基于合金化改善镁合金强/韧性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对当前镁合金力学性能不能满足应用需求,可用合金选择性少,以及稀土系镁合金成本高的问题,本文探索新的镁合金强/韧化设计新思路,期望通过寻找新的合金元素开发出具有高强/高韧性能的新型镁合金。
     作者总结了24种合金元素的原子信息,提出镁合金强/韧化设计思路:
     1.在镁合金中添加难溶性合金元素,生成具有高熔点高硬度金属间化合物,提高镁合金孪生变形的临界剪切应力,阻碍变形过程中的晶界滑移提高强度。根据相图和原子信息,选择Sb和Ge元素验证设计思路的可行性。
     2.从材料设计的角度分析镁合金的强韧化问题,根据原子团簇理论和金属键强弱的影响因素,选择Ga元素进行合金化,开发Mg-Ga系镁合金。
     合金熔炼与制备采用金属模铸造法,分别进行了铸态Mg-Sb二元合金中α-Mg_3Sb_2相形态变化的研究,AZ31 Sb合金化后α-Mg_3Sb_2相的形态及其对合金显微组织和性能影响的研究;铸态Mg-Ge二元合金中Mg_2Ge相的形态及其对合金显微组织与性能研究,铸态AZ31 Ge合金化Mg_2Ge形态对合金显微组织与性能影响的研究,Al和Zn对Mg_2Ge金属间化合物形貌的影响;Mg-Ga二元合金显微组织与性能的研究和Mg-xGa-3Al-1Zn系合金显微组织与性能的研究。
     Sb合金化结果表明:由于存在较大的电负数差,Sb元素与Mg元素之间具有较强的结合力,两种原子相遇会发生电子转移,形成固溶有Mg的离子晶体α-Mg_3Sb_2。在熔炼Mg-10(wt.%)Sb合金时,熔体中形成大量α-Mg_3Sb_2,其较大的密度导致熔体分层,得到成分相差较大的Mg-9(wt.%)Sb和Mg-13(wt.%)Sb双层合金铸锭。因此镁合金中只能添加少量的Sb。α-Mg_3Sb_2金属间化合物在Mg-9(wt.%)Sb合金中有针棒状和矩形块状两种形态,在Mg-13(wt.%)Sb中呈矩形块状。AZ31进行Sb合金化时发现,Sb对合金没有晶粒细化作用;α-Mg_3Sb_2析出相在铸态AZ31中呈针棒状,均匀分布在基体内。拉伸实验结果表明,少量的针棒状α-Mg_3Sb_2析出相的存在对镁合金抗拉强度影响不大,随着该析出相体积分数的增加,抗拉强度略有下降,但仍然具有较高的韧性。在应力-应变曲线上观察到了晶粒发生孪生变形时产生的应力释放现象。
     Ge合金化结果表明:Ge对镁及镁合金有晶粒细化作用,析出相Mg_2Ge的形态受合金元素影响很大,析出相的形态影响合金的拉伸性能。在Mg-Ge二元合金中,析出相Mg_2Ge呈针棒状,形成(α-Mg+Mg_2Ge)共晶分布在晶界上,对镁有强化作用。铸态AZ31中Mg_2Ge相呈汉字状,不利于合金力学性能。Mg-Zn-Ge和Mg-3Al-Ge显微组织表明,Al和Zn对Mg_2Ge相从针棒状向汉字状转变都有影响。因此,控制析出相Mg_2Ge的形态成为Ge改善镁合金强韧性的关键。
     Mg-Ga二元合金实验表明:固溶的Ga元素可以显著降低α-Mg晶格常数和平均原子间距,Ga还可以有效的细化镁合金晶粒,显著提高纯镁的韧性、屈服强度和极限拉伸强度。Mg_5Ga_2析出相在铸态组织中的形态和分布与Ga含量有关,Ga含量较低时,Mg_5Ga_2析出相呈颗粒状均匀分布在基体内;Ga含量较高时,一部分Mg_5Ga_2析出相呈块状或孤岛状分布在晶界处。固溶处理可以有效提高Ga在Mg中的固溶度,时效处理可使合金中析出直径小于100 nm的针棒状Mg_5Ga_2,该析出相最先从晶界处析出,随着时效时间的延长逐渐向晶内扩展,合金的屈服强度也随时效时间的延长而逐渐增加。
     Mg-xGa-3Al-1Zn系合金的研究结果表明:Ga细化了合金的晶粒,Mg_5Ga_2析出相的形态和分布规律与Mg-Ga二元合金相似。固溶处理后Mg_5Ga_2析出相显著减少,合金韧性较好,Mg-4.5Ga-3Al-1Zn合金的延伸率达到11.7%。时效处理效果与Mg-Ga二元合金基本相同,Mg-4.5Ga-3Al-1Zn合金的极限拉伸强度最高达到207 MPa。Al和Zn元素可以加速Mg_5Ga_2强化相的析出。
     Ga合金化研究结果证实,根据团簇理论和增强原子结合力的设计思想,寻找新的能够提高镁合金强度/韧性的合金元素的思路可行,Mg-Ga系镁合金具有开发成为新型高强镁合金的潜力。
     最后,作者还通过对Ga、Al、Zn、Mn、Li、Sn、Si、Sb和Ge等非稀土系元素的特征进行综合分析,总结出可以强/韧化镁合金的非稀土系合金元素所具有的一般特征:
     (1)合金元素可以固溶于镁基体中;
     (2)合金元素的原子半径都小于Mg原子半径;
     (3)合金元素的化合价应尽可能高;
     (4)合金元素的电负数应该小于1.9。
The application of Magnesium alloys is dramatically limited by the low mechanical properties, few alloys systems and the high cost of Rare earth Magnesium alloys. Author wants to find new alloying element and supply a new strengthening design method of Mg alloys.
