耦合动力系统的同步控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年耦合动力系统的集体行为受到了科学界与工程界的广泛关注.该方向的研究工作揭示了众多自然现象的本质,比如蝉的共鸣,疾病传播等.如果将每个人看作是一个节点并且直接认识的人之间存在一条连接边,人类社会就是一个由网络描述的耦合系统.将系统整体抽象成由许多独立运行却又互相影响的个体所组成的网络是分析系统性能的有效方法,学者们基于此方法研究了通讯系统、电力系统、交通系统、代谢系统、供应链系统等.耦合动力系统的复杂性不仅源于其中每个成员自身的动力学行为,还有它们交错在一起产生的复杂结构.
     虽然耦合系统具有高度复杂性,但在一定条件下却能演化出自组织、涌现等集体行为.研究涌现的集体行为对认识和设计耦合动力系统具有理论意义和实际价值.同步是自然界中一类典型的集体行为,它被广泛地运用到经济、社会、物理、生物等领域.不同于孤立系统,耦合系统的动力学行为还受到耦合方式的影响.但是系统状态演化是否会影响系统结构?众所周知通过外部控制作用或者内部耦合作用可以达到耦合同步效果,但两者之间有无关系?在不同的耦合机制下如何设计高效的控制方法?此外由于规模庞大,复杂系统容易遭受随机扰动、内部组件失效、信息传递延迟等.这些因素会对系统同步性能造成什么影响?如何处理?本文针对上述问题研究了网络上动力系统的同步控制方法,以及系统结构与同步表现之间的相互影响.针对几类具有不同连接方式的耦合动力系统,综合运用稳定性理论、随机分析、线性矩阵不等式、代数图论等工具,建立了相应的同步规范并归纳了实现耦合同步的一般方法.本文的研究内容和创新成果包含以下几个方面:
     考虑一类具有Markov切换结构和混合耦合时滞的强连接网络模型.综合运用代数图论和随机分析等工具,分别在全局控制和局部控制作用下研究了网络的H∞同步表现.该结论推广了确定系统的同步结果.
     学习一类具有节点时滞和耦合时滞的网络模型,该网络具有社团结构.综合运用稳定性理论和矩阵理论等工具,建立了牵制控制策略下网络的聚类同步规范.基于谱分析理论设计算法定位受控对象,使用该方法可以在大规模网络中实现聚类同步.
     分析一系列含有Markov切换参数和Wiener过程的模糊神经网络,耦合系统对应弱连接网络.综合运用随机分析和代数图论等工具,建立了耦合随机系统的同步标准.通过构造辅助矩阵定义了系统的同步误差,并在均方意义下证明了误差系统是指数稳定的.同时使用此辅助矩阵解释了耦合系统牵制同步与自同步之间的关系.
     在没有外界控制输入的情况下,探索一系列随机神经网络如何在不连续耦合作用下达到同步效果,耦合系统对应弱连接网络.不连续耦合作用包括周期间隔耦合和脉冲耦合.综合运用随机分析和归纳法等工具,推导出均方意义下的同步标准.该结论推广了连续耦合系统的同步结果.
     根据忆阻器的物理特性,建立具有状态切换参数的耦合忆阻神经网络模型.分别在耦合系统对应网络是不连接和弱连接的情况下研究其指数同步性.综合运用微分包含理论、集值映射理论和广义稳定性理论等工具,在不连续系统解的框架下推导出基于线性矩阵不等式的指数同步条件.对于第一种情况,由聚类算法定位受控对象并施加控制作用实现牵制同步;对于第二种情况,由弱连接耦合方式实现系统自同步.
     最后对全文进行了总结并讨论了拟开展的研究工作.本文对耦合动力系统同步控制问题的研究不仅丰富了耦合动力系统的同步理论还为耦合动力系统的同步控制实现提供了可靠依据.通过数值仿真证明了理论结论的正确性和有效性.
In recent years, collective behaviors of coupled dynamical systems have gained in-creasing research interest in both science and engineering. The study contributes to revealthe nature of some interesting phenomena, such as resonances of cicadas, epidemic spread-ing, etc. The human society can be described by a network, in which each individuality isviewed as a node and there exists an edge between two persons if they know each other. Re-garding the whole system as a network composed of interactively dynamical individualitiesis an effective approach to study system properties, based on which great efforts have beenmade to study communication systems, power systems, transportation systems, metastasissystems, supply chain systems, etc. The complexities of coupled dynamical systems comefrom dynamics of each subsystem as well as their complicate connections.
