Cu-Ni基多元耐蚀合金的稳定固溶体团簇结构模型及成分设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu-Ni合金以其良好的耐海水腐蚀和加工性能广泛地应用于电厂、化工和轮船中的冷凝器材料。在Cu-Ni中添加Fe、Mn等元素可以进一步提高合金的耐蚀和加工等性能,添加的元素含量通常源于大量经验探索,这就使得在开发和设计Cu-Ni多元合金材料时,难以实施最佳有效的成分设计与优化。为此,本论文围绕Cu-Ni合金中添加的改性元素类型及其含量这一关键问题,开展了一系列理论与实验研究,最终建立了Cu-Ni-M多元稳定固溶体合金的原子团簇结构模型-合金成分-微观组织-宏观性能之间的联系,该研究具有理论和实际应用双重意义。
     基于Fe元素在Cu-Ni合金中的固溶度与温度的关联分析,提出了Cu-Ni-Fe稳定固溶体合金的概念,特指在一定温度下容易获得的具有较大固溶度和较高稳定性的合金。Cu-Ni-Fe合金在高温时,由于热无序破坏了短程有序性结构使得Fe在Cu-Ni合金中的固溶度随温度升高而迅速增加,在低温时,由于Cu-Ni相分离使得Fe1Nil2团簇聚集使得Fe在Cu-Ni合金中的固溶度随温度降低而缓慢减小。
     基于与Cu具有正混合焓,与Ni具有负混合焓的过渡族金属元素M在Cu-Ni合金中的固溶度与Ni元素的关联分析(M元素包含Fe、Co、Cr、V、Nb、Mo、Ru、Ta、W、Mn等),建立了Cu-Ni-M稳定固溶体合金的原子团簇结构模型,在该模型中,Cu-Ni-M固溶体合金在局域上形成以M原子为中心,以Ni原子为第一近邻分布CN12的M1Ni12八面体原子团簇,M1Ni12原子团簇无序的分散到Cu基体中形成[M1Ni12]Cux稳定固溶体合金。
     最后,基于[M1Ni12]Cux稳定固溶体合金的原子团簇结构模型优化设计了添加Fe,Mn和Cr元素改性的Cu-Ni-M多元耐蚀合金成分,并应用XRD、SEM、TEM和电化学腐蚀测试方法得到了[M1Ni12]Cux稳定固溶体合金的微结构、耐腐蚀性能和硬度的变化。实验结果表明,添加Fe,Mn和Cr改性的Cu-(Ni,M)合金在800℃C保温5h后水淬,在M含量为M/Ni≤1/12时对应于单一固溶体相结构;在M含量为M/Ni>1/12时有M-Ni弥散析出相;在M含量为M/Ni=1/12的稳定固溶体合金附近成分具有最佳耐蚀性能;Cu-(Ni,M)固溶体合金的硬度随添加的M元素含量的增加而提高,在M/Ni≤1/12阶段对应于M元素的固溶强化,在M/Ni>1/12阶段对应于M-Ni析出相弥散强化;基于Cu-Ni-M稳定固溶体合金的原子团簇结构模型设计的[(Fe0.75-xMn0.25Crx)Ni12]Cu30.3合金在3.5%(wt.%)NaCl水溶液中具有优异的耐蚀性能,浸泡240h后的平均腐蚀速率为0.0008μm/h。
Cu-Ni alloys are widely employed as tube and vessel materials due to their excellent resistance to seawater corrosion. Minor Fe and Mn additions are necessary to enhance the corrosion resistance of commercial Cu-Ni alloys. The corrosion resistance decreases with further increasing Fe and Mn contents due to precipitation of a Ni-(Fe, Mn) phase. So the key issue is the optimum modification element contents in different Cu-Ni alloys with high temperature stability. Generally, single-phase homogeneous solid solution alloys are desirable for good corrosion resistance performance. Such a single phase state is easily retained by quenching when the solid solution alloy has the maximum thermal stability. Therefore, the amounts of modification element additions are determined by the stability issue of the parent Cu-Ni alloys. The aim of this investigation was two-fold, first to experimentally verify the optimum M (M=Fe, Ni and Cr) levels in different Cu-Ni based alloys from the view point of homogeneous solid solution and corrosion performances, and second to theoretically establish a cluster-based structural model for stable solid solutions that quantitatively explains the solid solubility. A series of studies were carried out focusing on the modification element contents of Cu-Ni alloys and the relationships among solid solution alloy composition-atomic cluster structure model-alloy heat treatment process-microstructure-macroeconomic performances have been established, which is important to theoretical research and practical applications.