     Author summarized atomic information of 24 type of alloying elements including Magnesium element. Both methods of alloying of magnesium alloys were supposed according to the strengthening mechanism. The both methods were followed:
     (1) Indissolvable elements in Magnesium alloys were added to Magnesium alloys in order to improve the critical shearing stress of twin and oppose the grain boundary slipping in deformation process. However, the ductility of magnesium alloys was reduced. According to the phase diagrams and atomic information, Antimony and Germanium were selected and experimented to prove practical in practice.
     (2) The strengthening of Magnesium alloys was researched from the subjedt of material design and Gallium was chosen according to the electron concentration and the influencing factors of metallic bond. This is a new method for strengthening the Magnesium alloys.
     The dissertation included morphology ofα-Mg_3Sb_2 precipitates in Mg-Sb binary alloys, microstructure and mechanical properties of AZ31 with the addition of Sb; Microstructure evolution and mechanical properties of as-cast Mg-Ge binary magnesium alloys, Microstructure and mechanical property of as-cast AZ31 with the addition of Germanium, the effect of Al and Zn on the morphology of Mg_2Ge in Mg alloys, microstructure and mechanical properties of Mg-Ga binary alloys and the microstructure and mechanical properties of Mg-xGa-3Al-Zn alloys. All of the alloy ingots were prepared by die casting.
     The results of Sb alloying of Mg alloys indicated that the intermetallic compoundα-Mg_3Sb_2 soluted with many Mg atoms because of the difference between Pauling electro-negativity values of them. A double layer alloy ingot with Mg-9(wt.%)Sb and Mg-13(wt.%)Sb was gotten when the Mg-10(wt.%)Sb was prepared because a large number of theα-Mg_3Sb_2 grains with high density were synthesized and some of them deposited on the bottom of crucible. Then the amount of the addition of Sb to Magnesium alloys was limited. Theα-Mg_3Sb_2 precipitates were rectangle block in as-cast Mg-13(wt.%)Sb alloy while in as-cast Mg-9(wt.%)Sb alloy majority of them were rod shape and minority were rectangle block. The experiment results of AZ31 with the addition of Sb indicated the rod-shaped intermetallic compoundα-Mg_3Sb_2 formed and distributed homogenously in substrate. The elongations of alloys with Sb addition are good (δ>10%). Both of tensile strength and elongation of alloys appreciably reduce with the increase of contents of Sb in alloys. Twin deforming and boundary sliding are the main deformation of AZ31 with and without Sb addition.
     The results of Ge alloying of Mg alloys indicated that Ge could refine the Mg alloys, the morphologies of Mg_2Ge precipitates reduced the tensile properties of Mg alloys and were affected by other alloying elements in Mg alloys. The Mg_2Ge precipitates in Mg-Ge binary alloys were rod-shaped and formed the eutectic of (α-Mg + Mg_2Ge) which could effectively enhance the grain boundaries ofα-Mg. In the microstructure of as-cast AZ31 with the addition of Ge, the Mg_2Ge intermetallic compound presented Chinese script, which reduced the tensile properties of alloys. The microstructure of as-cast Mg-3Al-Ge and as-cast Mg-1Zn-Ge alloys indicated that both of Al and Zn elements could affect the morphology of Mg_2Ge.
     The experiment results of Mg-Ga binary alloys presented that Ga dissolved in Mg alloys dramatically reduced the lattice parameters and the average distance between of atoms ofα-Mg grains, the tensile properties of pure Mg were improved dramtically. The morphology and distribution of Mg_5Ga_2 in as-cast Mg-Ga binary alloys were associated with the content of Ga. If the content of Ga was below the 1.5 at.% (included) in as-cast alloys, the Mg_5Ga_2 precipitates were particles and homogeously distributed in matrix. If the content of Ga was above 2.0 at.% (included) in as-cast alloys, the Mg_5Ga_2 precipitates were block and distributed on grain boundaries. The solid solubility of Ga in Mg-xGa binary alloy could be improved by solution treatment. A lot of tiny rod-shaped Mg_5Ga_2 precipitates (φ<100 nm) were precipitated in aging treatment and the yield tensile strengthed of the alloys was improved.
     In as-cast Mg-xGa-3Al-1Zn alloys the morphology and distribution of Mg_5Ga_2 precipitates were similar with the rule of them in as-cast Mg-Ga binary alloys. The elongations of Mg-xGa-3Al-1Zn alloys were better after solution treatment. The effects of aging treatment on Mg-xGa-3Al-lZn alloys were similar with it on Mg-Ga binary alloys. The ultimate tensile strengthen of Mg-4.5Ga-3Al-1Zn alloy was higher, 207 MPa after aging treatment. The aging microstructure of Mg-xGa-3Al-1Zn alloys indicated both Al and Zn could accelerate the precipitation of Mg_5Ga_2 phase. The Mg-Ga system alloys should be further study to tap the potential and develop new Magnesium alloys with high performance.
