子模型的Zr-Ni-Al系块体金属玻璃成分设计和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成分设计和力学性能研究是块体金属玻璃研究的基础问题。开发具有大玻璃形成能力和高强度、大塑性的块体金属玻璃是该领域的研究目标之一。团簇加连接原子模型作为一种成分设计思想,已被成功应用到许多体系的块体金属玻璃成分设计中。该模型将金属玻璃看作由团簇和连接原子两类结构单元构成,团簇为基于特定原子的第一近邻配位多面体,而连接原子填补团簇间的间隙,相应的,金属玻璃的成分与结构信息可用团簇成分式统一表述成:[团簇](连接原子)x~1,3。本论文以该模型为指导,系统研究了Zr-Ni-Al三元基础非晶体系合金的玻璃形成能力和力学性能,并从团簇加连接原子模型角度探讨了该体系块体金属玻璃合金的力学性能与结构的关系。同时,对Zr-Al-Ni-Cu-(Nb)多组元Zr基块体金属玻璃的力学性能进行了研究。论文主要内容如下:
     首先,基于团簇加连接原子模型,从Zr-Ni-Al系金属玻璃的三种常见晶化相——-Al2NiZr6、NiZr2(NiTi2-type)和NiZr2(Al2Cu-type)中提取可代表各相结构特征的三类团簇(即CN11Ni3Zr9、CN12Ni4Zr9和CN10Ni3Zr8)作为基础团簇,建立团簇式进行成分设计,获得三个系列合金成分:Ni3Zr9Alx、Ni4Zr9Alx和Ni3Zr9Alx,x=1、1.5、2、3,同时,类比配制Ni3Zr6Alx、Ni3Zr7Alx和Ni3Zr10Alx系列合金作为比较成分。利用不同内径铜模通过真空吸铸法制备上述六系列合金的铸态合金棒,对其进行结构和热分析测试与表征。结果表明,除Ni3Zr6Al3成分外,其余合金金属玻璃形成的临界直径都达到3mm以上。其中,Ni4Zr9Al2(即Zr60Ni26.7Al13.3, at%)玻璃形成能力最佳,其形成玻璃的临界直径达10mm,在同等制备条件下高于已报道的Zr60Ni25Al15最优成分;其过冷液相宽度⊿Tx、约化玻璃转变温度Trg和γm值分别为68K、0.579和0.689,也优于Zr60Ni25Al15(△TX=68K, Trg=0.568, γm=0.676)。进一步电子浓度和团簇式解析表明,Ni4Zr9Al2符合基于Ni3Zr9团簇加三个连接原子的金属玻璃通用团簇式:[Ni3Zr9](Al2Ni)。
     其次,3mm样品的室温压缩和维氏硬度结果表明,随Al、Ni含量的增加,Zr-Ni-Al块体金属玻璃的屈服强度σy、杨氏模量E和维氏硬度Hv增大。同时发现,这些合金的力学性能与其玻璃转变温度Tg、晶化温度Tx、摩尔体积V以及原子密度ρa存在密切关联。依据电子浓度和金属玻璃通用团簇式判据,总体上可将本文涉及的Zr-Ni-Al块体金属玻璃成分分成两种类型:一种是基于Ni3Zr9团簇加三个连接原子团簇式的;另一类属于Ni3Zr8团簇加一个连接原子的形式;结合元素间混合焓数据,可估算各合金三类键合的相互作用强度I,分别为:团簇的中心原子与壳层原子间的键合Icenter-shell、相邻团簇壳层原子间的键合Ishell-shell和连接原子与壳层原子键合Iglue-shell。研究表明Zr-Ni-Al块体金属玻璃的力学性能与其键合参数(1/Icenter-shell+1/Ishell-shell+1/Iglue-shell)呈良好的线性关联,其中最弱的Ishell-shell是决定块体金属玻璃力学性能的主因。据此,本论文提出一种并联弹簧振子模型阐释了金属玻璃的结构与其强度间的关联。
     最后,研究了满足Ni4Zr9团簇加一个连接原子团簇式的Zr基Zr-Al-Ni-Cu-(Nb)多元块体金属玻璃的力学性能。探讨了合金化元素Nb对Zr65Al10Ni10Cu15块体金属玻璃力学性能的影响规律,研究了(Zr65Al10Ni10Cu15)97Nb3块体金属玻璃在不同结构状态下的热学与力学性能。结果表明,Nb的加入可有效提高合金屈服强度并影响变形能力,其中含2at.%Nb的块体金属玻璃室温变形能力最高,其压缩时的塑性变形达12.7%。(Zr65Al10Ni10Cu15)97Nb3块体金属玻璃经退火处理,导致其玻璃态结构逐步失稳并引发初始晶化温度下降和过冷液相区变窄,而屈服强度和杨氏模量稍有增大,但室温塑变能力明显下降,其压缩塑变由8%降至几乎消失。
Composition design and mechanical properties are two basic issues in the study of bulk metallic glasses (BMGs). Developing BMGs with high glass forming abilities (GFAs) and excellent mechanical properties (e.g. high strength and large plasticity) is one of the targets in this field. Cluster-plus-glue-atoms model, a composition design method developed in our group, has been successfully applied in several metallic glass systems. This model dissociates a glassy structure into a cluster part and a glue atom part. The cluster is the nearest neighbor coordination polyhedron constituted by specific atoms and glue atoms are located between the clusters. The composition and structure information of BMGs can be expressed by a universal cluster formulas [cluster](glue atoms)1,3resulted from this model. In this thesis, the GFAs and mechanical properties of the Zr-Ni-Al and Zr-Al-Ni-Cu-(Nb) BMGs were studied, and the relationship between mechanical properties and glassy structure were discussed from the perspective of the cluster-plus-glue-atom model.