     In this work, an atomic cluster-based structure model was presented to explain the stable solid solution solubility limit of M elements in Cu-Ni-based alloys, the M elements having negative enthalpies of mixing with Ni and positive enthalpies of mixing with Cu. By this model, it assumed that one M (M=Fe, Ni and Cr) atom and twelve Ni atoms formed a M-centered and Ni-surrounded cube-octahedron and these isolated M1Ni12 clusters are embedded in the Cu matrix conforming to a cluster formula [M1Ni12]Cux. The ratio of M and Ni is equal to 1/12, and the stable solid solution compositions of the M-modified Cu-Ni alloys is [M1/13Ni12/13]1/(1+x)Cux/(1+x), (M=Fe, Ni and Cr). The high stability of the resultant Cu-Ni-Fe alloys have been confirmed by first-principles calculations.
     XRD, SEM, TEM and electrochemical corrosion measurements were used to characterize the microstructure and corrosion-resistance performance of Cu-(Ni, M) alloys. Vickers hardness measurement revealed a two-stage hardening process as a function of Fe/Ni ratios. These two stages correspond to the Fe solution stage (Fe/Ni(?)1/12) presumably dominated by solute hardening, and to the precipitation stage (Fe/Ni>1/12) dominated by dispersion strengthening but also counter-balanced by softened Fe-Ni deprived Cu matrix. The alloy [(Fe0.6Mn0.25Cr0.15)1Ni12]Cu30.3 of Cu-Ni modified by Fe, Ni and Cr additions has the best corrosion resistance in 3.5% NaCl aqueous solution, the immersion corrosion rate being 0.0008μm/h after 240 hours.
引文
[1]许坚,夏再筑,戴新民.腐蚀金属学及耐蚀金属材料[M].浙江:浙江科学技术出版社,1981.
    [2]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,1983.
    [3]于福洲.金属材料的耐腐蚀性[M].北京:科学出版社,1982.
    [4]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2004.
    [5]Uhlig H H, Revie R W. Corrosion and Corrosion Control:An Introduction to Corrosion Science and Engineering [M]. A Wiley-Interscience Publication:John Wiley and Sons,1985.
    [6]Danek G. Material Applications for Navy Machinery Systems [M]. Naval Ship Research and Development Center,1975.
    [7]Sedrlks A J. Advanced materials in marine environments [J]. Materials Performance,1994,33:56-63.
    [8]Richter F. Influence of precipitation process on the physical properties of the Cu-Ni-alloys CuNilOFelMn and CuNi30Mn1Fe [J]. Materialwissenschaft und Werkstofftechnik,1986, 17(8):273-280.
    [9]Mathiyarasu J, Palaniswamy N, Muralidharan V S. An insight into the passivation of cupronickel alloys in chloride environment [J]. Journal of Chemical Sciences,2001,113:63-76.
    [10]Swartzendruber L J. Phase Diagram of Binary Iron Alloys [M]. ASM International, Materials Park, OH,1993.
    [11]Lebrun N. Binary Evaluation Program [M]. Materials Science International Services Gmbh, Stuttgart. 2003.
    [12]田荣璋.铜合金及其加工手册[M].长沙:中南大学出版社,2002.
    [13]Efird K D, Anderson D B. Seawater corrosion of 90-10 and 70-30 copper-nickel:14 year exposures [J]. Materials Performance,1975,14(11):37-40.
    [14]Marsden D D. Early failure of cupro-nickel heat exchanger tubes-a case history [J]. Materials Performance,1978,17(8):9-12.
    [15]Crousier D J, Beccaria A M. Behaviour of Cu-Ni alloys in natural sea water and NaCl solution [J]. Materials and Corrosion,1990,41:185-189.
    [16]Giuliani L, Tamba A, Modena C. Electrochemical characterization of some Cu alloys in NaCl solutions [J]. Corrosion Science,1971,11:485-498.
    [17]Khaled M I, Ahlam M F, Waheed A B. The influence of Ni content on the stability of copper-nickel alloys in alkaline sulphate solutions [J]. Journal of Applied Electrochemistry,2004,34:823-831.
    [18]North R F, Pryor M J. The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys [J]. Corrosion Science,1970,10:297-303.
    [19]North R F, Pryor M J. The nature of protective films formed on a copper iron alloy [J]. Corrosion Science,1969,9:509-516.
    [20]刘淑云.铜及铜合金均匀化退火[M].北京:机械工业出版社,1990.