     Although processing high complexity, coupled dynamical systems have some collec-tive behaviors under suitable conditions, such as self organization and emergence. Inves-tigating these collective behaviors has both theoretical and practical significance in under-standing and designing complex systems. Synchronization is a typical collective behaviorin nature and has been extensively applied to economy, society, physics and biology, etc.Different from isolated system, the dynamics of coupled systems are also determined bycoupling pattern. However, does dynamic evolution have certain impact on system struc-ture? It is generally known that synchronization can be realized by external control or innercoupling. Is there any relation between them? How do we design effective control methodsfor coupled dynamical systems with different structures? Owing to extremely large size,coupled dynamical systems are often subject to stochastic disturbances, invalid componentsand information transfer delay, etc. How will these noises impact on synchronization perfor-mances? And how do we manage them? To solve above problems, this dissertation mainlyfocuses on synchronization control of coupled dynamical systems, as well as mutual effectsbetween coupling structure and synchronization performance. For some classes of coupleddynamical systems, the authors establish corresponding synchronization criteria by stabilitytheory, stochastic analysis, linear matrix inequality and algebraic graph theory, etc. Further-more, general methods that guarantee synchronization for coupled dynamical systems aresummarized. The main contributions of this dissertation are as follows:
     A class of dynamical networks with Markovian switching structures and mixed cou-pling delays is considered, whose underlying graph is strongly connected. By algebraicgraph theory and stochastic analysis, the authors study the H∞synchronization perfor- mances of such stochastic system with global controllers and local controllers, respectively.The results include some existing results of H∞synchronization of coupled dynamical sys-tems without stochastic disturbances as special cases.
     A class of dynamical networks with node delays and coupling delays is studied, whoseunderlying graph contains many communities. Through stability theory and matrix theory,the authors establish cluster synchronization conditions. The controlled objects are detectedby means of spectral analysis, based on which cluster synchronization can be realized inlarge scale network.
     An array of fuzzy neural networks with Markovian switching parameters and Wienerprocess is analyzed, whose underlying network is weakly connected. Applying stochasticanalysis and algebraic graph theory, the authors develop self synchronization criteria forsuch coupled stochastic systems. Synchronization error is defined by some auxiliary matri-ces and error system is proved to be exponentially stable in the mean square. Furthermore,the relation between pinning synchronization and self synchronization of coupled dynamicalsystems is revealed by these auxiliary matrices.
     Without control inputs, the authors explore how to synchronize coupled stochastic neu-ral networks by discontinuous coupling, whose underlying network is weakly connected.Two kinds of discontinuous coupling modes are involved, periodically intermittent couplingand impulsive coupling. The results include some existing results of stochastic synchroniza-tion of continuous coupled systems as special cases.
     According to physical properties of memristors, the authors establish coupled memris-tive neural networks with state-dependent switching. Its exponential synchronization per-formances are analyzed from two aspects, disconnected underlying network and weaklyconnected one. By differential inclusion theory, set valued map theory and generalized sta-bility theory, linear matrix inequality-based synchronization conditions are obtained underthe framework of discontinuous system’s solutions. For the first case, controlled objects aredetected by aggregated approach and pinning synchronization is realized. For the secondcase, weakly connected coupling pattern leads to self synchronization.
     Finally, conclusion is made and future work is presented. In this dissertation, theresearch on synchronization control of coupled dynamical systems not only enrichessynchronization theories, but also provides reliable bases for practical applications. Nu-merical simulations are given to verify the usefulness and effectiveness of theoretical results.
引文
[1]钱学森.系统科学,思维科学与人体科学.1981,4(1):3-9.
    [2] Wu C W. Evolution and dynamics of complex networks of coupled systems. IEEE Circuits andSystems Magazine,2010,10(3):55-63.
    [3] Carroll T L. Synchronization and complex dynamics in pulse-coupled circuit models of neurons.Biological Cybernetics,1995,73(6):553-559.
    [4] Levy E C, Horowitz M. Synchronization between two weakly coupled delay-line oscillators. Phys-ical Review E,2012,86(6):066209.
    [5] Hioe F T. Superposition solutions of coupled nonlinear equations. Physics Letters A,1997,234(5):351-357.
    [6] Zhu W, Xu D Y, Huang Y M. Global impulsive exponential synchronization of time-delayed cou-pled chaotic systems. Chaos, Solitons and Fractals,2008,35(5):904-912.
    [7] Yuriyama M, Kushida T. Integrated cloud computing environment with IT resources and sensordevices. International Journal of Space-Based and Situated Computing,2011,1(2-3):163-173.
    [8] Newman M E J. The structure and function of complex networks. SIAM Review,2003,45(2):167-256.
    [9] Erdo¨s P, Re′nyi A. On the evolution of random graphs. Publication of the Mathematical Institute ofthe Hungarian Academy of Sciences,1960,5:17-60.
    [10] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature,1998,393(6684):440-442.
    [11] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model.Physics Letters A,1999,263(4-6):341-346.
    [12] Barabasi A L, Albert R. Emergence of scaling in random networks. Science,1999,286(5439):509-512.
    [13] Cancho R F i, Janssen C, Sole′R V. Topology of technology graphs: Small world patterns inelectronic circuits. Physical Review E,2001,64(4):461191-461195.
    [14] Schrauwen B, Bu¨sing L, Legenstein R. On computational power and the order-chaos phase transi-tion in Reservoir Computing. The Advances in Neural Information Processing Systems,2008,21:1425-1432.
    [15] Huttenlocher P R. Synaptic density in human frontal cortex―developmental changes and effectsof aging. Brain research,1979,163(22):195-205.
    [16] Yu W, Chen G, Cao M. Distributed leader-follower flocking control for multi-agent dynamicalsystems with time-varying velocities. Systems and Control Letters,2010,59(9):543-552.