     The first step for the composition design is to determine the principal clusters, as exemplified by clusters CN11Ni3Zr9, CN12Ni4Zr9, and CN10Ni3Zr8respectively derived from three common devitrification phases Al2NiZr6, NiZr2(NiTi2-type) and NiZr2(Al2Cu-type) in Zr-Ni-Al BMGs. Three alloy series were thus designed, namely Ni3Zr9Alx, Ni3Zr8Al and Ni4Zr9Alx,(x=1,1.5,2,3). Analogically, Ni3Zr6Alx, Ni3Zr7Alx and Ni3Zr10Alx alloy series were designed for comparisons. Alloy rods with different diameters of these compositions were prepared by copper mould suction casting, and their structure and thermal glass parameters were investigated. The experimental results showed that all the rods, except Ni3Zr6Al3, were in amorphous state within a rod diameter of3mm. Composition Ni4Zr9Al2(Zr60Ni26.7Al13.3, at%) could be cast into rods with a critical glass forming diameter of10mm, whose GFA was even higher than that of the reported best glass former Zr6oNi25Al15prepared in the same preparation conditions. Its supercooled liquid region△Tx, reduced glass transition temperature Trg and γm were respective68K,0.579and0.689, which were also higher than those of Zr6oAl15Ni25(△TX=68K,Trg=0.568, γm=0.676). After analysis for electron concentration (e/a) and cluster formula, Ni4Zr9Al2was shown to satisfy a cluster formula based on the Ni3Zr9cluster plus three glue atoms [Ni3Zr9] Al2Ni.
     Room temperature compression and Vickers hardness tests of the3mm-diameter BMGs were carried out. Their yield strength (σy), Young's modulus (E) and Vickers hardness (Hv) increased with increasing contents of Al and Ni and were closely related with glass transition temperature (Tg), crystallization temperature (Tx), molar volume (V) and atomic density (ρa). The e/a and cluster formula analysis of these Zr-Ni-Al BMGs showed that they belonged to two glass series respectively expressed by cluster formulas [Ni3Zr9](glue atom)3and [Ni3Zr8](glue atom)1. An estimation of the bonding strength, I, between the three kinds of bonds prescribed by the cluster formulas, i.e. the bonds between the cluster center and the cluster shell (Icenter-shell), between the cluster shells (Ishell-shell), and between the glue atom and the shell (Iglue-shell), were calculated in terms of the enthalpy of mixing. It was found that the mechanical properties of the Zr-Ni-Al BMGs were linearly correlated with1/Icenter-shell+1/Ishell-shell+1/Iglue-shell.The mechanical properties of the Zr-Ni-Al BMGs were mainly dominated by the weakest shell-shell interaction. A spring model was therefore proposed to explain the relationship between structure and strength of metallic glasses.
