无扩散阻挡层Cu-Ni-Sn和Cu-Ni-Nb三元薄膜的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超大规模集成电路互连线特征尺寸的不断缩小,直接向Cu膜中掺杂少量合金元素来制备热稳定性高、电阻率低且自身带有扩散阻挡效果的Cu种籽层成为该领域新的研究热点。合金化Cu膜的方法有望解决Cu互连线中的若干实际问题。
     本论文研究利用稳定固溶体模型设计和制备无扩散阻挡层Cu三元合金薄膜,以及考察掺杂元素所形成的团簇对该铜膜微观结构和电学性能的影响。按照董闯等人提出的稳定固溶体模型:如果掺杂的第三组元M,与Ni具有负混合焓,与Cu具有正混合焓,则M更容易与Ni结合,而与Cu相排斥,最终形成Ni原子包围中心原子M的团簇,均匀分布在Cu晶格中。团簇固溶在Cu合金薄膜中,有望明显提高薄膜的稳定性。具体研究内容是利用磁控溅射的方法向Cu膜中掺杂一定比例的Ni、Sn元素和一定比例的Ni、Nb元素分别制备成Cu-Ni-Sn和Cu-Ni-Nb三元合金薄膜,并对其进行微结构和电学性能等的测量。
     研究表明,铜膜中掺杂少量的Ni-Sn或Ni-Nb元素可以增加铜膜的热稳定性。共掺杂一定比例的Ni-Sn或Ni-Nb要比单独添加某一种元素的铜膜具有更好的热稳定性和更低的电阻率,而且Ni-Sn或Ni-Nb元素的总掺杂量相对来说更少,这可以在更大程度上保留Cu的本征优良电学性能。Cu-Ni-Sn系统中:(Sn1.1/13.1Ni12/13.1)0.23Cu99.77薄膜在500℃退火后电阻率可低至2.73μΩ·cm。Sn在Cu晶格中主要以(Ni12Sn)团簇均匀分布在薄膜当中,降低了Cu与Si反应的化学反应活性,进而提高薄膜的热稳定性。多余的Sn会析出与Cu反应生成CuSn化合物,这种纳米量级的化合物在晶界处也会起到阻挡扩散的作用。同时增大的界面非晶层也可以增加薄膜的扩散阻挡作用,抑制Cu/Si之间的扩散及化合反应。
     Cu-Ni-Nb系统中:(Nb1.2/13.2Ni12/13.2)0.32Cu99.68薄膜电阻率最低可达2.73μQ·cm。Cu-Ni-Nb薄膜稳定性的主要是由(Nil2Nb1)团簇和过量难溶元素Nb在缺陷处的钉扎作用共同影响的。稳定团簇(Ni12Nb1)在晶体中固溶存在主要是晶内钉扎作用,降低Cu和Si反应的化学反应活性;而析出的Nb主要是阻塞扩散快速通道(晶界、界面和缺陷等),一定程度上阻碍晶粒长大。
     高稳定性Cu-Ni-Sn和Cu-Ni-Nb薄膜的制备成功为稳定固溶体团簇模型应用于Cu合金薄膜的设计领域提供了有力的证据,并对开发新型的铜互连线材料具有重大意义。
As the feature size of interconnects continue to shrink, more attention has been paid to Cu seed layer by the method of alloying with elements, which could both inhibit the diffusion of Cu/Si and improve the properties of thin films. This method of Cu alloying is expected to solve some practical problems of Cu interconnects.
     The stable solid solution cluster model for Cu-Ni-alloy established by C. Dong and J. Zhang dissociates a structure into a cluster part and a glue atom part. The cluster refers to the nearest neighbor coordination polyhedron and is composed of elements with negative enthalpies of mixing, while the glue atoms refer to those atoms that situate outside the clusters in the structure and usually have weaker enthalpies of mixing with the cluster elements. A structure satisfying ideally the nearest neighbor configuration as demanded by the enthalpies of mixing between the constituent elements should naturally possess a high thermal stability.