    [21]Raynor G V, Rivlin V G G V. Phase Equilibria in Iron Ternary Alloys [M]. Institute of Metals, London,1988
    [22]Raghavan V. Copper-iron-nickel [J]. Journal of Phase Equilibria and Diffusion,2004,25(6):547-549.
    [23]Gupta K P. Phase Diagram of Ternary Nickel Alloys [M]. Indian Inst. Metals, Calcutta,1990, (1):290-315.
    [24]邓楚平.BFe30-1-1白铜铸锭裂纹的形成机理及其预防措施[J].湖南有色金属,1994,4:236-241.
    [25]铜合金发展协会[EB/OL]. http://www.copper.org/applications/cuni/default.html.
    [26]Pearson C. Role of iron in the inhibition of corrosion of marine heat exchangers [J]. British Corrosion Journal,1972,7:61-68.
    [27]Efird K D. The synergistic effect of Ni and Fe on the seawater corrosion of copper alloy [J]. Corrosion, 1977,33:347-351.
    [28]Efird K D. The effect of fluid dynamics on the corrosion of copper base alloys in seawater [J]. Corrosion,1977,33:3-8.
    [29]Swartzendruber L J, Bennett L H. The effect of Fe on the corrosion rate of copper rich Cu-Ni alloys [J]. Scripta Metallurgica,1968,2:93-97,
    [30]Tracy A W, Hungerford R L. The effect of the iron content of cupro-nickel on its corrosion resistance in seawater [C]. Proceedings of the International Conference on Intelligent System Application to Power System, Riode Janeiro, Brazil,1945.
    [31]Burleigh T D, Waldeck D H. Effect of alloying on the resistance of Cu-10% Ni alloys to seawater impingement [J]. Corrosion.1999,55:800-804.
    [32]朱小龙.Cu-Ni合金微观组织结构对耐蚀性的影响[J].中国有色金属学报,1992,4:56-59.
    [33]吴惕言,李健纯.铜镍73/30合金抗蚀性与合金微观均匀性的关系[J].中南大学学报,1984,4:39-43.
    [34]Zhu X, Lei T. Seawater corrosion of 70Cu-30Ni alloy of incomplete recrystallization of intermittent and full immersion [J]. Materials and Corrosion,2001,52:368-371.
    [35]Stewart W C, La-Que F L. Corrosion-resisting characteristics of iron-modified 90-10 cupro-nickel alloy [J]. Corrosion,1952,8:259-277.
    [36]Li Q F, Li C H, Xu L K. Corrosion behavior of B30Cu-Ni alloy and anti-corrosion coating in marine environment [J]. Transactions of Nonferrous Metals Society of China,2007,17:s161-s165.
    [37]Popplewell J M, Hart R J. Ford J A. Effect of iron on the corrosion characteristics of 90-10 cupronickel in quiescent 3.4% sodium chloride solution [J].Corrosion Science,1973,13:295-309.
    [38]Popplewell J M. The effect of iron on the stress corrosion resistance of 90/10 cupro-nickel in ammoniacal environment [J]. Corrosion Science,1973,13(8):593-603.
    [39]李大超.国外Cu-Ni冷凝器管的早期破坏及其原因[J].材蒋开发与应用,1991,1:1-11.
    [40]Drolenga L J P, Ijsseling F P, Kolster B H. The influence of alloy composition and microstructure on the corrosion behaviour of Cu-Ni alloys in seawater [J]. Materials and Corrosion,34(4):167-178.
    [41]Bailey G L. Copper-nickel-iron alloys resistant to sea-water corrosion [J]. Journal Institute of Metals, 1951,79:243-292.
    [42]吴惕言,李健纯.铜镍70/30合金抗蚀性与合金微观均匀性的关系[J].中南大学学报,1984,4:39-43.
    [43]Kato C, Ateya B G, Castle J E, et al. On mechanism of corrosion of Cu-9.4Ni-1.7Fe alloy in air saturated aqueous NaCl solution [J]. Journal of the Electrochemical Society,1980,127(9):1890-1896.
    [44]Kievits F J, Ijsseling F P. Research into the corrosion behaviour of CuNilOFe alloys in seawater [J]. Materials and Corrosion,1972,23:1084-1096.
    [45]Chubb J P, Billingham J, Hancock P, et al. The effect of alloying and residual elements on the strength and hot ductility of cast cupro-nickel [J]. Philosophical Transactions of the Royal Society of London, 1980,295(A):123-123.