     The Ga alloying results of Mg alloy proved that the atom cluster theory and the influencing factors of metallic bond were useful to find new alloying elements to strength Mg alloys and the Mg-Ga system alloys have large potentiality to be developed new high performance Mg alloys.
     At last, general characters of magnesium alloying elements except for Rare earth elements were summarized according to Ga, Al, Zn, Mn, Li, Sn, Si, Sb and Ge elements. The contents of the principle were followed:
     (1) The alloying elements could be dissolved in Mg alloys even at ambient temperature;
     (2) The radius of them should be much smaller than that of Mg atom;
     (3) The charge of basic ion of them should be more;
     (4) The Pauling electro-negativity values of them should be smaller than 1.9.
引文
[1] B. L Mordike, T. Ebert. Magnesium Properties - applications potential[J]. Materials Science and Engineering: A, 2001, 302:37 - 45.
    [2] 艾洁,边磊.当代美军作战理论的思想基石——“战略瘫痪”论[J].国防,2008,05:72-73.
    [3] 肖学样.浅析美军作战顶点思想的新发展[J].国防科技,2009,48-51.
    [4] 梅少伟.美军作战理论创新的六大特征[J].国防科技,2006,01:76-79.
    [5] 马开泉,龚成.美军“即时后勤补给”模式研究[J].军事交通学院学报,2008,10:81-85.
    [6] 赵群力.美军在伊拉克战争巾肋新军事思想及其核心作战能力[J].航空科学技术,2003,04:03-06.
    [7] 岐伟,穆志勇,王效刚.军事转型:美国的困惑与担忧[J].环球军事,2007,05.
    [8] 李蔚疆.美军精确后勤保障对我军后勤信息化建设的启示[J].军事经济研究,2004,02:67-68.
    [9] 孙晔飞,周军.美军在伊拉克战场上的“制敌机动”[J].现代军事,2003,07:59-60.
    [10] 张坚.美军快速决定性作战理论的历史沿革[J].现代军事,2004,06:66-68.
    [11] 李文胜.美军新“战略打击”思想[J].当代军事文摘,2006,01:29-30.
    [12] 余昌仁,王亮,袁新战.美军配售保障的成功经验[J].基层后勤研究,2008,07:61-62.
    [13] 唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程,2007,30:69-72.
    [14] 李明杰,杨定富,苏晓亮.军用汽车防护技术发展现状和趋势[J].汽车运用,2008,01:14-16.
    [15] 宣卫芳,杨晓然.国内外军工材料环境试验现状及发展趋势[J].装备环境工程,2004,08:16-22.
    [16] 曾荣昌,柯伟,徐永波等.Mg合金的最新发展及应用前景[J].金属学报,2001,07:673-685.
    [17] 陈振华.镁合金[M].北京:化学工业出版社,2004.
    [18] 陆刚.铝、镁、钛合金材料在汽车工业中的应用和发展[J].上海有色金属.2006,27:43-48.
    [19] 洪岩松,杨柯,张广道等.可降解镁合金的动物体内骨诱导作用[J].金属学报,2008,44:1035-1041.
    [20] 刘生发,黄尚宇,徐萍.Ce对AZ91镁合金铸态组织细化的影响[J].金属学报,2006,42:443-448.
    [21] 张诗昌,胡衍生,魏伯康.钇对压铸AZ91镁合金耐腐蚀性能的影响[J].铸造,2005,54:881-883.
    [22] 张诗昌,蔡启舟,王立世等.钇和混合稀土对AZ91合金高温力学性能的影响[J].特种铸造及有色合金,2005,25:287-290.
    [23]张诗昌,魏伯康,陈渭臣.钇及混合稀土对AZ91镁合金流动性与凝固组织的影响[J].铸造,2004,53:118-121.
    [24]张诗昌,魏伯康,林汉同等.钇及铈镧混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报,2001,11:99-102.
    [25]王立世,段汉桥,魏伯康等.混合稀土对AZ91镁合金组织和性能的影响[J].特种铸造及有色合金,2002,03:12-15.
    [26]段汉桥,王立世,蔡启舟等.稀土对AZ91镁合金耐腐蚀性能的影响[J].中国机械工程,2003,14:1789-1792.
    [27]严琦琦,傅定发,张辉等.热处理对挤压镁合金AZ91拉伸变形与断裂行为的影响[J].热加工工艺,2006,35:10-12.
    [28]李元东,郝远,闫峰云等.AZ91D镁合金在半固态等温热处理中的组织演变[J].中国有色金属学报,2001,11:571-575.
    [29]杨友,刘勇兵,杨晓红.压铸镁合金AZ91D高周疲劳性能研究[J].特种铸造及有色合金,2006,26:105-107.
    [30]曹运锋,熊守美.压铸镁合金AZ91HP晶界腐蚀方法研究[J].铸造,2003,52:737-739.
    [31]宋雨来,刘耀辉,朱先勇等.铈对AZ91压铸镁合金组织及电偶腐蚀性能的影响[J].铸造,2006,55:689-691.
    [32]缪姚军,沈承金,刘建军.AZ91D镁合金微弧氧化膜耐蚀性的试验研究[J].轻合金加工技术,2006,34:43-46.
    [33]刘生发,王慧源,徐萍.钕对AZ91镁合金腐蚀性能的影响[J].铸造,2006,55:296-299.