     This study reports the thermal stability of NiSn-doped and NiNb-doped Cu films prepared by magnetron sputtering onto the barrierless Si(100) substrates, were enhanced, and exhibits higher thermal stability with a better electrical property than the Cu films doped only one element. And adding less Ni-Sn or Ni-Nb elements can keep the native resistivity of Cu films much better. Cu-Ni-Sn film systems showed:the film (Sn1.1/13.1Ni12/13.1)0.23Cu99.77had a resistivity of2.73μΩcm after annealing at500℃for1h. Sn exists evenly in Cu films by the way of (Ni12Sn) clusters, and reduces the reactivity of Cu and Si, improving thermal stability of the film. Those extra Sn precipitate out and react with Cu generating CuSn compounds, this kind of the nanometer level compounds can also play block diffusion effect in the grain boundary. Increasing interface amorphous layer can also block the diffusion of Cu/Si and restrain Cu/Si compound reactions.
     Cu-Ni-Nb film systems:The film (Nb1.2/13.2Ni12/13.2)0.32Cu99.68exhibited minimal resistivity of2.73μΩ·cm at500℃for1hour. thermal stabilities of this ternary solid solution Cu films were mainly due to the combined effects of the pinning effect of (Ni12Nb1) clusters and excess undissolved element Nb in the defects. stable (Ni12Nb1)clusters acted the pinning effect of grain interiors by solid-solution state, to reduce the reactivity of Cu and Si; But the precipitated Nb mainly blocked fast diffusion channels (grain boundaries, interface and defects, etc.), and inhibited grain growth to a certain extent。
     The preparation of High stability Cu-Ni-Sn and Cu-Ni-Nb films provides tangible evidences for the application of Stable Solid Solution Cluster Model in the scheme of Cu alloy thin film, and has significant importance to developing new Cu interconnects
引文
[1]Murarka S. P., Gutman R. J., Kaloyeros A. E., Lanford W. A. Advanced multilayer metallization schemes with copper as interconnection metal. Thin Solid Films, 1993,236(1-2):257-266.
    [2]Ching-Yu Yang, Jeng. S. J, Chen J. S. Grain Growth Agglomeration and Interfacial Reaction of Copper Interconnects. Thin Solid Films,2002,420-421:398-402
    [3]Hu C-K., Harper J. M. E. Copper interconnections and reliability. Mater. Chem. Phys., 1998,52:5-16.
    [4]Murarka S. P., Neirynck J. M., Lanford W. A., Wang W., Ding P. J. Copper Interconnection Schemes:Elimination of the Need of Diffusion Barrier/Adhesion Promoter by the Use of Corrosion Resistant Low resistivity doped Copper. Proceedings of SPIE-The International Society for Optical Engineering,1994,2335:80-90.
    [5]Li J., Mayer J. W., Colgan E. G Oxidation and Protection in Copper and Copper Alloy Thin Films. J. Appl. Phys.,1991,71(5):2820-2827.
    [6]Jian L., Mayer J. w., Colgan E. G. Oxidation and protection in copper and copper alloy thin film. J. Appl. Phys.,1991,70(5):2820-2827.
    [7]Liu C.Chen J.S. Influence of Zr additives on the microstructure and oxidation resistance of Cu (Zr) thin films. Journal of Materials Research,2005,20(2):496-503.
    [8]Murarka S. P., Neirynck J. M., Lanford w. A., Wang W., Ding P J. Copper Interconnectionchemes:Elimination of the Need of Diffusion Barrier/Adhesion Promoter by the Use of Corrosion-Resistant Low-resistivity-doped Copper. Proceedings of SPIE-The International Society for Optical Engineering, 1994,2335:80-90.
    [9]Ed Korczynski. Cu, low-k dielectrics top MRS meeting agenda [J]. Solid State Technology,1998,41 (7):66.
    [10]S. H. Hsieh, C.M. Chien, W. L. Liu, et al. Failure behavior of ITO diffusion barrier between electroplating Cu and Si substrate annealed in a low vacuum [J]. Applied Surface Science,2009,255(16):7357-7360.