    [46]Beccaria A M, Poggi G, Wang Y Z. Effect of heat treaments on Cu-Ni 70/30 alloy pitting susceptibility in sea water at different temperature [J]. Materials and Corrosion,1994,45:562-569.
    [47]Mao X Y, Fang F, Yang F, et al. Effect of annealing on microstructure and properties of Cu-30Ni alloy tube [J]. Journal of Materials Processing Technology,2009,209(4):2145-2151.
    [48]邓楚平,黄伯云,潘志勇,等.退火工艺对冷凝器用白铜管组织和性能的影响[J].金属热处理2006,3:57-60.
    [49]林乐耘,王晓华,赵月红,等.加工工艺及表面预处理对B10合金板材抗海生物污着性能的影响[J].材料开发与应用,2001,1:26-29.
    [50]朱小龙,林乐耘,徐杰,等.形变对70Cu-30Ni合金腐蚀行为的影响[J].中国有色金属学报,1997,6:79-81.
    [51]Shinhoo K, Peter K D, Nicholas J G. Mechanical properties of rapidly solidified modified cupro-nickel alloys [J]. Materials Science and Engineering,1986,78(1):33-44.
    [52]Servant C, Guymont M, Lyon O. A new phase in the ternary system Cu-Fe-Ni. Scripta Materialia, 2001,45:103-108.
    [53]Bennett L H, Swartzendruber L J. Interactions between small magnetic clusters in copper-rich Cu-Ni-Fe alloys [J]. Journal of Applied Physics,1971,42:1547-1548.
    [54]Bennett L H, Swartzendruber L J. On the interpretation of Mossbauer effect spectra as related to the constitution of Cu-Ni-Fe alloys [J]. Acta Metallurgica,1970,18:485-498.
    [55]Mishra S, Beck P A. Magnetic clusters in dilute alloys of iron in copper-nickel solid solutions [J]. Physica Status Solidi (a),1973,22:133-142.
    [56]Mishra S. Clustering effects in Cu-Ni-Fe alloys [J]. Physica Status Solidi (a),1975,27:K121-K126.
    [57]Window B. Mossbauer studies of iron in copper alloys [J]. Journal of Physics F:Metal Physics,1971, 1:533-538.
    [58]Window B, Johnson C E, Longworth G. Hyperfine interactions at 57Fe in copper-nickel alloys [J]. Journal of Physics C:Solid State Physics,1970,3:S218-S226.
    [59]Chuang Y Y, Schmid R, Austin C Y. Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the Fe-Cu-Ni system [J]. Acta Metallurgica,1985,33:1369-1380.
    [60]Ronka K J, Kodentsov A A, Loon P J J, et al. Thermodynamic and kinetic study of diffusion paths in the system Cu-Fe-Ni [J]. Metallurgical and Materials Transactions A,1996,27:2229-2238.
    [61]Livaka R J, Thomasa G. Spinodally decomposed Cu-Ni-Fe alloys of asymmetrical compositions [J]. Acta Metallurgica,1971,19:497-505.
    [62]Butler E P, Thomas G. Structure and properties of spinodally decomposed Cu-Ni-Fe alloys [J]. Acta Metallurgica,1970,18(3):347-365.
    [63]Hillert M, Cohen M, Averbach B L. Formation of modulated structures in copper-nickel-iron alloys [J]. Acta Metallurgica,1961,9(6)536-546.
    [64]Gronsky R, Thomas G. Discontinuous coarsening of spinodally decomposed Cu-Ni-Fe alloys [J]. Acta Metallurgica,1975,23(10):1163-1171.
    [65]Lopez V M H, Sano N, Sakurai T, et al. A study of phase decomposition in Cu-Ni-Fe alloys [J]. Acta Metallurgica et Materialia,1993,41(1):265-271.
    [66]Gokcen N A. The Mn-Ni system [J]. Journal of Phase Equilibria,1991,12:313-321.
    [67]Turchanin M A, Agraval P G, Abdulov A R. Phase equilibria and thermodynamics of binary copper systems with 3d-metals. Powder Metallurgy and Metal Ceramics,2006,45:569-581.
    [68]Gupta K P. Phase Diagrams of Ternary Nickel Alloys [M]. Indian Institute of Metals, Calcutta, India. 1990,167-178.
    [69]苗善慧.B30、BFe30-1-1白铜管材的生产[J].铜加工,1990,4:83-93.
    [70]Zanoni R, Gusmano G, Momtesperelli G. X-ray photoelectron spectroscopy investigation of corrosion behavior of ASTM C71640 copper-nickel alloy in seawater [J]. Corrosion,1992,48(5)404-410.