    [34]赵艳娜,朱元良,齐公台.钇对AZ91在NaCl溶液中腐蚀的影响[J].材料开发与应用,2005,20:12-14.
    [35]翟秋亚,袁森,蒋百灵.AZ91镁合金的SIMA法半固态组织特征[J].中国有色金属学报,2005,15:123-128.
    [36]吉泽升,陈晓瑜,胡茂良等.固相合成AZ91D镁合金的组织和性能[J].中国有色金属学报.2006,16:2010-2015.
    [37]钟丽应,曹发和,施彦彦等.AZ91镁合金表明铈基稀土转化膜得制备及腐蚀电化学行为[J].金属学报,2008,44:979-985.
    [38]乐启炽,欧鹏,吴跃东等.AZ91D镁合金近液相线铸造研究[J].金属学报,2002,38:219-224.
    [39]于宝义,包春玲,宋鸿武等.固溶处理对AZ91D镁合金挤压管件组织和性能影响[J].金属热处理,2006,31:56-58.
    [40]严琦琦,张辉,陈振华.热处理对挤压镁合金AZ91和ZK60组织与性能的影响[J].金属热处理,2006,31:71-74.
    [41]王忠军,张彩碚,邵晓宏等.添加稀土Er于熔剂中对铸态AZ91镁合金组织与性能的影响[J].中国有色金属学报,2007,17:181-187.
    [42]王智祥,谢建新,刘雪峰等.形变及时效对AZ91镁合金组织和力学性能的影响[J].金属学报,2007,43:920-924.
    [43] 周吉学,汪彬,童文辉等.Sr对AZ91镁合金枝晶生长和相析出的影响[J].金属学报,2007,43:1171-1175.
    [44] 吴国华,樊昱,翟春泉等.稀土La对AZ91镁合金在NaCl溶液中耐蚀性的影响[J].金属学报,2008,44:1247-1252.
    [45] 郅青,高瑾,董超芳等.AZ91D镁合金微弧氧化膜的腐蚀行为研究[J].金属学报,2008,44:986-990.
    [46] Xia Ming-Xu, Zheng Hong-Xing, Yuan Sen, et al. Recrystallization of preformed AZ91D magnesium alloys in the semisolid state[J]. Materials and Design, 2005,26:343-349.
    [47] H. Kanahashi, T. Mukai, Y. Yamada, et al. Experimental study for the improvement of crashworthiness in AZ91 magnesium foam controlling its microstructure[J]. Materials Science and Engineering:A, 2001, 308:283 - 287.
    [48] Liqun Zhu, Weiping Li, Dandan Shan. Effects of low temperature thermal treatment on zinc and/or tin plated coatings of AZ91D magnesium alloy[J]. Surface & Coatings Technology, 2006, 201:2768 - 2775.
    [49] Y. Wang, G. Liu, Z. Fan. A new heat treatment procedure for rheo-diecast AZ91D magnesium alloyl~-[J]. Scripta Materialia, 2006, 54:903 - 908.
    [50] A. Srinivasan, U. T. S. Pillai, B.C. Pai. Effect of Pb addition on ageing behavior of AZ91 magnesium alloy[J]. Materials Science and Engineering:A, 2007, 452-453:87-92.
    [51] X. P. Zhang, G. Chen. Corrosion protection of AZ91D Mg apploy coating with micro-arc oxidation film evaluated by immersion and electrochemical tests[J]. Surface Review and Letters, 2005,12:279 - 287.
    [52] X. P. Zhang, G. Chen. Immersion and electrochemical tests study on corrosion resistance of chrome-free chemical conversion film on AZ91D Mg apploy in 5wt% NaCl solution[J], Surface Review and Letters, 2005,12:417-424.
    [53] R. K. Singh Raman, N. Birbilis, J. Efthimiadis. Corrosion of Mg alloy AZ91 - the role of microstructure[J]. Corrosion Engineering, Science and Technology,2004, 39:346-350.
    [54] Seung Hwan C. Park, Yutaka S. Sato, Hiroyuki Kokawa. Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D[J]. Journal of materials science, 2003:38:4379 - 4383.
    [55] Gaia Ballerini, Ugo Bardi, Roberto Bignucolo, et al. About some corrosion mechanisms of AZ91D magnesium alloy[J]. Corrosion Science, 2005, 47:2173-2184.
    [56] Won-Bae Lee, Chang-Yong Lee, Myoung-Kyun Kim, et al. Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite[J].Composites Science and Technology, 2006, 66:1513 - 1520.
    [57] Xinghao Du a, Erlin Zhang. Microstructure and mechanical behaviour of semi-solid die-casting AZ91D magnesium alloy[J]. Materials Letters, 2007,61:2333-2337.
    [58] Y. C. Guan, Wei Zhou. Calorimetric analysis of AZ91D magnesium alloy[J]. Materials Letters, 2008, 62:4494 - 4496.
    [59] Xinbao Liu, Yoshiaki Osawa, Susumu Takamori, et al. Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification[J]. Materials Letters, 2008,62:2872-2875.
    [60] J. P. Zhou, D. S. Zhao, R. H. Wang, et al. In situ observation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy [J]. Materials Letters, 2007,61:4707-4710.
    [61] 李艳,刘奎立,陈芳雷.AZ31镁合金铸态组织及其退火工艺研究[J].弹箭与制导学报,2006,26:339-341.
    [62] 屠怡范,陈晶益,张波萍等.AZ31铸造镁合金的物相和显微组织[J].铸造,2006,55:509-512.