    [11]宣羽,汪渊,徐可为等.集成电路的铜互连布线及其扩散阻挡层的研究进展[J].真空科学与技术学报,2004,24:78-81.
    [12]王阳元,黄如,刘晓彦等.面向产业需求的21世纪微电子技术的发展(下)[J].物理,2004,33(7):480-487.
    [13]王阳元,张兴.面向21世纪的微电子技术[J].世界科技研究与发展.1999,21(4):4-11.
    [14]曹博,包良满,李公平等Cu/Si02/Si(100)体系中Cu和Si的扩散和界面反应[J].真空与低温,2006,12(3):137-141.
    [15]龙世兵,马纪东,于广华等SiO2/Ta界面反映及其对Cu扩散的影响[J].北京科技大学学报,2003,25(1):33-35.
    [16]庞恩文,林晶,汪荣昌等.铜布线工艺中阻挡层钽膜的研究[J].固体电子学研究与进展.2002,22(1):78-81.
    [17]丁明惠,张丽丽,盖登宇等.Zr层插入对Ta-N扩散阻挡性能的影响[J].稀有金属材料和工程,2009,38(11):2036-2038.
    [18]M. H. Tsai, C.W.Wang, C. H. Lai, et al. Thermally stable amorphous nitride film as diffusion barrier in copper metallization [J]. Applied Physics Letters,2008, 92:052109.
    [19]谭晶晶,周觅,陈韬等.超薄Ru/TaN双层薄膜作为无籽晶铜互连扩散阻挡层[J].半导体学报,2006,27:198-201.
    [20]陈海波,周继承,李幼真.纳米Ta基阻挡层薄膜及其扩散体系电阻特性研究[J].中国科学E辑:技术科学,2008,38(6):421-427.
    [21]周继承,陈海波,李幼真.纳米Ta-Al-N薄膜的制备及其扩散阻挡特性的研究[J].真空科学与技术学报,2007,27(4):327-331.
    [22]John Hems.TiN-优质的阻挡层[J].微电子技术,1995,23(6):39-42.
    [23]Yuan Z. L., Zhang D. H., Li C. Y, Prasada K., Tan C. M., Li. J. Tang. A New Method for Deposition of Cubic Ta Diffusion Barrier for Cu Metallization. Thin Sol id Films,2003,434(1-2):126-129.
    [24]Rosenberg R., Tu K. N. Mass Transport in Layered Polycrystal line Thin Films. Thin Soild Films,1972,13:163-167.
    [25]Reid J. S., Liu R. Y., Paul M. S., Ruiz R. P., Nicolet M-A. W-B-N diffusion Barriers for Si/Cu Metallizations. Thin Solid Films,1995,262 218-223.
    [26]Kohn A., Eizenberg M., Shacham-Diamand Y Evaluation of electroless deposited Co(W, P) thin films as diffusion barriers for copper metallization. Microelectronic Engineering,2001,55 297-303.
    [27]Nicolet M-A. Diffusion barriers in thin films. Thin Solid Films,1978,52(3): 415-443.
    [28]Reid J. S., Kolawa. E., Garland C. M., Nicolet M-A., Cardone F., Gupta D. Ruiz R. P. Amorphous(Mo Ta or W)-Si-N diffusion barriers for Al metallization. J. App. Phys.,1996,79(2):1105-1119.
    [29]Nicolet M-A. Diffusion barriers in thin films. Thin Solid Films,1978,52(3): 415-443.
    [30]2009年国际半导体技术发展路线(ITRS-2009)
    [31]王新建,刘嘉聪,洪波等.Cr掺杂对Cu/Si(100)薄膜体系的微观结构及电阻率的影响[J].中国有色金属学报,2007,17(12):1917-1921.
    [32]C.J.Liu, J.S.Chen, Y.K.Lin. Characterization of Microstructure, Interfacial Reaction and Diffusion of Immiscible Cu(Ta) Alloy Thin Film on SiO2 at Elevated Temperature [J], Journal of The Electrochemical Society,2004,151(1):G18-G23.