    [71]Chakraborty D J, Laughlin D E. Phase Diagrams of Binary Nickel Alloys [M]. ASM International, Materials Park, OH,1993.
    [72]Meijering J L. Calculation of the nickel-chromium-copper phase diagram from binary data [J]. Acta Metallurgica, 1957,5:257-264.
    [73]霍国燕.Cr-Ni二元相图[J].物理化学学报,2002,12:1093-1098.
    [74]Anderson D B, Efird K D. The influence of chromium on the corrosion properties of copper-nickel alloys in seawater [C]. Proceedings of 3rd International Congress on Marine Corrosion and Fouling, Gaithersberg, Md,1972.
    [75]Anderson D B. Chromium modified copper-nickel alloys for improved seawater impingement resistance [J]. Journal of Engineering for Power Transaction of the ASME,1973,92:132-135.
    [76]Elboujdaini M, Ghaliet E, Angers R. Comportement electrochimique d'alliages Cu-Ni-Cr microcristallins en milieu chlorure [J]. Journal of Applied Electrochemistry,1990.20:848-854.
    [77]Shelleng R D. Heat Treatment and Corrosion Resistance of Cr-modified Cu-Ni [M]. International Nickel Co., Inc.,1976.
    [78]Findik F. As-cast structures and liquidus projection in some spinodal Cu-Ni-Cr alloys [J]. Journal of Materials Science Letters,1993,12(7):505-508.
    [79]Qin Z C, Angers R, Ghali E. Effect of rapid solidification processing on corrosion-resistance of Cu-Ni-Cr Alloys [J]. Materials Letters,1988,7(4):149-151.
    [80]Jeona W S, Shura C C, Kima J G. Effect of Cr on the corrosion resistance of Cu-6Ni-4Sn alloys [J]. Journal of Alloys and Compounds,2008, (455)358-363.
    [81]Ikoma T, Kajihara M. Thermodynamic evaluation of phase equilibria in the ternary Cu-Cr-Ni system [J]. Materials Science and Engineering A,2006,437:293-300.
    [82]Fernee H, Nairn J, Atrens A. Precipitation hardening of Cu-Fe-Cr alloys [J]. Journal of Materials Science,2001,36(9):2711-2719.
    [83]Felipe H V, Victor L, Hector J D, et al. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys [J]. Journal of Alloys and Compounds,2008,457:106-112.
    [84]Wu C K, Thomas G. Microstructure and properties of a Cu-Ni-Cr spinodal alloy [J]. Metallurgical and Materials Transactions A,1977,8:1911-1916.
    [85]Wu C K. Lattice imaging and optical microanalysis of a Cu-Ni-Cr spinodal alloy [J]. Metallurgical Transactions A,1978,9(3):381-387.
    [86]Rao P P, Agrawal B K, Rao A M. Hardening mechanism in spinodal Cu-Ni-Cr alloys [J]. Materials Science and Engineering,1987,92:199-206.
    [87]Rao P P, Agrawal B K, Rao A M. Studies on spinodal decomposition in Cu-27Ni-2Cr alloy [J]. Journal of Materials Science,1986,21:3759-3766.
    [88]Rao P P, Agrawal B K, Rao A M. Comparative study of spinodal decomposition in symmetric and asymmetric Cu-Ni-Cr alloys [J]. Journal of Materials Science,1991,26:1485-1496.
    [89]Rao P P, Agrawal B K, Rao A M. Studies on spinodal decomposition in Cu-30Ni-5Cr alloy [J]. Transactions of the Indian Institute of Metals,1983,36:264-268.
    [90]Abea T, Brennera S S, Soffaa W A. Decomposition of a Cu-Ni-Cr ternary alloy [J]. Surface science, 1991,246:266-271.
    [91]陈平,付亚波.铜镍合金冷凝管产品市场分析[J].上海有色金属,2007.28.191-195.
    [92]American Society for Testing and Materials. B 359/B359M-02 Standard specification for copper and copper-alloy seamless condenser and heat exchanger tubes with integral fins designation [S].2006.
    [93]American Society for Testing and Materials. B171/B171M-99 Standard specification for copper-alloy plate and sheet for pressure vessels, condensers and heat exchangers designation [S].2004.
    [94]American Society for Testing and Materials. B466/B466M-07 Standard specification for seamless copper-nickel pipe and tube designation [S].2007.