     Finally, the mechanical properties of Zr-based Zr-Al-Ni-Cu-(Nb) BMGs which satisfy cluster formula of Ni4Zr9cluster plus one glue atom, and the effect of alloying element Nb on the mechanical properties of Zr65Al10Ni10Cu15BMG, and the thermal properties and mechanical properties of (Zr65Al10Ni10Cu15)97Nb3BMG under different structural conditions were studied. It was shown that the yield strength increased effectively and affect deformation ability with Nb addition. The compression plasticity reached12.7%in the sample with2at.%Nb addition. With annealing treatment, the structure of (Zr65Al10Ni10Cu15)97Nb3BMG became unstable, and the initial crystallization temperature and supercooled liquid region decreased. Meanwhile, the yield strength and Young's modulus increased, but the compression plasticity decreased from8%to nearly0%.
引文
[1]INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater.,2000,48:279-306.
    [2]LUBORSKY F E. Amorphous Metallic Alloys [M]. London:Butterworth Ltd.,1983:1-7
    [3]KLEMENT W, WILLENS R H, DUWEZ P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature,1960,187:869-870.
    [4]CHEN H S. Thermodynamic considerations on the formation and stability of metallic glasses [J]. Acta Metal.,1974,22(12):1505-1511.
    [5]DREHMAN A L, GREER A L, TURNBULL D. Bulk formation of a metallic glass:Pd40Ni40P20 [J]. Applied Physics Letters,1982,41(8):716-718.
    [6]INOUE A, ZHANG T, MOSUMOTO T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Materials Transactions JIM,1989,30(12):9665-9972.
    [7]INOUE A, KITA K, ZHANG T, et al. An amorphous La55A125Ni20 alloy prepared by water quenching [J]. Materials Transactions, JIM,1989,30(9):722-725.
    [8]ZHANG Y, TAN H, LI Y. Bulk glass formation of 12 mm rod in La-Cu-Ni-Al alloys [J]. Mater Sci Eng A,2004,375-377:436-439.
    [9]INOUE A, KATO A, ZHANG T, et al. Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method [J]. Materials Transactions JIM,1991,32:609-616.
    [10]INOUE A, ZHANG T, MASUMOTO T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region [J]. Mater Trans JIM,1990, 31(3):177-183.
    [11]INOUE A, ZHANG T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method [J]. Mater Trans JIM,1996,37(2):185-187.
    [12]Inoue A, Shen B L, Chang C T. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system[J]. Acta Materialia,2004, 52(14):4093-4099.
    [13]INOUE A, NISHTAMA N, KIMURA H. Preparation and thermal stability of bulk amorphous Pd40Cu30NilOP20 alloy cylinder of 72 mm in diameter [J]. Mater. Trans. JIM,1997, 38:179-183.
    [14]ZHANG T, INOUE A, MASUMOTO T. Amorphous (Ti, Zr, Hf)-Ni-Cu ternary alloys with a wide supercooled liquid region [J]. Mater Sci Eng A,1994, A181-182:1423-1426.
    [15]Inoue A., Zhang T., Nishiyama N., et al. Preparation of 16 mm diameter rod of amorphous Zr65A17.5Ni10Cu17.5 Alloy [J], Mater. Trans. JIM,1993,34:1234-1237.
    [16]PEKER A, JOHNSON W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Applied Physics Letters,1993,63(17): 2342-2344.
    [17]WANG W H, DONG C, SHEK C H. Bulk metallic glasses [J]. Mater Sci Eng R,2004,44(2-3): 45-89.
    [18]胡壮麒,张海峰.块体非晶合金及其复合材料研究进展[J].金属学报,2010,46(11):1391-1421.
    [19]BUSCH R, KIM Y J, JOHNSON W L. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy [J]. Journal of Applied Physics,1995,77(8):4039.
    [20]BUSCH R, SCHROERS J, WANG W H. Thermodynamics and kinetics of bulk metallic glass [J]. MRS Bull,2007,32(8):620-623.
    [21]ANGELL C. Formation of glasses from liquid and hiopolymers [J]. Science,1995, 267:1924-1935.
    [22]ULMANN D R. A kinetic treatment of glass formation [J]. J. Non-Cryst. Solids,1972, 7(4):337-348.
    [23]JOHNSON W A, MEHL R. Reaction kinetics in processes of nuc leation and growth [J]. Trans AIME,1939,315:416.
    [24]AVRAMI M. Kinetics of Phase Change. I:General Theory [J], J. Chem. Phys,1939, 7:1103.