    [33]聂利飞,无扩散阻挡层Cu(C)和Cu(Ti)薄膜的制备及表征,大连理工大学,硕士学位论文,2010
    [34]Pawan Kapur, James P. McVittie, Senior Member, et al. Technology and Reliability Constrained Future Copper Interconnects—Part Ⅰ:Resistance Modeling [J],IEEE Transactions on Electron Devices,2002,49(4):590-597.
    [35]K. Barmak, C. Cabral, Jr., K. P. Rodbell. On the use of alloying elements for Cu interconnect applications [J], Journal of Vacuum Science and Technology B,2006, 24(6):2485-2498.
    [36]李学丹,万英超,姜祥祺,等.真空沉积技术[M].杭州:浙江大学出版社,1994.
    [37]J. P. Chu, C.H.Lin, Y. Y. Hsieh. Thermal Performance of Sputtered Insoluble Cu (W) Films for Advanced Barrierless Metallization [J], Journal of Electronic Materials, 2006,35(1):76-80.
    [38]C.H.Lin, W. K. Leau. Copper-Silver Alloy for Advanced Barrierless Metallization. Journal of Electronic Materials,2009,38(11):2212-2221.
    [39]J. P. Chu, C. H. Lin, V. S. John. Barrier-free Cu metallization with a novel copper seed layer containing various insoluble substances [J]. Vacuum,2008,83(7):668-671.
    [40]J. P. Chu, C. H. Lin, W. K. Leau, et al. Thermal Stability Study of Cu(MoNx) Seed Layer on Barrierless Si [J], Journal of Electronic Materials,2009,38(1):100-107.
    [41]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2008.
    [42]李学丹,万英超,姜祥祺,等.真空沉积技术[M].杭州:浙江大学出版社,1994.
    [43]刘新福,孙以材,刘东升.四探针技术测量薄层电阻的原理及应用[J].半导体技术,2004,29(7):48-52.
    [44]周玉,武高辉.材料分析测试技术——材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [45]周玉.材料分析方法[M].北京:机械工业出版社,2004.
    [46]P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Murarka. Effects of the addition of small amounts of Al to copper:Corrosion, resistivity, adhesion, morphology, and diffusion [J], Journal of Applied Physics,75,3627(1994).
    [47]C. W. Park and R. W. Vook. Electromigration-resistant Cu-Pd alloy films [J], Thin Soli Film 226,238(1993).
    [48]K. Barmak, A. Gungor, C. Cabral, Jr. and J. M. E. Harper. Annealing behavior of Cu and dilute Cu-alloy films:Precipitation, grain growth, and resistivity [J], Journal of Applied Physics,2003,94(3):1605-1616.
    [49]L. F. Nie, X. N. Li, J. P. Chu, Q. Wang, C. H. Lin, C. Dong. Apply Physics Letters. 2010.96(18):182105.
    [50]王清,团簇线判据及Cu-Zr(Hf)基三元块体非晶合金形成,大连理工大学,博士学位论文,2006
    [51]Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses [J], Journal Physics D:Applied Physics.2007,40:R273-R291.
    [52]Dong C, Chen W R, Wang Y G, Qiang J B, Wang Q, Lei Y, Monique C D, Dubois J M. Formation of quasicrystals and metallic glasses in relation to icosahedral clusters. Journal of Non-Crystalline Solids.2007,353:3405-3411.
    [53]J. P. Chu, C.H.Lin. Formation of a reacted layer at the barrierless Cu(WN)/Si interface [J], Applied Physics Letters,2005,87:211902.
    [54]J. P.Chu, C. H. Lin, W. K. Leau, et al. Thermal Stability Study of Cu(MoNx) Seed Layer on Barrierless Si [J], Journal of Electronic Materials,2009,38(1):100-107.
    [55]J. P. Chu, C.H.Lin, P. L. Sun, et al. Cu(ReNx) for Advanced Barrierless Interconnects Stable Up To 730℃ [J]. Journal of The Electrochemical Society,2009,156(7):H540-H543.