    [17] Bennett M, Schatz M F, Rockwood H, Wiesenfeld K. Huygens’s clocks. Proceedings of the RoyalSociety A,2002,458(2019):563-579.
    [18] Winfree A T. The geometry of biological time. New York: Spinger-Verlag,1980.
    [19] Ne′da Z, Ravasz E, Brechet Y, Vicsek T, Baraba′si A L. Self-organizing processes: The sound ofmany hands clapping. Nature,2000,403:849-850.
    [20] Li D M, Wang Z, Zhou J, Fang J A, Ni J J. A note on chaotic synchronization of time-delay securecommunication systems. Chaos, Solitons and Fractals,2008,38(4):1217-1224.
    [21] Sorrentino F, Ott E. Using synchronization of chaos to identify the dynamics of unknown systems.Chaos,2009,19(3):033108.
    [22] Grichuk E, Kuzmina M, Manykin E. Image processing via synchronization in a self-organizingoscillatory network. Lecture Notes in Electrical Engineering,2009,27(1):97-104.
    [23] Winfree A T. Biological rhythms and the behavior of populations of coupled oscillators. Journalof Theoretical Biology,1967,16(1):15-42.
    [24]汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京:清华大学出版社,2006.
    [25] Kaneko K. Coupled Map Lattices. Singapore: World Scientific,1992.
    [26] Chua L O, Yang L. Cellular neural networks: Theory. IEEE Transactions on Circuits and Systems,1988,35(10):1257-1272.
    [27] Shen Y, Wang J. Noise-induced stabilization of the recurrent neural networks with mixed time-varying delays and Markovian-switching parameters, IEEE Transactions on Neural Networks,2007,18(6):1857-1862.
    [28] Shen Y, Wang J. Almost sure exponential stability of recurrent neural networks with MarkovianSwitching. IEEE Transactions on Neural Networks,2009,20(5):840-855.
    [29] Shen Y, Wang J. Robustness analysis of global exponential stability of recurrent neural networksin the presence of time delays and random disturbances. IEEE Transactions on Neural Networksand Learning Systems,2012,23(1):87-96.
    [30] Liu L, Shen Y, Jiang F. The almost sure asymptotic stability and pth moment asymptotic stabilityof nonlinear stochastic differential systems with polynomial growth. IEEE Transactions on Auto-matic Control,2011,56(8):1985-1990.
    [31] Liu Y, Wang Z, Liang J, Liu X. Stability and synchronization of discrete-time Markovian jumpingneural networks with mixed mode-dependent time delays. IEEE Transactions on Neural Networks,2009,20(7):1102-1116.
    [32] Wang Z, Wang Y, Liu Y. Global synchronization for discrete-time stochastic complex networkswith randomly occurred nonlinearities and mixed time delays. IEEE Transactions on Neural Net-works,2010,21(1):11-25.
    [33] Yang X S, Cao J, Long Y, Rui W G. Adaptive lag synchronization for competitive neural networkswith mixed delays and uncertain hybrid perturbations. IEEE Transactions on Neural Networks,2010,21(10):1656-1667.
    [34] Yang X S, Cao J, Lu J. Synchronization of Markovian coupled neural networks with nonidenticalnode-delays and random coupling strengths. IEEE Transactions on Neural Networks and LearningSystems,2012,23(1):60-71.
    [35] Yang X, Cao J. Finite-time stochastic synchronization of complex networks. Applied Mathemati-cal Modelling,2010,34(11),3631-3641.
    [36] Liang J, Wang Z, Liu Y, Liu X. Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks. IEEE Transactions on Neural Networks,2008,19(11):1910-1920.
    [37] Zhu Q, Cao J. Exponential stability of stochastic neural networks with both Markovian jump andparameters and mixed delays. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cy-bernetics,2011,41(2):341-353.
    [38] Liu Y, Wang Z, Liu X. Exponential synchronization of complex network with Markovian jumpand mixed delays. Physics Letters A,2008,372(22):3986-3998.
    [39] Wang Y, Wang Z, Liang J, Li Y, Du M. Synchronization of stochastic genetic oscillator networkswith time delays and Markovian jumping parameters. Neurocomputing,2010,73(13-15):2532-2539.
    [40] Gao H, Chen T. Network-based H∞output tracking control. IEEE Transactions on AutomaticControl,2008,53(8):655-667.
    [41] Baldi P, Atiya A F. How delays affect neural dynamics and learning. IEEE Transactions on NeuralNetworks,1994,5(4):612-621.
    [42] Wu C W, Chua L O. Application of graph theory to the synchronization in an array of couplednonlinear oscillators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Ap-plications,1995,42(8):494-497.
    [43] Nandi A, Ramaswamy R. Synchronization of coupled stochastic oscillators: The effect of topol-ogy. Pramana-Journal of Physics,2008,70(6):1165-1174.
    [44] Lerman K, Ghosh R. Network structure, topology, and dynamics in generalized models of syn-chronization. Physical Review E,2012,86(2):026108.
    [45]郭雷,许晓鸣.复杂网络.上海:上海科技教育出版社,2006.
    [46]吴德刚.基于复杂网络理论的复杂系统同步控制研究:[博士学位论文].2007.