    [63] 周占霞,赵红亮,关绍康等.微量B对Mg-3Al-1Zn镁合金组织和性能的影响[J].铸造技术,2006,27:163-166.
    [64] 王强,张治民,张宝红等.镁合金变形强韧化研究进展[J].材料导报,2006,20:431-433.
    [65] 彭伟平,彭彩虹,李培杰等.AZ31B镁合金再结晶过程的动力学[J].中国有色金属学报.2006,16:1724-1729.
    [66] 郑伟超,李双寿,汤彬等.稀土对AZ31B变形镁合金组织和力学性能的影响[J].中国有色金属学报.2006,16:197-204.
    [67] 张世斌,李伟轩,邓康等.电磁连铸对AZ31镁合金组织及力学性能的影响[J].中国有色金属学报,2007,17:105-110.
    [68] 聂德福,赵杰.AZ31镁合金疲劳裂纹扩展和过载效应[J].中国有色金属学报,2008,18,05:771-776.
    [69] 余琨,黎文献.Mg-Al-Zn系变形镁合金轧制及热处理后的组织和性能[J].金属热处理,2002,27:8-11.
    [70] 秦梅,张敏刚,郑建军等.AZ31变形镁合金性能与组织的研究[J].山西冶金,2008,112:16-17.
    [71] Margam Chandrasekaran, Yong Ming Shyan John. Effect of materials and temperature on the forward extrusion of magnesium alloys[J]. Materials Science and Engineering:A,2004, 381:308 - 319.
    [72] H.Zhang, S. B. Lin, L. Wu, et al. Defects formation procedure and mathematic model for defect free friction stir welding of magnesium alloy[J]. Materials and Design, 2006, 27:805-809
    [73] S. Yoshihara, B. Mac Donald, T. Hasegawa, et al. Design improvement of spin forming of magnesium alloy tubes using finite element[J]. Journal of Materials Processing Technology, 2004,153 - 154:816 - 820.
    [74] J. Jiang, A. Godfrey and Q. Liu. Influence of grain orientation on twinning during warm compression of wrought Mg - 3A1 - 1Zn. Materials Science and Technology, 2005, 21:1417-1422.
    [75] Ho-Kyung Kim. Activation energies for the grain growth of an AZ31 Mg alloy after equal channel angular pressing[J]. Jouranl of Materials Science, 2004, 39:7107-7109.
    [76] Y. S. Sato, S. H. C. Park, A. Matsunaga, et al. Novel production for highly formable Mg alloy plate[J]. Jouranl of Materials Science, 2005, 40:637 - 642.
    [77] X. M. Zhu, H. G. Yang, M. K. Lei. Corrosion resistance of Al ion implanted AZ31 magnesium alloy at elevated temperature[J]. Surface and Coatings Technology, 2007, 201:6663-6666.
    [78] C. H. Chuang, J. C. Huang, P. J. Hsieh. Using friction stir processing to fabricate MgAlZn intermetallic alloys[J]. Scripta Materialia, 2005, 53:1455 - 1460.
    [79] W. Woo, H. Choo, D. W. Brown, et al. Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy[J]. Scripta Materialia, 2006, 54:1859- 1864.
    [80] H. Watanabe,M.Fukusumi,K. Ishikawa, et al. Superplasticity in a fullerene- dispersed Mg - Al - Zn alloy composite[J]. Scripta Materialia, 2006, 54:1575 - 1580.
    [81] Hidetoshi Somekawa, Toshiji Mukai. Fracture toughness in Mg-Al-Zn alloy processed by equal-channel-angular extrusion[J]. Scripta Materialia, 2006, 54:633-638.
    [82] G. Ben Hamu, D. Eliezer, L. Wagner. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2009, 468:222 - 229.
    [83] Yasumasa Chino, Katsuya Kimura, Mamoru Mabuchi. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy[J]. Materials Science and Engineering:A, 2008,486:481-488.
    [84] A. Jain, O. Duygulu, D. W. Brown, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet[J]. Materials Science and Engineering:A, 2008, 486:545 - 555.
    [85] S.-H. Choi, J. K. Kim, B. J. Kim, et al. The effect of grain size distribution on the shape of flow stress curves of Mg - 3A1 - lZn under uniaxial compression[J].Materials Science and Engineering:A, 2008, 488:458-467.
    [86] T. Laser, Ch. Hartig, M. R. Nurnberg, et al. The influence of calcium and cerium mischmetal on the microstructural evolution of Mg - 3Al -1Zn during extrusion and resulting mechanical properties[J]. Acta Materialia, 2008, 56:2791-2798
    [87] B. Clausen, C. N. Tome, D. W. Brown, et al. Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg[J]. Acta Materialia, 2008, 56:2456 - 2468.
    [88] Mingjun Li, Takuya Tamura, Kenji Miwa. Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding[J]. Acta Materialia, 2007, 55:4635 - 4643.
    [86] L. Jiang, J. J. Jonas, R. K. Mishra, et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Materialia, 2007,55:3899 - 3910.
    [87] R. Gu¨nther, Ch. Hartig, R. Bormann. Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment[J]. Acta Materialia,2006,54:5591-5597.
    [88] Y. V. R.K. Prasad, K. P. Rao, N. Hort, et al. Hot working parameters and mechanisms in as-cast Mg-3Sn-1Ca alloy[J]. Materials Letters, 2008, 62:4207-4209.