    [95]国家标准局信息分类编码研究所.GB/T 5231-2001加工铜及铜合金化学成分和产品形状[S].北京:中国标准出版社,2001.
    [96]Barrett C S. Massaloki T B. Structure of Metals [M]. New York:Mc Graw-Hill,1980.
    [97]Cahn P W, Hassen P. Physical Metallurgy [M]. American:North-Holland Physics Publishing,1983,
    [98]Dabrowski L. Cluster distribution and long-range ordering in multicomponent interstitial alloys [J]. Journal of Materials Science,1996,31:4843-4846.
    [99]Fadin V P, Minaeva G G, Panin V E. Theory of ordering of ternary substitutional solid solutions [J]. Soviet Physics Journal,1966,9:41-45.
    [100]Iveronova V I, Katsnel A A. Short-range order in metal alloys [J]. Russian Physics Journal,1976, 19:1002-1011.
    [101]Gahn U. Short and long range order of f.c.c. solid solutions [J]. Physica Status Solidi(a),1975, 29:529-533.
    [102]Jurgen B, Gerhard I. Ordering and segregation reactions in f.c.c. binary alloys [J]. Acta Metallurgica, 1998,3:213-224.
    [103]Moss S C. X-Ray measurement of short-range order in Cu3Au [J]. Journal of Applied Physics,1950, 35:3547-3553.
    [104]Nix F C, William S. Order-disorder transformations in alloys [J]. Reviews of Modern Physics.1938, 10:1-72.
    [105]Cowley J M. X-Ray measurement of order in single crystals of Cu3Au [J]. Journal of Applied Physics, 1949,21:24-30.
    [106]Bragg W L, Williams E J. The effect of thermal agitation on atomic arrangement in alloys [J]. Proceedings of the Royal Society of London,1934,145(A):699-730.
    [107]Bragg W L, Williams E J. The effect of thermal agitation on atomic arrangement in alloys [J]. Proceedings of the Royal Society of London,1935,152(A):231-252.
    [108]Bragg W L, Williams E J. The effect of thermal agitation on atomic arrangement in alloys [J]. Proceedings of the Royal Society of London,1935,151(A):540-566.
    [109]Bethe H A. Theories of superlattices [J]. Proceedings of the Royal Society of London,1935, 150(A):552-575.
    [110]Peierls R. Statistical theory of superlattices with unequal concentrations of the components [J]. Proceedings of the Royal Society of London,1936,154(A):207-222.
    [111]Kirkwood J G. Order and disorder in binary solid solutions [J]. Journal of Chemistry Physics,1938, 6:70-75.
    [112]Cowley J M. Short- and long-range order parameters in disordered solid solutions [J]. Physical Review,1960,120:1648-1657.
    [113]Cowley J M. Short-range order and long-range order parameters [J]. Physical Review B,1965. 138:1384-1389.
    [114]Cowley J M. An approximate theory of order in alloys [J]. Physical Review,1950,77:669-675.
    [115]Ice G E, Sparks C J. Modern resonant X-ray studies of alloy:local order and displacements [J]. Annual Review of Materials Science,1999,29:25-52.
    [116]Herbstein F H, Borie B S, Averbach B L. Local atomic displacements in solid solutions [J]. Acta Crystallographica,1956,9:466-471.
    [117]Sanchez J M, Fontaine D. Ordering in fcc lattices with first- and second-neighbor interactions [J]. Physical Review B,1980,21:216-228.
    [118]Norbert L, Thomas K. Common neighbour analysis for binary atomic systems [J]. Modelling and Simulation in Materials Science and Engineering,2007,15:319-334.
    [119]Zigmond W. X-Ray measurement of order in the Alloy Cu3Au [J]. Journal of Applied Physics,1944, 15:806-812.
    [120]Patu S, Arsenault R J. Strengthening due to non-random solid solutions [J]. Materials Science and Engineering.1995,194(A):121-128.
    [121]Mohri T, Fontaine D, Sanchez J M. Short range order hardening with second neighbor interactions in fcc solid solutions [J]. Metallurgical and Materials Transactions A,1986,17:189-194.
    [122]Hume-Rothery W, Reynor G V. The Structure of Metals and Alloys [M]. London:Institute of Metals, 1956.
    [123]Hume-Rothery W. Atomic diameters, atomic volumes and solid solubility relations in alloys [J]. Acta Metallurgica. 1966,14:17-20.
    [124]Darken L S, Gurry R W. Physical Chemistry of Metals [M]. New York:McGraw-Hill Co.,1953.