    [56]Lanford W. A., Ding. P. J., Wang W., Hymes S., Murarka S. P. Alloying of copper for use in microelectronic metallization. Mater. Chem. Phys.,1995,41(3):192-198.
    [57]S.Y.Chang, D.S.Chen.10-nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900℃[J]. Applied Physics Letters,2009,94:231909
    [58]K. Barmak, A. Gungor, C. Cabral, Jr. and J. M. E. Harper. Annealing behavior of Cu and dilute Cu-alloy films:Precipitation, grain growth, and resistivity [J], Journal of Applied Physics,2003,94 (3):1605-1616.
    [59]Xu L.Y., Li X. N., Materials Science Forum Vols.654-656 (2010) pp 1744-1747
    [60]J.P.Chu, C.H.Lin,, Thermal stability of Cu(W)and Cu(Mo) films for advanced barrierless Cu metallization:Eflects ofannea] ing time. J. Electro. Mater.,2006, 35(11):1933-1936.
    [61]C.H.Lin, J.P.Chu. Thermal Stability of Sputtered Copper Films Containing Dilute Insoluble Tungsten:Thermal Anneal ing Study. J. Mater. Res.,2003,18(6):1429-1434.
    [62]Zhao B., Kim H., Yukihiro S. G Effects of Ag Addition on the Resistivity, Texture and Surface Morphology of Cu Metallization. Jpn. J. Appl. Phys.,2005,44(41): L1278-L1281.
    [63]Hoon Kim, Toshihiko Koseki, Takayuki Ohba. Tomohiro Ohta, Yasuhiko Kojima, Hiroshi Sato, Yukihiro Shimogaki. Process design of Cu(Sn)alloy deposition for highly reliable ultra large-scale integration interconnects. Thin Solid Films,2005, 491:221-227.
    [64]W. H. Lee, Y. K. Ko, J. H. Jang, C. S. Kim, P. J. Reucroft and J. G. Lee. Microstructure Control of Copper Films by the Addition of Molybdenum in an Advanced Metallization Process [J], Journal of Electronic materials, Vol.30, No.8,2001.
    [65]张心怡,基于稳定固溶体合金团簇模型的无扩散阻挡层Cu-Ni-Mo三元薄膜,大连理工大学,硕士学位论文,2011
    [66]Abel F, Cohen C, Davies J A, et al. Thin-film growth of Sn On Cu (100) [J]. Applied Surface Science,1990,44(1):17-27.
    [67]徐利燕,无扩散阻挡层Cu(Sn), Cu(C), Cu(Sn,C)薄膜的制备和表征,大连理工大学,硕士学位论文,2011
    [68]Chang, C.-A. Formation of copper silicides from Cu(100)/Si(100)and Cu(111) /Si (111). J. Appl. Phys.,1990,67(1):566-569.
    [69]Benouattas N., Mosser A., Bouabellou A. Surface morphology and reaction at Cu/Si interface-Effect of native silicon suboxide. Appl. Sur. Sci.,2006,252:7572-577.
    [70]田民波,刘德令.薄膜科学与技术手册(上册)[M]lsted北京:机械工业出版社,1991.
    [71]Gungor A., Barmak K., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir), and Cu(W)alloy thin films. J. Vac. Sci. Techno. B:Microelectronics and Nanometer Structures,2002,20(6):2314-2319.
    [72]王新建,溅射铜和铜合金薄膜的微观结构与性能,上海交通大学,博士学位论文,2009
    [73]Y. Shacham-Diamand and A. Dedhia. J. Electrochem. Soc., Volume 140, Issue 8, pp. 2427-2432 (1993)
    [74]T. Mahal ingam, C. H. Lin, L. T. Wang, J. P. Chu. Materials Chemistry and Physics 100 (2006) 490-495
    [75]Liu L.X., Chen X. H. Lu L. Strain Rate Sensitivty Of Ultrafine-Grained Cu With Nanosized Twins. Acta Metall. Sin. (Engl. Lett.),2006,19(5):313-318
    [76]Chen X. H., Lu L., Lu K. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J. Appl. Phys.,2007,102:0837081-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700