    [47] Lyapunov A M. Stability of motion. New-York and London: Academic Press,1966.
    [48]廖晓昕.稳定性的理论,方法和应用(第二版).武汉:华中科技大学出版社,2009.
    [49] Barahona M. Synchronization in small-world systems. Physical Review Letters,2002,89(5):054101.
    [50] Hoppensteadt F C, Izhikevich E M. Pattern recognition via synchronization in phase-locked loopneural networks. IEEE Transactions on Neural Networks,2000,11(3):734-738.
    [51] Lu J, Ho D W C, Cao J, Kurths J. Exponential synchronization of linearly coupled neural networkswith impulsive disturbances. IEEE Transactions on Neural Networks,2011,22(2):329-335.
    [52] Andrianantoandro E, Basu S, Karig D K, Weiss R. Synthetic biology: new engineering rules foran emerging discipline. Molecular Systems Biology,2006,2:2006.0028.
    [53] Mirollo R E, Strogatz S H. Synchronization of pulse-coupled biological oscillators. SIAM Journalon Applied Mathematics,1990,50(6):1645-1662.
    [54] Liu Y, Wang Z, Liang J, Liu X. Synchronization of coupled neutral-type neural networks withjumping-mode-dependent discrete and unbounded distributed delays. IEEE Transactions on Sys-tems, Man, and Cybernetics, Part B: Cybernetics,2013,43(1):102-114.
    [55] Pecora L M, Carroll T L. Master stability functions for synchronized coupled systems. PhysicalReview Letters,1998,80(10):2109-2112.
    [56] Pecora L M, Carroll T L, Johnson G, Mar D, Fink K S. Synchronization stability in coupledoscillator arrays: solution for arbitrary configurations. International Journal of Bifurcation andChaos in Applied Sciences and Engineering,2000,10(2):273-290.
    [57] Li X, Chen G. Synchronization and desynchronization of complex dynamical networks: an engi-neering viewpoint. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Appli-cations,2003,50(11):1381-1390.
    [58] Li Z, Lee J J. New eigenvalue based approach to synchronization in asymmetrically coupled net-works. Chaos,2007,17(4):043117.
    [59] Liu X, Wang J Z, Huang L. Global synchronization for a class of dynamical complex networks.Physica A,2007,386(1):543-556.
    [60] Boyd S, Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and ControlTheory. Philadephia, PA: SIAM,1994.
    [61] Li C G, Chen G. Synchronization in general complex dynamical networks with coupling delays.Physica A: Statistical Mechanics and its Applications,2002,343(1-4):263-278.
    [62] Gao H, Lam J, Chen G. New criteria for synchronization stability of general complex dynamicalnetworks with coupling delays. Physics Letters A,2006,360(2):263-273.
    [63] Lu J, Ho D W C. Local and global synchronization in general complex dynamical networks withdelay coupling. Chaos, Solitons and Fractals,2008,37(5):1497-1510.
    [64] Liu H, Lu J A, Lu J A, Hill D J. Structure identification of uncertain general complex dynamicalnetworks with time delay. Automatica,2009,45(8):1799-1807.
    [65] Liu H, Chen J, Lu J A, Cao M. Generalized synchronization in complex dynamical networks viaadaptive couplings. Physica A,2010,389(8):1759-1770.
    [66] Kolmanovskii V B, Myshkis A D. Introduction to the theory and applications of functional Differ-ential equations. Dordrecht: Kluwer Academic Publishers,1999.
    [67] Popov V. Hyperstability of Control System. Berlin: Springer-Verlag,1973.
    [68] Tang H W, Chen L, Lu J A, Tse C K. Adaptive synchronization between two complex networkswith nonidentical topological structures. Physica A,2008,387(22):5623-5630.
    [69] LaSalle J P. The extent of asymptotic stability. Proceedings of the National Academy of Sciencesof the United States of America,1960,46(3):363-365.
    [70] Wu X J, Lu H T. Generalized projective synchronization between two different general complexdynamical networks with delayed coupling. Physics Letters A,2010,374(38):3932-41.
    [71] Lu¨ J, Chen G. A time-varying complex dynamical network model and its controlled synchroniza-tion criteria. IEEE Transactions on Automatic Control,2005,50(6):841-846.
    [72] Zhao J, Hill D J, Liu T. Synchronization of complex dynamical networks with switching topology:A switched system point of view. Automatica,2009,45(11):2502-2511.
    [73] Liberzon D. Switching in systems and control. Boston: Birkhauser,2003.
    [74] Liu T, Zhao J, Hill D J. Exponential synchronization of complex delayed dynamical networks withswitching topology. IEEE Transactions on Circuits and Systems I: Regular Papers,2010,57(11):2967-2980.
    [75] Lu J Q, Ho D W C, Cao J. A unified synchronization criterion for impulsive dynamical networks.Automatica,2010,46(7):1215-1221.
    [76] Belykh V N, Belykh I V, Hasler M. Connection graph stability method for synchronized coupledchaotic systems. Physica D,2004,195(1-2):159-187.
    [77] Belykh I V, Belykh V N, Hasler M. Generalized connection graph method for synchronization inasymmetrical networks. Physica D,2006,224(1-2):42-51.