    [89] Q. D. Wang, Y. J. Chen, J. B. Lin, et al. Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method[J]. Materials Letters, 2007, 61:4599-4602.
    [90] S. J. Liang, Z. Y. Liu, E. D. Wang. Microstructure and mechanical properties of Mg-Al -Zn alloy deformed by cold extrusion[J]. Materials Letters,2008,62:3051 -3054.
    [91] Xi-Shu Wang, Li Jin, Ying Li, et al. Effect of equal channel angular extrusion process on deformation behaviors of Mg-3Al-Zn alloy[J]. Materials Letters, 2008,62:1856-1858.
    [92] 赵娟,李建平,郭永春等.相图计算在Mg-9Gd-3Y-0.6Zn-0.5Zr新型变形镁合金热处理工艺设计中的应用[J].铸造技术,2007,28:531-534.
    [93] 肖阳,张新明,陈健美等.Mg-9Gd-4Y-0.6Zr合金挤压T5态的高温组织和力学性能[J].中国有色金属学报,2006,16:709-714.
    [94] 张新明,陈健美,邓运来等.Mg-Gd-Y-(Mn,Zr)合金的显微组织和力学性能[J].中国有色金属学报,2006,16:219-227.
    [95] 陈明安,杨汐,张新明等.Mg-Gd-Y-Zr合金表面含硫硅烷薄膜的结构与耐蚀性能[J].中国有色金属学报,2008,18:24-29.
    [96] Guo Yongchun, Li Jianping, Li Jinshan, et al. Mg-Gd-Y system phase diagram calculation and experimental clarification[J]. Journal of Alloys and Compounds, 2008, 450:446 - 451.
    [97] J. Gro¨brier, R. Schmid-Fetzer. Selection of promising quaternary candidates from Mg-Mn-(Sc, Gd, Y, Zr) for development of creep-resistant magnesium alloys[J].Journal of Alloys and Compounds, 2001,320:296-301.
    [98] Michiaki Yamasaki, Tsutomu Anan, Shintaro Yoshimoto, et al. Mechanical properties of warm-extruded Mg - Zn - Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scripta Materialia, 2005, 53:799 - 803.
    [99] J. F. Nie, X. Gao, S. M. Zhu. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J]. Scripta Materialia,2005, 53:1049 - 1053.
    [100] S. M. He, X. Q. Zeng, L. M. Peng, et al. Microstructure and strengthening mechanism of high strength Mg - 10Gd - 2Y - 0.5Zr alloy[J]. Journal of Alloys and Compounds, 2007, 427:316 - 323.
    [101] Cuiping Guo, Zhenmin Du, Changrong Li. A thermodynamic description of the Gd - Mg - Y system [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2007,31:75-88.
    [102] T. Honma, T. Ohkubo, S. Kamado, et al. Effect of Zn additions on the age-hardening of Mg - 2. 0Gd - 1. 2Y - 0. 2Zr alloys[J]. Acta Materialia, 2007, 55:4137 - 4150.
    [103] Jun Wang, Jian Meng, Deping Zhang, et al. Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd - Y - Zr alloys[J]. Materials Science and Engineering:A, 2007,456:78 - 84.
    [104] Xing-Wu Guo, Jian-Wei Chang, Shang-Ming He, et al. Investigation of corrosion behaviors of Mg - 6Gd - 3Y - 0.4Zr alloy in NaCl aqueous solutions[J]. Electrochimica Acta, 2007, 52:2570 - 2579.
    [105] Yan Gao, Qudong Wang, Jinhai Gu, et al. Behavior of Mg - 15Gd - 5Y - 0.5Zr alloy during solution heat treatment from 500 to 540℃[J]. Materials Science and Engineering:A, 2007, 459:117- 123.
    [106] X. B. Liu, R. S. Chen, E. H. Han. Effects of ageing treatment on microstructures and properties of Mg - Gd - Y - Zr alloys with and without Zn additions[J]. Journal of Alloys and Compounds, 2008,465:232 - 238.
    [107] Qiuming Peng, Jianli Wang, Yaoming Wu, et al. Microstructures and tensile properties of Mg - 8Gd - 0. 6Zr - xNd - yY (x + y = 3, mass%) alloys[J]. Materials Science and Engineering:A, 2006, 433:133 - 138.
    [108] Jianwei Chang, Xingwu Guo, Shangming He, et al. Investigation of the corrosion for Mg - xGd - 3Y - 0. 4Zr (x = 6,8,10,12 wt%) alloys in a peak-aged condition[J]. Corrosion Science, 2008, 50:166 - 177.
    [109] Zheng Kai-yun, Dong Jie, Ze NG Xiao-qin, et al. Effect of pre-deformation on aging characteristics and mechanical properties of Mg-Gd-Nd-Zr alloy[J]. Trans. Nonferrous Met. SOC. China, 2007,17:1164-1168.
    [110] Friedrich. Mordi Ke. Magnesium Technology-Metallurgy, Design Data, Applications [M]. Berlin Heidelberg: Springer-Verlag 2006.
    [111] C. L. Mendis, C. J. Bettles, M. A. Gibson, et al. An enhanced age hardening response in Mg - Sn based alloys containing Zn[J]. Materials Science and Engineering:A, 2006, 435-436:163-171.
    [112] 孙扬善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报.1999,09:55-60.