    [25]新エネルギ一·产业技术培训总合开発机构(NEDO) http://app2. infoc. nedo. go. jp/kaisetsu/nan/nan05/index. html#elmtop.
    [26]TURNBULL D. Under what conditions can a glass be formed? [J], Contemp. Phys. 1969,10:473-488.
    [27]INOUE A. Bulk amorphous alloys-preparation and fundamental characteristics [M]. Switzerland:Trans. Tech. Publications Ltd,1998:2-86.
    [28]LU Z P, TAN H, NG S C. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses [J]. Scripta Mater,2000,42(7): 667-673.
    [29]惠希尔,陈国良.块体非晶合金[M].北京:化学工业出版社,2006.
    [30]LU Z P, LIU C T. A new glass-forming ability criterion for bulk metallic glasses [J]. Acta Mater.,2002,50(13):3501-3512.
    [31]DU X H, HUANG J C, LIU C T. New criterion of glass forming abilities for bulk metallic glasses [J]. Appl Phys Lett,2003,91(11):1155051.
    [32]LI Y, POON S J, SHIFLET G J, et al. Formation of bulk metallic glasses and their composites[J]. MRS Bulletin,2007,32(8):624-628.
    [33]ECKERT J, DAS J, PAULY S, et al. Mechanical properties of bulk metallic glasses and composites[J]. Journal of Materials Research,2007,22(2):285-301.
    [34]LU K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties[J]. Materials Science and Engineering:R,1996,16(4):161-221.
    [35]CHEN L C, SPAEPEN F. Calorimetric Evidence for the Micro-Quasicrystalline Structure of'Amorphous'Al-Transition Metal Alloys [J]. Nature,1988,336: 366-368.
    [36]SPAEPEN F. Five-fold Symmetry in Liquids [J]. Nature,2000,408:781-782.
    [37]REICHERT H, KLEIN 0, DOSCH H, et al. Observation of Five-Fold Local Symmetry in Liquid Lead [J]. Nature,2000,408:839-841.
    [38]SAKATA M, COWLAM N, DAVIES H A. Chemical Short-Range Order in Liquid and Amorphous Cu66Ti34 Alloys [J]. J. Phys. F:Metal Phys.,1981,11:L157-L162.
    [39]WANG W H, WU E, WANG R J, et al. Phase Transformation in a Zr41Ti14Cu12.5Ni10Be22.5 Bulk Amorphous Alloy upon Crystallization [J]. Phys. Rev. B,2002,66(10): 104205-1-104205-5.
    [40]GILMAN J J. Mechanical-behavior of metallic glasses [J]. J Appl Phys,1975,46(4): 1625-1633.
    [41]ASHBY M F, GREER A L. Metallic glasses as structural materials [J]. Scripta Mater, 2006,54(3):321-326.
    [42]SCHUH C A, HUFNAGEL T C, RAMAMURTY U. Overview no.144-mechanical behavior of amorphous alloys [J]. Acta Mater,2007,55(12):4067-4109.
    [43]YAVARI A R, LEWANDOWSKI J J, ECKERT J. Mechanical properties of bulk metallic glasses [J]. MRS Bull,2007,32(8):635-638.
    [44]CHEN M W. Mechanical behavior of metallic glasses:microscopic understanding of strength and ductility [J]. Ann Rev Mater Res,2008,38:445-469.
    [45]WANG W H. Elastic moduli and behaviors of metallic glasses [J]. J Non-Cryst Solids, 2005,351(16-17):1481-1485.
    [46]SAFARIK D J, SCHWARZ R B. Elastic constants of amorphous and single-crystal Pd40Cu40P20 [J]. Acta Mater,2007,55(17):5736-5746.
    [47]KHONIK S V, et al. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses [J]. Phys Rev Lett, 2008,100(6):065501.
    [48]GILMAN J J. Electronic basis of the strength of materials [J]. Cambridge:Cambridge University Press,2003.
    [49]JOHNSON W L, SAMWER K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg) (2/3) temperature dependence [J]. Phys Rev Lett,2005,95(19): 195501.
    [50]YANG B, LIU C T, NIEH T G. Unified equation for the strength of bulk metallic glasses [J]. Appl Phys Lett,2006,88(22):221911.
    [51]LIU Y H et al. Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength [J]. Phys Rev Lett,2009,103(6):065504.