    [78] Jalili M, Rad A A, Hasler M. Enhancing synchronizability of dynamical networks using the con-nection graph stability method. International Journal of Circuit Theory and Applications,2007,35(5-6):611-622.
    [79] Mazenc F, Malisoff M, Harmand J. Further results on stabilization of periodic trajectories for achemostat with two species. IEEE Transactions on Automatic Control,2008,53(1):66-74.
    [80] Liu M, Shao Y Y, Fu X C. Complete synchronization on multi-layer center dynamical networks.Chaos, Solitons and Fractals,2009,41(5):2584-2591.
    [81] Guo W L. Lag synchronization of the complex networks via pinning control. Nonlinear Analysis:Real World Applications,2011,12(5):2579-2585.
    [82] Zheng S, Bi Q S, Cai G L. Adaptive projective synchronization in complex networks with time-varing coupling delay. Physics Letters A,2009,373(17):1553-1559.
    [83] Choon K A. An H∞approach to anti-synchronization for chaotic systems. Physics Letters A,2009,373(20):1729-1733.
    [84] Wu W, Zhou W J, Chen T. Cluster synchronization of linearly coupled complex networks underpinning control. IEEE Transactions on Circuits and Systems I: Regular Papers,2009,56(4):829-839.
    [85] Cui B T. Synchronization of chaotic recurrent neural networks with time-varying delays usingnonlinear feedback control. Chaos, Solitons and Fractals,2009,39(1):288-294.
    [86] Wu X J, Lu H T. Outer synchronization between two different fractional-order general complexdynamical networks. Chinese Physics B,2010,19(7):070511.
    [87]俞立.鲁棒控制-线性矩阵不等式的处理方法.北京:清华大学出版社,2002.
    [88] Zochowski M. Intermittent dynamical control. Physica D,2000,145(3):181-190.
    [89] Halanay A. Differential Equations: Stability, Oscillations, Time Lags. New York: Academic,1966.
    [90] Li C D, Feng G, Liao X F. Stabilization of nonlinear systems via periodically intermittent control.IEEE Transactions on Circuits and Systems II: Express Briefs,2007,54(11):1019-1023.
    [91] Li C D, Liao X, Huang T. Exponential stabilization of chaotic systems with delay by periodicallyintermittent control. Chaos,2007,17(1):013103.
    [92] Huang T W, Li C D, Yu W W, Chen G. Synchronization of delayed chaotic systems with parametermismatches by using intermittent linear state feedback. Nonlinearity,2009,22(3):569-584.
    [93] Yang X S, Cao J. Stochastic synchronization of coupled neural networks with intermittent control.Physics Letters A,2009,373(36):3259-3272.
    [94] Cai S M, Hao J J, He Q B, Liu Z R. New results on synchronization of chaotic systems withtime-varying delays via intermittent control. Nonlinear Dynamics,2012,67(1):393-402.
    [95] Liu X Z, Shen X M, Zhang H T. Intermittent impulsive synchronization of chaotic delayed neuralnetworks. Differential Equations and Dynamical Systems,2011,19(1-2):149-169.
    [96] Guan Z, Liu Z W, Feng G, Wang Y W. Synchronization of complex dynamical networks withtime-varying delays via impulsive distributed control. IEEE Transactions on Circuits and SystemsI: Regular Papers,2010,57(8):2181-2195.
    [97] Zhang H, Ma T D, Huang G B, Wang Z L. Robust global exponential synchronization of uncertainchaotic delayed neural networks via dual-stage impulsive control. IEEE Transactions on Systems,Man, and Cybernetics, Part B: Cybernetics,2010,40(3):831-844.
    [98] Janson S, Middendorf M, Beekman M. Honeybee swarms: how do scouts guide a swarm of unin-formed bees? Animal Behaviour,2005,70(2):349–358.
    [99] Wang X F, Chen G. Pinning control of scale-free dynamical networks. Physica A,2002,310(3-4):521-531.
    [100] Li X, Wang X F, Chen G. Pinning a complex dynamical network to its equilibrium. IEEE Transac-tions on Circuits and Systems I: Fundamental Theory and Applications,2004,51(10):2074-2087.
    [101] Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions onAutomatic Control,2009,54(2):293-307.
    [102] Rong Z H, Li X, Lu W L. Pinning a complex network through the betweenness centrality strategy.in: IEEE International Symposium on Circuits and Systems.2009.1689-1692.
    [103] Xia W G, Cao J. Pinning synchronization of delayed dynamical networks via periodically inter-mittent control. Chaos,2009,19(1):013120.
    [104] Cai S M, Hao J J, He Q B, Liu Z R. Exponential synchronization of complex delayed dynamicalnetworks via pinning periodically intermittent control. Physics Letters A,2011,375(19):1965-1971.
    [105] Lu J Q, Kurths Ju¨rgen, Cao J, Mahdavi N, Huang C. Synchronization control for nonlinear stochas-tic dynamical networks: pinning impulsive strategy. IEEE Transactions on Neural Networks andLearning Systems,2012,23(2):285-292.