    [113] 刘红梅,陈云贵,唐永柏等.铸态Mg-Sn二元合金的显微组织与力学性能[J].四川大学学报,2006,38:90-94.
    [114] Hongmei Liu, Yungui Chena, Yongbai Tang, et al. The microstructure, tensile properties, and creep behavior of as-cast Mg-(1-10)%Sn alloys[J]. Scripta Materialia, 2006,55:251 - 254.
    [115] T. T. Sasaki, K. Oh-ishi, T. Ohkubo, et al. Enhanced age hardening response by the addition of Zn in Mg-Sn alloys[J]. Scripta Materialia, 2006,55:251-254.
    [116] E. J. Guo, B. X. Ma, L. P. Wang. Modification of Mg_2Si morphology in Mg-Si alloys with Bi[J]. journal of materials processing technology,2008,206 :161-166.
    [117] 袁广银,刘满平,王渠东等.Mg-Al-Zn-Si合金的显微组织细化[J].金属学报,2002,38,1105-1108.
    [118] G. Y. Yuan, Z. L. Liu, Q. D. Wang, et al. Microstructure refinement of Mg-Al - Zn-Si alloys[J]. Materials Letters, 2002,56:53- 58.
    [119] Q.C. Jiang, H. Y. Wang, Y. Wang, et al. Modification of Mg_2Si in Mg-Si alloys with yttrium[J]. Materials Science and Engineering:A, 2005, 392:130 - 135.
    [120] Wang Liping, Guo Erjun, M A Baoxia. Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys[J]. Journal of Rare Earths, 2008,26:105-109.
    [121] N. Zheng, H.Y. Wang, W. Wang, Z.H. Gu, et al. Invalidation of KBF_4 modification on the primary Mg_2Si in Mg-Si alloys by Al addition[J]. Journal of Alloys and Compounds, 2008,459:L8 - L12.
    [122] H.Y. Wang, Q.C. Jiang, B. X. Ma, et al. Journal of Alloys and Compounds, 2005, 387: 105 - 108.
    [123] Alloy phase diagrams, volume 3, ASM Handbook. ASM International, 1992.
    [124] 虞觉奇.二元合金状况图集[M].上海:上海科技出版社,1987.
    [125] Guangyin Yuan, Yangshan Sun, Wenjiang Ding. Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy[J], Scripta Materialia, 2000, 43:1009 - 1013.
    [126] Guangyin Yuan, Yangshan Sun,Wenjiang Ding. Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy[J].Materials Science and Engineering:A, 2001, 308:38-44.
    [127] G. Y. Yuan, Z. L. Liu, Q. D. Wang, et al. Microstructure refinement of Mg - Al - Zn - Si alloys[J]. Materials Letters, 2002,56:53 - 58
    [128] Y. Q. Ma, R. S. Chen, En-Hou Han. Keys to improving the strength and ductility of the AZ64 magnesium alloy[J].Materials Letters, in press.
    [129] N. Balasubramani, A. Srinivasan, U.T. S. Pillai, K. Raghukandan, B.C. Pai. Effect of antimony addition on the microstructure and mechanical properties of ZA84 magnesium alloy[J]. Journal of Alloys and Compounds. 2008, 455:168 - 173.
    [130] Stefano Curtarolo, Aleksey N. Kolmogorov, Franklin Hadley Cocks. High-throughput ab initio analysis of the Bi - In, Bi-Mg, Bi - Sb, In-Mg, In - Sb, and Mg - Sb systems[J].CALPHAD,2005, 29:155 -161.
    [131] 杨明波,潘复生,陈健等.Sb变质Mg-6Al-1Zn-0.7Si镁合金的组织和性能[J].铸造,2007,56:1303-1306.
    [132] 杨明波,潘复生,白亮等.Sb变质Mg-6Al-1Zn-0.7Si镁合金的组织和性能[J].中国有色金属学报,2007,17:2010-2016.
    [133] 周惦武,刘金水,卢远志等.Sb、Bi合金化提高Mg-Al系合金抗蠕变性能的机理[J].中国有色金属学报,2008,01:118-125.
    [134] 张国英,张辉,方戈亮等.Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究[J].物理学报.2005,54:5288-5292.
    [135] T. Balakumar, M. Medraj. Thermodynamic modeling of the Mg-Al -Sb system[J]. CALPHAD, 2005, 29:24-36.
    [136] R. Ferro, R. Capelli, A. Borsese, et al. Journal of the less-common metals, 1974,37:307-309.
    [137] F. Islam, A. K.Thykadavil,M.Medraj. Journal of alloys and compounds, 2006,425:129-139.
    [138] 余瑞璜.固体与分子经验电子理论[J].科学通报,1978,
    [139] 程开甲,程漱玉.TFD模型和余氏理论对材料设计的应用[J].自然科学进展.1993,03:417-432.
    [140] 刘志林.界面电子结构与界面性能[M].北京:科学出版社,2002.
    [141] 王清.团簇线判据及Cu-Zr(Hf)基三元块体非晶合金形成[D].大连:大连理工大学材料科学与工程学院,2005.
    [142] 李萍,李丽,谭家隆等.Cu-Zr-Al系Cu基非晶合金弹性性能与团簇结构的相关性[J].材料工程.2009,02:15-18.
    [143] 张新房,彭敏,王清等.Zr-Al-Co块状非晶的成分优化[J].金属学报.2004,40:1099-1103.