    [125]Miedema A R. The electronegativity parameter for transition metals:heat of formation and charge transfer in alloys [J]. Journal of the Less-Common Metals,1973,32:117-136.
    [126]Miedema A R, Chatel P F, Boer F R. Cohesion in alloys-fundamentals of a semi-empirical model [J]. Physica B,1980,100:1-28.
    [127]Chelikowsky J R. Solid solubilities in divalent alloys [J]. Physical Review B,1979,19:686-701.
    [128]Alonso J A, Simozar S. Prediction of solid solubility in alloys [J]. Physical Review B,1980,22: 5583-5589.
    [129]Lopez J M, Alonso J A. Semiempirical theory of solid solubility in metallic alloys [J]. Phisica Status Solidi (a),1983,76:675-682.
    [130]Lopez J M, Alonso J A. Semiempirical theory of solid solubility in transition metal alloys [J]. Zeitschrift Naturforschung Teil A.1985,40:1199-1205.
    [131]Singh V A, Zunger A. Phenomenology of solid solubilities and ion-implantation sites:an orbital-radii approach [J]. Physics Review B,1982,25:907-922.
    [132]张邦维,廖树帜.合金固溶度理论的进展[J].上海金属,1999,2:3-10.
    [133]蒋敏,郝士明.Fe-Cu,Co-Cu溶解度间隙的集团变分法分析[J].东北大学学报,1993,2:154-157.
    [134]Gallego T L J. Determination of the phase diagram of eutectic binary alloys with partial solid solubility [J]. Physica B,1988,154:82-86.
    [135]Karmazin L. New determination of solubility limit of chromium in Ni-Cr solid solution [J]. Czechoslovak Journal of Physics,1978,28:1175-1178.
    [136]Arafa M K I. A calculation of the solubility limits of the copper-silver system [J]. Proceedings of the Physical Society B,1949,62:238-247.
    [137]Emmanuel C, Sanchez J M, Sigli C. First-principles study of the solubility of Zr in Al [J]. Physical Review B,2002,65:1-13.
    [138]Asato T M, Hoshino K, Masuda J. First-principles calculations for solid solubility limit of impurities in metals:many-body interaction effect [J]. Journal of Magnetism and Magnetic Materials,2001, 226:1051-1052.
    [139]Donald J S, Hamilton J C. First-principles study of the solubility diffusion and clustering of C in Ni [J]. Physics Review B,2003,68:1-7.
    [140]Zhang R J, Wang Y M, Chen D M, Yang R, Yang K. First-principles calculations of LaNi4Al-H solid solution and hydrides [J]. Acta Materialia,2006,54:465-472.
    [141]王广厚.团簇物理学[J].物理,1995,24:13-19.
    [142]王广厚.原子团族的稳定结构和幻数[J].物理学进展,200,1:52-92.
    [143]Valeri G G, Michael S. Structural and energetic properties of nickel clusters:2≤N≤150 [J]. Physics Review B,2004,70:205415-205430.
    [144]Cohen M H, Turnbull D. Metastability of amorphous structure of liquids [J]. Nature,1964, 203:964-965.
    [145]Haussler P, Barzola Q J. Spherical periodicity a general feature of matter at its early stages of formation [J]. Journal of Non-Cryst Solids,2002,312:498-501.
    [146]Hauschild D, Lang M, Barzola J, Haussler P. Interplay between spherical periodicity and angular correlation [J]. Journal of Non-Crystalline Solids,2007(353):3196-3199.
    [147]Miracle D B. The efficient cluster packing model-an atomic structural model for metallic glasses [J]. Acta Materialia,2006,54:4317-4336.
    [148]王清.团簇线判据及Cu-Zr(Hf)基三元块体非晶合金形成[D].大连理工大学,博士学位论文,2006.
    [149]Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses [J]. Journal Physics D:Applied Physics,2007,40:R273-R291.
    [150]Dong C, Chen W R, Wang Y G, et al. Formation of quasicrystals and metallic glasses in relation to icosahedral clusters [J]. Journal of Non-Crystalline Solids,2007,353:3405-3411.
    [151]Palmer E W, Wilson F H. Constitution and properties of some iron-bearing cupronickels [J]. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers,1952, 194:55-64.
    [152]Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys [J]. Materials Transactions Japan Institute of Metals,2000,41:1372-1378.
    [153]Jie Zhang, Qing Wang, Yingmin Wang, et al. Revelation of solid solubility limit Fe/Ni= 1/12 in corrosion-resistant Cu-Ni alloys and relevant cluster model [J]. Journal of Materials Research,2010, 25:328-336.