    [52]GUAN P F, CHEN M W, EGAMI T. Stress-temperature scaling for steady-state flow in metallic glasses [J]. Phys Rev Lett,2010,104(20):205701.
    [53]PARK K W et al. Atomic packing density and its influence on the properties of Cu-Zr amorphous alloys [J]. Scripta Mater,2007,57(9):805-808.
    [54]KHONIK S V et al. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses [J]. Phys Rev Lett, 2008,100(6):065501.
    [55]LEWANDOWSKI J J, WANG W H, GREER A L. Intrinsic plasticity or brittleness of metallic glasses [J]. Philos Mag Lett,2005,85(2):77-87.
    [56]GUO H et al. Tensi le ductility and necking of metallic glass [J]. Nat Mater,2007, 6(10):735-739.
    [57]KAWAMURA Y, NAKAMURA T, INOUE A. Superplasticity in Pd40Ni40P20 metallic glass [J]. Scripta Mater,1998,39:301-306.
    [58]蒋敏强.块体金属玻璃的剪切带行为[D].北京:中国科学院力学研究所,2009.
    [59]COHEN M H, TURNBULL D. Molecular transport in liquids and glasses [J]. J Chem Phys, 1959,31:1164-1169.
    [60]POLK D E, TURNBULL D. Flow of melt and glass forms of metallic alloys [J]. Acta Metall,1972,20:493-498.
    [61]SPAEPEN F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J], Acta Metall,1977,25:407-415.
    [62]ARGON A S, Plastic Deformation in Metallic Glasses [J]. Acta Metall,1979,27: 47.
    [63]戴道生,韩汝琪.非晶态物理学[M].北京:电子工业出版社,1988.
    [64]BERNAL J D. A Geometrical Approach to the structure of liquids [J]. Nature,1959, 183(1):141-147.
    [65]COHEN M H, TURNBULL D. Metastability of amorphous structure of liquids [J]. Nature, 1964,203:964-965.
    [66]CARGILL G S. Structural investigation of noncrystalline nickel-phosphorus alloys [J]. J Appl Phys,1970,41(1):12-16.
    [67]CARGILL G S. Dense random packing of hard spheres as a structural model for noncrystalline metallic solids [J]. J Appl Phys,1970,41(5):2248-2251.
    [68]GASKELL P H. On the structure of simple inorganic amorphous solids. J. Phys. C: Solid State Phys.1979,12:4337-4368.
    [69]MIRACLE D B. A structural model for metallic glasses. Nature Mater,2004,3: 697-702.
    [70]MIRACLE D B. The efficient cluster packing model-An atomic structural model for metallic glasses [J]. Acta Materilia.2006,54:4317-4336.
    [71]MIRACLE D B, SANDER W S, SENKOV 0 N. The influence of efficient atomic packing on the constitution of metallic glasses [J]. Philos.Mag.,2003,83:2409-2428.
    [72]MIRACLE D B, SENKOV 0, SANDERS W, et al. Structure-forming principles for amorphous metals [J]. Materials Science and Engineering A,2004,375-377:150-156.
    [73]MIRACLE D B, GREER A L, KELTON K F. Icosahedral and dense random cluster packing in metallic glass structures [J]. J Non-Cryst.,2008,354:4049-4055.
    [74]SHENG H W, LUO W K, ALAMGIR, E. M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature,2006,439:419-425.
    [75]SENKOV 0 N. Correlation between fragility and glass-forming ability of metallic alloys [J]. Phys Rev B,2007,76(10):104202.
    [76]CHENG Y Q, MA E, SHENG H W. Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids [J]. Appl Phys Lett,2008, 93(11):111913.
    [77]CHENG Y Q, SHENG H W, MA E. Relationship between structure, dynamics, and mechanical properties in metallic glassforming alloys. Phys Rev B,2008,78(1):014207.
    [78]CHENG Y Q, et al. Local order influences initiation of plastic flow in metallic glass:effects of alloy composition and sample cooling history [J]. Acta Mater, 2008,56(18):5263-5275.
    [79]GUAN P F, CHEN M W, EGAMI T. Stress-temperature scaling for steady-state flow in metallic glasses [J]. Phys Rev Lett,2010,104(20):205701.
    [80]CHEN H S, KRAUSE J T, COLEMAN E. Elastic-constants, hardness and their implications to flow properties of metallic glasses [J]. J Non-Cryst Solids,1975,18(2): 157-171.