    [106] Zhou J, Wu Q J, Xiang L. Pinning complex delayed dynamical networks by a single impulsivecontroller. IEEE Transactions on Circuits and Systems I: Regular Papers,2011,58(12):2882-2893.
    [107] Kocarev L, Amato P. Synchronization in power-law networks. Chaos,2005,15(2):024101.
    [108] Hong H, Kim B J, Choi M Y, Park H. Factors that predict better synchronizability on complexnetworks. Physical Review E,2004,69(62):067105.
    [109] Nishikawa T, Motter A E, Lai Y C, Hoppensteadt F C. Heterogeneity in oscillator networks: aresmaller worlds easier synchronize? Physical Review Letters,2003,91(1):014101.
    [110] Lu¨ J H, Yu X, Chen G, Cheng D. Characterizing the synchronizability of small-world dynamicalnetworks. IEEE Transactions on Circuits and Systems I: Regular Papers,2004,51(4):787-796.
    [111] Atay F M, B′y′kogˇlu T, Jost J. Network synchronization: Spectral versus statistical properties.Physica D,2006,224(35):35-41.
    [112] Chen G, Duan Z S. Network synchronizability analysis: A graph-theoretic approach. Chaos,2008,18(3):037102.
    [113] Duan Z S, Cheng G, Huang L. Complex network synchronizability: Analysis and control. PhysicalReview E,2007,76(5):056103.
    [114] Duan Z S, Wang W X, Liu C, Chen G. Are networks with more edges easier to synchronize, ornot? Chinese Physics B,2009,18(8):3122-3130.
    [115] Wu C W. Perturbation of coupling matrices and its effect on the synchronizability in arrays ofcoupled chaotic systems. Physics Letters A,2003,319(5-6):495-503.
    [116] Dhamala M, Jirsa V K, Ding M. Enhancement of neural synchrony by time delay. Physical ReviewLetters,2004,92(7):074104.
    [117] Chavez M, Hwang D U, Amann A, Hentschel H G E, Boccaletti S. Synchronization is enhancedin weighted complex networks. Physical Review Letters,2005,94(21):218701.
    [118] Horn R A, Johnson C R. Matrix Analysis. Cambridge, UK: Cambridge University Press,1985.
    [119] Brualdi R A, Ryser H J. Combinatorial Matrix Theory. Cambridge, UK: Cambridge UniversityPress,1991.
    [120] Ren W, Atkins E. Consensus seeking in multiagent system s under dynamically changing interac-tion topologies. IEEE Transactions on Automic Control,2005,50(5):655-661.
    [121] Song Q, Liu Fang, Cao J, Yu W W. Pinning-controllability analysis of complex networks: anM-matrix approach. IEEE Transactions on Circuits and Systems I: Regular Papers,2012,59(11):2692-2701.
    [122]胡适耕,黄乘明,吴付科.随机微分方程.北京:科学出版社,2008.
    [123] Lu J, Ho D W C, Wang Z. Pinning stabilization of linearly coupled stochastic neural networksvia minimum number of controllers. IEEE Transactions on Neural Networks,2009,20(10):1617-1629.
    [124] Gu K. An integral inequality in the stability problem of time-delay systems. in: IEEE Conferenceon Decision and Control.2000.2805-2810.
    [125] Rakkiyappan R, Balasubramaniam P. On exponential stability results for fuzzy impulsive neuralnetworks. Fuzzy Sets and Systems,2010,161(13):1823-1835.
    [126] Sanchez E N, Perez J P. Input-to-state stability (ISS) analysis for dynamic neural networks. IEEETransactions on Circuits and Systems I: Fundamental Theory and Applications,1999,46(11):1395-1398.
    [127] Langville A, Stewart W. The Kronecker product and stochastic automata networks. Journal ofComputational and Applied Mathematics,2004,167(2):429-447.
    [128] Wang X F, Chen G. Synchronization in small-world dynamical network. International Journal ofBifurcation and Chaos,2002,12(1):187-192.
    [129] Wang X F, Chen G. Synchronization in scale-free dynamical networks: robustness and fragility.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2002,49(1):54-62.
    [130] Hu C, Yu J, Jiang H, Teng Z. Exponential synchronization of complex networks with finite dis-tributed delays coupling. IEEE Transactions on Neural Networks,2011,22(12):1999-2010.
    [131] Wang Y W, Wang H O, Xiao J W, Guan Z. Synchronization of complex dynamical networks underrecoverable attacks. Automatica,2010,46(1):197-203.
    [132] Wang Y W, Xiao J W, Wen C Y, Guan Z. Synchronization of continuous dynamical networks withdiscrete-time communications. IEEE Transactions on Neural Networks,2011,22(12):1979-1986.
    [133] Wang Y W, Yang M, Wang H O, Guan Z. Robust stabilization of complex switched networkswith parametric uncertainties and delays via impulsive control. IEEE Transactions on Circuits andSystems I: Regular Papers,2009,56(9):2100-2108.
    [134] Yang M, Wang Y W, Xiao J W, Wang H O. Robust synchronization of impulsively-coupled com-plex switched networks with parametric uncertainties and time-varying delays. Nonlinear Analy-sis: Real World Applications,2010,11(4):3008-3020.