    [154]张杰,王清,王英敏,等.含Fe和Mn的Ni30Cu70固溶体团簇模型及其耐蚀性研究[J].金属学报,2009,45:1390-1395.
    [155]Lebrun N, Binary Evaluation Program [M]. Materials Science International Services Gmbh, Stuttgart. 2003.
    [156]Hasebe M, Oikawa K, Nishizawa T. Computer calculation of phase diagrams of Co-Cu-Mn and Co-Cu-Ni system [J]. Journal of the Japan Institute of Metals,1982,46(6):584-590.
    [157]Gupta K P, Phase Diagrams of Ternary Nickel Alloys [M]. Indian Institute of Metals, Calcutta, India.1990,1:139-152.
    [158]Hasebe M, Nishizawa T. Analysis and synthesis of phase diagrams of the Fe-Cr-Ni, Fe-Cu-Mn and Fe-Cu-Ni systems [J]. National Bureau Standards Special Publication, USA,1978,496:911-954.
    [159]Meijering J L. Calculation of the nickel-chromium-copper phase diagram from binary data [J]. Acta Metallurgica,1957.5:257-264.
    [160]Kodentsov A A, Dunaev S F, Slyusarenko E M. Phase equilibria in Cu-Ni-(V, Nb, Ta, Mo) systems at 1275 K [J]. Moscow University Chemistry Bulletin,1988,43 (3):90-93.
    [161]Kozlova R F, Rabkin V B, Losev L Y, et al. Boundary of the two-phase field of Mo(Ni,Cu) and Cu(Ni,Mo) solid solutions in the system Mo-Cu-Ni [J]. Soviet Powder Metallurgy and Metal Ceramics, 1973,12:399-402.
    [162]Yanson I E, Raevskaya M V, Tatarkina A L. Phase Equilibria in the Copper-nickel-ruthenium Ternary System at 770 K [J]. Moscow University Chemistry Bulletin,1987,42 (2):105-107.
    [163]Gupta K P. Phase Diagrams of Ternary Nickel Alloys [M]. Indian institute of metals, Calcutta, India. 1990,1:219-227.
    [164]Qiu C A, Jin Z P, Huang P Y. Phase equilibria in the W-Ni-Cu system [J]. Zeitschrift fuer Metallkunde,1988,79 (12):767-769.
    [165]Servant C, Sundman B, Lyon O. Thermodynamic assessment of the Cu-Fe-Ni system [J]. Calphad. 2001,25:79-95.
    [166]Andy W, Sigrid W, Evgeniya L. Non-Ferrous Metal Systems [M]. Springer Berlin Heidelberg.2007.
    [167]Miettinen J. Thermodynamic description of the Cu-Ni-Zn system above 600 degrees C [J]. Calphad, 2003,27:263-274.
    [168]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculation using a plane-wave basis set [J].Computational Materials Science,1996,6:15-50.
    [169]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Physics Review B,1996,54(16):11169-11186.
    [170]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physics Review B,1992,45(23):13244-13249.
    [171]Perdew J P. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation [J]. Physics Review B,1992,46:6671-6687.
    [172]Blochl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations [J]. Physics Review B,1994,49:16223-16233.
    [173]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physics Review B,1990,41:7892-7895.
    [174]Macdonald D D, Syrett B C, Wing S S. The corrosion of Cu-Ni alloys 706 and 715 in flowing water [J]. Corrosion,1979,35(8):387-398.
    [175]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社.2002.
    [176]Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide containing simulated seawater [J]. Corrosion Science,2007,49:1276-1304.
    [177]Laachach A, Srhiri A, Fiaud C, et al. Electrochemical behaviour of Cu-Ni alloy in 3%NaCl medium polluted by sulphides:effect of aminotriazole [J]. British Corrosion Journal,2001,36:136-142.
    [178]Lo S H. Gibbon W M. Hollingshead R S. Corrosion resistance enhancement of marine alloys by rapid solidification [J]. Journal of Materials Science,1987,22 (9):3293-3296.
    [179]Grubitish H, Hilbert F, Sammer R. Evalutation of potentiokinetic current/potential measurements on Cu-Ni alloys, copper and brass in sea water [J]. Materials and Corrosion,1966,17:760-765.
    [180]Sanchez S R D, Schiffrin D J. The flow corrosion mechanism of copper base alloys in sea water in the presence of sulphide contamination [J]. Corrosion Science,1982,22:585-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700