    [81]LEWANDOWSKI J J, SHAZLY M, NOURI A S. Intrinsic and extrinsic toughening of metallic glasses [J]. Scripta Mater,2006,54(3):337-341.
    [82]GU X J, et al. Critical Poisson's ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel [J]. Appl Phys Lett,2006,88(21):211905.
    [83]LIU Y, et al. Physical factors controlling the ductility of bulk metallic glasses [J]. Appl Phys Lett,2008,93(15):151915.
    [84]WANG W H. Correlations between elastic moduli and properties in bulk metallic glasses [J]. J Appl Phys,2006,99(9):093506.
    [85]JIANG M Q, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage [J]. Philos Mag, 2008,88(3):407-426.
    [86]CHENG Y Q, CAO A J, MA E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses:the roles of atomic configuration and alloy composition [J]. Acta Mater,2009,57(11):3253-3267.
    [87]ZHANG Y, GREER A L. Correlations for predicting plasticity or brittleness of metallic glasses [J]. J Alloy Compd,2007,434:2-5.
    [88]DAVIES H A, LEWIS B G. A generalized kinetic approach to metallic glass formation [J]. Scripta Metall,1975,9(10):1107-1112.
    [89]MA D, TAN H, ZHANG Y, et al. Correlation between glass formation and type of eutectic coupled zone in eutectic alloys [J]. Materials Transactions,2003,44(10): 2007-2010.
    [90]Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses[J]. Progress in Materials Science,2007,52:540-596.
    [91]LU Z P, LIU C T. Role of minor alloying additions in formation of bulk metallic glasses:A Review[J]. J. Mater. Sci.,2004,39:3965-3974.
    [92]DONG C, WANG Q, QIANG J B, et al. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses [J]. J Phys D:Appl Phys,2007, 40:R273-R291.
    [93]HAN G, QIANG J B, WANG Q, et al. Composition formulae of ideal metallic glasses and their relevant eutectics established by a cluster-resonance model [J]. Philosophical Magazine,2011,91:2404-2418.
    [94]HAN G, QIANG J B, LI F W, et al. The e/a values of ideal metallie glasses in relat ion to cluster formulae [J]. Acta Mater,2011,59:5917-5923.
    [95]INOE A, SHIBATA T, Zhang T. Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Ni-Cu al loys [J]. Mater Trans,1995, 36:1420-1426.
    [96]HAYS C C, SCHROERS J, GEYER U, et al. Glass forming ability in the Zr-Nb-Ni-Cu-Al bulk metallic glasses [J]. Metastable, Mechanically Alloyed And Nanocrystalline Materials,2000,343-3:103-108.
    [97]ZHANG G Q, JIANG Q K, CHEN L Y, et al. Synthesis of centimeter-size Ag-doped Zr-Cu-Al metallic glasses with large plasticity [J]. J Alloys Comp,2006,424: 176-178.
    [98]ZHANG T, INOUE A, MASUMOTO T. Amorphous Zr-Al-TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K [J]. Mater Trans,1991,32: 1005-1010.
    [99]WANG Y M, SHEK C H, QIANG J B, et al. The e/a factor governing the formation and stability of (Zr76Ni24)1-xAlx bulk metallic glasses [J]. Scrip Mater,2003,48: 1525-1529.
    [100]JING Q, ZHANG Y, WANG D, et al. A study of the glass forming ability in ZrNiAl alloys [J]. Mater Sci Eng A,2006,441:106-111.
    [101]LI Y H, ZHANG W, DONG C, et al. Formation and mechanical properties of Zr-Ni-Al glassy alloys with high glass-forming ability [J]. Intermetallics,2010,18: 1851-1855.
    [102]李艳辉.厘米级Zr-Al-Ni系块体非晶合金的形成和性能[D].大连:大连理工大学,2011.
    [103]MACKAY A L, FINNEY J L. Structuration [J]. J. Appl. Crystallogr.1973,6:284-289.
    [104]SHEN Y T, KIM T H, GANGOPADHYAY A K, et al. Icosahedral order, frustration, and the glass transition:evidence from time-dependent nucleation and supercooled liquid structure studies [J]. Phys Rev Lett,2009,102(5):057801.