    [144] 王清,王英敏,羌建兵等.Cu基Cu-Zr-Al块体非晶合金的成分设计[J].金属学报.2004,40:1183-1188.
    [145] 夏俊海,羌建兵,王英敏等.Cu-Zr-Nb系铜基块体非晶合金的形成[J].金属学报.2005,41:999-1003.
    [146] 王清,羌建兵,王英敏等.Cu-Zr-Ti系Cu基块体非晶合金的形成和成分优化[J].物理学报.2006,55:378-385.
    [147] 羌建兵,黄火根,王清等.Ti-Zr-Ni-Cu非晶系的等电子浓度特征[J].金属学报.2006,42:561-564.
    [148] 陈伟荣,王清,程旭等.基于团簇线的Fe-B-Y基五元块体非晶合金[J].金属学报,2007,43:797-802.
    [149] 董闯,王清,羌建兵等.三元合金相图中的团簇线规律[J].沈阳工业大学学报.2008,30:50-54.
    [150] 程旭,王清,陈伟荣等.基于团簇的Fe-B-Y-Nb四元块体非晶合金[J].中国科学.2008,38:465-470.
    [151] 丁迅雷.金团簇上小分子吸附的第一性原理研究[M].合肥:中国科学技术大学,2004.
    [152] 金属及其化合物中毒——镓及其化合物.[2007,07,15].http://www.daifumd.com/daifumd/blog/html/2085/article_102085.html..
    [153] 田东萍.镓与肿瘤[J].国外医学医学地理分册.1994,15:160-163.
    [154] 田东萍.镓盐抗癌作用研究现状[J].国外医学医学地理分册.1995,16:108-111.
    [155] 俞未一,朱庆萍,沈家平等.镓银合金恶物理性能及急性毒性试验的研究[J].口腔医学,1995,15:171-172.
    [156] 俞未一,沈家平,孙卫斌等.四种充填材料的细胞毒性研究[J].口腔医学,1996,16:119-120.
    [157] 俞未一,沈家平,孙卫斌等.六种充填材料的细胞毒性研究[J].中华口腔医学杂志.1997.32:246-248.
    [158] 石笑春,乌增炎,滕翕和.一种有机镓化合物对小鼠的胚胎毒性和致畸性[J].劳动医学.1997,14:68-71.
    [159] 徐钢梅,张彩霞,宁丽等.MTT法评价镓合金的细胞毒性[J].中华口腔医学杂志,2001,36:189-192.
    [160] W. Kroll.Metallwirtschaft, 1932,11:435.
    [161] William Hume-rothery, Geoffrey Vincent Raynor. The constitution of the magnesium-rich alloys in the systems Aluminium-magnesium, Gallium-magnesium, Indium-magnesium, and Thallium-magnesium[J]. J. Inst. Met., 1938, 63:201-226.
    [162] B. Predel, D. W. Stein. Thermodynamische untersuchung DES systems galliunrmagnesium[J]. Journal of the less-common metals. 1969, 18:203-213.
    [163] B. Predel. Thermodynamic investigations on the formation and decomposition of metallic glasses. Physica, 1981,103B:113-122.
    [164] O. E. Awe, Y. A. Odusote, O. Akinlade, et al. Thermodynamic properties of some gallium-based binary alloys[J]. Physica B, 2008.
    [165] 伊洋,孙晶,杨林等.Ga对铸态Mg-x%Al-2%Ga镁合金显微组织和力学性能的影响[J].铸造.2008,57:284-290.
    [166] 大野笃美.金属的凝固理论实践及应用[M].北京:机械工业出版社,1990.
    [167] 李超.金属学原理[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [168] 边秀房,王伟民,李辉等.金属熔体结构[M].上海:上海交通大学出版社,2003.
    [169] K.A. Bolshakov, N.A. Bulonkov, M.S. Tsirlin, et al. Russ. J. Inorg. Chem. (Engl. Transl.),1962, 7:1176.
    [170] Cathie L, Condron, Susan M. Kauzlarich, et al. Thermoelectric properties and microstructure of Mg_3Sb_2. Journal of Solid State Chemistry, 2006,179:2252-2257.
    [171] 胡赓祥,蔡殉.材料科学基础[M].上海:上海交通大学,2000.
    [172] 张克从,张乐蕙.晶体生长[M].北京:科学出版社,1981.
    [173] 王群骄.有色金属热处理技术[M].北京:化学工业出版社,2008.
    [174] 汪彬,杨院生,周吉学等.脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响[J].有金属材料与工程.2009,38:519-522.
    [175] 马志新,李德富,张奎.WE54镁合金中析出相的特点[J].特种铸造及有色合金.2006,26:539-541.
    [176] 林志埙,蒋海燕,付彭怀等.镁合金薄壁复杂零件熔模铸造成形工艺研究[J].特种铸造及有色合金.2008,28:457-459.
    [177] WeiWang, GuohuaWu, QudongWang, et al. Gd contents, mechanical and corrosion properties of Mg - 10Gd - 3Y - 0. 5Zr alloy purified by fluxes containing GdC13 additions. Materials Science and Engineering:A, 2009, 507:207 - 214.
    [178] Qiuming Peng, Hanwu Dong, Lidong Wanga, et al. Aging behavior and mechanical properties of Mg-Gd-Ho alloys. Materials Characterization. 2008,59:983-986.
    [179] 镓. http://baike.baidu.com/view/34299.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700