    [135] Huang H, Feng G. Robust H∞synchronization of chaotic Lur’e systems. Chaos,2008,18(3):033133.
    [136] Shen B, Wang Z, Liu X. Bounded H∞synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon. IEEE Transactions on Neural Networks,2011,22(1):145-157.
    [137] Suykens J A K, Curran P F, Vandewalle J, Chua L O. Robust nonlinear H∞synchronization ofchaotic Lur’e systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory andApplications,1997,44(10):891-904.
    [138] Wang Y C, Zhang H. H∞control for uncertain Markovian jump systems with mode-dependentmixed delays. Progress in Natural Science,2008,18(3):309-314.
    [139] Wang Z, Huang L, Yang X. H∞performance for a class of uncertain stochastic nonlinear Marko-vian jump systems with time-varying delay via adaptive control method. Applied MathematicalModelling,2011,35(4):1983-1993.
    [140] Hou Y Y, Liao T L, Yan J J. H∞synchronization of chaotic systems using output feedback controldesign. Physica A,2007,379(1):81-89.
    [141] Karimi H R, Gao H. New delay-dependent exponential H∞synchronization for uncertain neuralnetworks with mixed time delays. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2010,40(1):173-185.
    [142] Mozelli L A, Campos C D, Palhares R, To rres L A B, Mendes E M A M. Chaotic synchroniza-tion and information transmission experiments: a fuzzy relaxed H∞control approach. Circuits,Systems, and Signal Processing,2007,26(4):427-449.
    [143] Qi D, Liu M, Qiu M, Zhang S. Exponential H∞synchronization of genernal discrete-time chaoticneural networks with or without time delays. IEEE Transactions on Neural Networks,2010,21(8):1358-1365.
    [144] Cao J, Li L L. Cluster synchronzation in an array of hybrid coupled neural networks with delay.Neural Networks,2009,22(4):335-342.
    [145] Hu C, Yu J, Jiang H, Teng Z. Synchronization of complex community networks with nonidenticalnodes and adaptive coupling strength. Physics Letters A,2011,375(5):873-879.
    [146] Liu X W, Chen T. Cluster synchronzation in directed networks via intermittent pinning control.IEEE Transactions on Neural Networks,2011,22(7):1009-1020.
    [147] Wu X J, Lu H T. Cluster synchronization in the adaptive complex dynamical networks via a novelapproach. Physics Letters A,2011,375(14):1559-1565.
    [148] Lu X B, Qin B Z. Adaptive cluster synchronization in complex dynamical networks. Physics Let-ters A,2009,373(40):3650-3658.
    [149] Chen T, Liu X W, Lu W. Pinning complex networks by a single controller. IEEE Transactions onCircuits and Systems I: Regular Papers,2007,54(6):1317-1326.
    [150] Guo W L, Austinb F, Chen S H, Sun W. Pinning synchronization of the complex networks withnon-delayed and delayed coupling. Physics Letters A,2009,373(17):1565-1572.
    [151] Zhou J, Lu J, Lu¨ J. Pinning adaptive synchronization of a general complex dynamical network.Automatica,2008,44(4):996-1003.
    [152] Liu Z B, Zhang H, Sun Q Y. Novel pinning control strategies for synchronisation of complexnetworks with nonlinear coupling dynamics, Chinese Physics B,2010,19(9):090506.
    [153] Yu W, Chen G, Lu¨ J. On pinning synchronization of complex dynamical networks. Automatica,2009,45(2):429-435.
    [154] Liu Z X, Chen Z Q, Yuan Z Z. Pinning control of weighted general complex dynamical networkswith time delay. Physica A,2007,375(1):345–354.
    [155] Song Q, Cao J. On pinning synchronization of directed and undirected complex dynamical net-works. IEEE Transactions on Circuits and Systems I: Regular Papers,2010,57(3):672-680.
    [156] Girvan M, Newman M E J. Community structure in social and biological networks. Proceedingsof the national acedamy of Sciences,2001,99:7821-7826.
    [157] Newman M E J. Fast algorithm for detecting community structure in networks. Physical ReviewE,2004,69(62):066133.
    [158] Capocci A, Servedio V D P, Caldarelli G, Colaiori F. Detecting communities in large networks.Physica A,2005,352(2-4):669-676.
    [159] Donetti L, Mun oz M A. Detecting network communities: a new systematic and efficient algorithm.Journal of Statistical Mechanics: Theory and Experiment,2004,10: P10012.
    [160] Cai S M, He Q B, Hao J J, Liu Z R. Exponential synchronization of complex networks withnonidentical time-delayed dynamical nodes. Physics Letters A,2010,374(25):2539-2550.
    [161] Suganthan P, Teoh E, Mital D. Pattern recognition by homomorphic graph matching using Hop-field neural networks. Image and Vision Computing,1995,13(1):45-60.
    [162] Zeng Z, Wang J. Associative memories based on continuous-time cellular neural networks de-signed using space-invariant cloning templates. Neural Networks,2009,22(5-6):651-657.
    [163] Zhu Q, Cao J. Stability of Markovian jump neural networks with impulse control and time varyingdelays. Nonlinear Analysis: Real World Applications,2012,13(5):2259-2270.