    [105]LEE G W, GANGOPADHYAY A K, CROAT T K, et al. Link between liquid structure and the nucleation barrier for icosahedral quasicrystal, polytetrahedral, and simple crystalline phases in Ti-Zr-Ni alloys:Verification of Frank's hypothesis [J]. Phys Rev B,2005,72(17):174107.
    [106]LIU X J, CHEN G L, LIU C T. Correlation between primary phases and atomic clusters in a Zr-based metallic glass [J]. J Appl Phys,2010,108:123516.
    [107]INOUE A. High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates[J]. Mater. Trans. JIM.,1995,36(7):866-875.
    [108]INOUE A. Bulk Amorphous and Nanocrystalline Alloys with High Functional Properties[J]. Mater. Sci. Eng.,2001,304-306(1):1-10.
    [109]INOUE A, Negishi T, Kimura H M, et al. High Packing Density of Zr-and Pd-Based Bulk Amorphous Alloys[J]. Mater. Trans. JIM,1998,39(2):318-321.
    [110]WANG W H, Li L L, Zhao D Q, et al. Microstructural Transformation in a Zr41Til4Cu12.5NilOBe22.5 Bulk Metallic Glass under High Pressure[J]. Phys. Rev. B,2001,62(17):11292-11295.
    [111]WANG W H, WEI Q, MACHT M P, et al. Microstructure Studies of Zr41Ti14Cu12.5NilOBe22.5 Bulk Amorphous Alloy by Electron Diffraction Intensity Analysis[J]. Appl. Phys. Lett.,1997,71(8):1053-1055.
    [112]WANG W H, WEI Q, FRIEDRICH S. Microstructure, Decomposition, and Crystallization in Zr41Ti14Cul2.5NilOBe22.5 Bulk Metallic Glass[J]. Phys. Rev. B,1998,57(14): 8211-8217.
    [113]于清.团簇线判据及Cu-Zr (Hf)基三元块体非品合金形成[D].大连:大连理工大学,2005.
    [114]陈季香,羌建兵,于清等.以最大原子密度定义合金相中的第一近邻团簇.物理学报,2012,61(4):0461021-0461028.
    [115]VIALLS P. Pearson's Handbook-Cystallagraphic Data for Intermetallic Phases[M]. ASM International.1997.
    [116]CHEN J X, WANG Q, WANG Y M, et al. Cluster formulae for alloy phases [J]. Philosophical Magazine Letter,2010,90(9):683-688.
    [117]董闯,羌建兵,袁亮等.合金相的“团簇+连接原子”模刑与成分设计[J].中国有色金属学报,2011,21(10)10:2502-2509.
    [118]KISSINGER H E. Reaction kinetics in differentia] thermal analysis [J]. Analytical Chemistry,1957,29(11):1702-1706.
    [119]XING D W, HUANG Y J, SHEN J, et al. Crystallization Behaviors of ZrCuNiAlTi4 bulk amorphous alloy during continuous heating [J]. Rare Metal Mat Eng,2007,36(7): 1181-1184.
    [120]MOTT N F, JONES H. The theory of the properties of metal and alloys [J]. Clarendon, Oxford,1936,310-326.
    [121]NAGEL S R, TAUC J. Nearly-free-electron approach to the theory of metallic glass alloys [J]. Physics Review Letters,1975,35:380-383.
    [122]NAGEL S R. Temperature dependence of the resistivity in metallic glasses [J]. Phys. Rev. B,1977,16(4):1694-1698.
    [123]NAGEL S R, VASSILIOU J, HORN P M, et al. Temperature dependence of the eesistivity in Nb-Ni glasses [J]. Phys. Rev. B,1978,17(2):162-467.
    [124]BECK H, OBERLE R. Influence of pair potentials on the structure of polyvalent liquid metals [J]. Solids State Communications,1979,32(11):959-962.
    [125]NOWAK H, Haussler P. Concept of resonances in disordered metallic matter [J]. J Non-Cryst Solids,1999,250-252:389-392.
    [126]HAUSSLER P. On evidence for a new Hume-Rothery phase with an amorphous structure [J]. Z. Phys. B,1983,53:15.
    [127]HAUSSLER P. Interrelations between atomic and electronic structures-liquid and amorphous metal as model systems [J]. Physics Reports,1992,222:65-143.
    [128]MAYOU D, CYROT-LACKMANN F, TRAMBLY DE LAISSARDIERE G, et al. Electronic Properties and the Role of d States in Stable Quasicrystals[J]. J. Non-Cryst. Solids, 1993,153-154(2):412-415.
    [129]WANG Y M, QIANG J B, WONG C H, et al. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion [J]. J. Mater. Res.,2003, 18(3):642-648.
    [130]MIZUTANI U, TAKEUCHI T, SATO H. Interpretation of the Hume-Rothery rule in complex electron compounds:γ-Phase Cu5Zn8 Alloy, FK-type A130Mg40Zn30 and MI-type A168Cu7Ru17Si8 1/1-1/1-1/1 approximants [J]. Prog. Mater. Sci.,2004, 49(3-4):227-261.
    [131]VOHRA Y K, SIKKA S K, CHIDAMBARAM R. Electronic structure of omega phase of Titanium and Zirconium [J]. J Phys. F:Met. Phys.,1979,9(9):1771-1782.
    [132]HAUSSLER P, BARZOLA-QUIQUIA. J, HABERKERN R, et al. In quasicrystals:structure and physical properties [M]. Trebin, Wiley-VCH,2003,289-309.
    [133]EGAMI T. Universal criterion for metallic glass formation [J]. Mater. Sci. Eng., 1997, A226-A228,261-267.
    [134]NAGASE T, NAKAMURA M, UMAKOSHI Y. Electron irradiation induced nano-crystallization in Zr66.7Ni33.3 amorphous alloy and Zr60Al15Ni25 metallic glass [J]. Intermetallics,2007,15:211-224.
    [135]ESKANDARANY M S, SAIDA J, INOUE A. Structural and calorimetric evolutions of mechanically-induced solid-state devitrificated Zr60Ni25Al15 glassy alloy powder [J]. Acta Mater,2003,51:1481-1492.
    [136]LI C F, SAIDA J, MATSUSHITA M, et al. Crystallization process of Zr60Ni25Al15 amorphous alloy [J]. Mater Lett,2000,44:80-86.
    [137]YASUDA H, TAMURA Y, NAGIRA T, et al. Nucleation and growth in undercooled melts of bulk-metallic-glass forming Zr60Ni25Al15 alloy [J]. Mater Trans,2005,46(12): 2762-2767.
    [138]MA D, STOICA A D, WANG X L, et al. Elastic Moduli Inheritance and the Weakest Link in Bulk Metallic Glasses [J]. Phys Rev Lett,2012,108:085501.
    [139]WANG W H. Family traits of metallic glasses [J]. Nature Mater,2012,11:275-276.
    [140]WANG W H. Properties inheritance in metallic glasses [J]. J Appl Phys,2012,111: 123519.
    [141]MIRACLE D B, WILKS G B, DAHLMAN A G, et al. The strength of chemical bonds in solids and liquids [J]. Acta Mater,2011,59:7840-7854.
    [142]MIRACLE D B, LOUZGUINE-LUZGIN D V, LOUZGUINA-LUZGINA L V, et al. An assessment of binary metallic glasses:correlations between structure, glass forming ability and stability [J]. Int Mater Rev,2010,55:218-256.
    [143]DE BOER F R. BOOM R, MATTERNS W C M, et al. Cohesion in Metals:Transition Metal Alloys (North-Holland, Amsterdam,1988).
    [144]WANG Y M. Structure Evolution in Multi-component Zr-based glass-forming Alloys [D]. Hong Kong:City University of Hong Kong,2007.
    [145]FAN C, LI C F, INOUE A. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr-Ni-Cu-Al metallic glasses [J]. Appl Phys Lett,2001,79:1024-1026.
    [146]XING L Q, ECHERT J, LOSER W, et al. High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr-Ti-Cu-Ni-Al amorphous alloys. Appl Phys Lett,1999,74:664-666.
    [147]STEPHENS P W, GOLDMAN 1. Sharp Diffraction Maxima from an Icosahedral Glass [J]. Phys Rev Lett,1986,56:1168-1171.
    [148]FRANK F C. Proc R Soc London,1952,215A:43-46.
    [149]SPAEPEN F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall,1977,25:407-415.
    [150]LEWANDOSKY J J, GREER A L. Temperature rise at shear bands in metallic glasses [J]. Nature Mater,2006,5:15-18.
    [151]SPAEPEN F. On the fracture morphology of metallic glasses [J]. Acta Metall,1975, 23:615-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700