    [164]廖晓昕. Hopfield细胞神经网络的稳定性.中国科学A,1993,23(10):1025-1035.
    [165]沈轶,廖晓昕. Hopfield型时滞神经网络的指数稳定性.数学物理学报,1999,19(2):211-218.
    [166]沈轶,赵勇,廖晓昕,杨叔子.具有可变时滞的Hopfield型随机神经网络的指数稳定性.数学物理学报,2000,20(3):400-404.
    [167] Chen T. Global exponential stability of delayed Hopfiled neural networks with time delay. NeuralNetworks,2001,14(8):977-980.
    [168] Shen Y, Wang J. An improved algebraic criterion for global exponential stability of recurrentneural networks with time-varying delays. IEEE Transactions on Neural Networks,2008,19(3):528-531.
    [169] Zeng Z G, Wang J, Liao X. Global exponential stability of a general class of recurrent neuralnetworks with time-varying delays. IEEE Transactions on Circuits and Systems I: FundamentalTheory and Applications,2003,50(10):1353-1358.
    [170] Zeng Z G, Wang J, Liao X. Global asymptotic stability and global exponential stability of neuralnetworks with unbounded time-varying delays. IEEE Transactions on Circuits and Systems II:Express Briefs,2005,52(3):168-173.
    [171] Arik S. Stability analysis of delayed neural networks. IEEE Transactions on Circuits and SystemsI: Fundamental Theory and Applications,2000,47(7):1089-1092.
    [172] Cao J, Wang J. Global exponential stability and periodicity of recurrent neural networks with timedelays. IEEE Transactions on Circuits and Systems I: Regular Papers,2005,52(5):920-931.
    [173] Forti M, Grazzini M, Nistri P, Pancioni L. Generalized Lyapunov appronach for convergence ofneural networks with discontinuous neuron or non-Lipschitz zctivations. Physica D,2006,214(1):88-99.
    [174] Zhang Y. Foundations of implementing the competitive layer model by Lotka-Volterra recurrentneural networks. IEEE Transactions on Neural Networks,2010,21(3):494-507.
    [175] Wu M, Liu F, Shi P, He Y, Yokoyama R. Exponential stability analysis for neural networks withtime-varying delay. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2008,38(4):1152-1156.
    [176] Liu Z W, Zhang H, Zhang Q L. Novel stability analysis for recurrent neural networks with multipledelays via line integral-type L-K functional. IEEE Transactions on Neural Networks,2010,21(11):1710-1718.
    [177] Chang C, Fan K, Chung I, Lin C. A recurrent fuzzy coupled cellular neural network system withautomatic structure and template learning. IEEE Transactions on Circuits and Systems II: ExpressBriefs,2006,53(8):602-606.
    [178] Wu C W, Chua L O. Synchronization in an array of linearly coupled dynamical systems. IEEETransactions on Circuits and Systems I: Fundamental Theory and Applications,1995,42(8):430-447.
    [179] Wu C W. Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2003,50(2):294-297.
    [180] Wu C W. Synchronization in networks of nonlinear dynamical systems coupled via a directedgragh. Nonlinearity,2005,18(3):1057-1064.
    [181] Lu W, Chen T. Synchronization of coupled connected neural networks with delays. IEEE Trans-actions on Circuits and Systems I: Regular Papers,2004,51(12):2491-2503.
    [182] Liu Y, Wang Z, Liu X. On synchronization of coupled neural networks with discrete and un-bounded distributed delays. International Journal of Computer Mathematics,2008,85(8):1299-1313.
    [183] Lu J, Ho D W C, Liu M. Globally exponential synchronization in an array of asymmetric coupledneural networks. Physics Letters A,2007,369(5-6):444-451.
    [184] Li P, Cao J, Wang Z. Robust impulsive synchronization of coupled delayed neural networks withuncertainties. Physica A,2007,373:261-272.
    [185] Cao J, Chen G, Li P. Global synchronization in an array of delayed neural networks with hybridcoupling. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2008,38(2):488-498.
    [186] Yu W W, Cao J, Lu W. Synchronization control of switched linearly coupled neural networks withdelay. Neurocomputing,2010,73(4-6):858-866.
    [187] Li L L, Cao J. Cluster synchronization in an array of coupled stochastic delayed neural networksvia pinning control. Neurocomputing,2011,74(5):846-856.
    [188] Chen L, Wu R, Pan D. Mean square exponential stability of impulsive stochastic fuzzy cellularneural networks with distributed delays. Expert Systems and Applications,2011,38(5):6294-6299.
    [189] Yang T, Yang L. The global stability of fuzzy cellular neural networks. IEEE Transactions onCircuits and Systems I: Fundamental Theory and Applications,1996,43(10):880-883.
    [190] Xia Y, Yang Z, Han M. Lag synchronization of unknown chaotic delayed Yang-Yang-Type fuzzyneural networks with noise perturbation based on adaptive control and parameter identification.IEEE Transactions on Neural Networks,2009,20(7):1165-1180.
    [191] Tang Y, Fang J. Robust synchronization in an array of fuzzy delayed cellular neural networks withstochastically hybrid coupling. Neurocomputing,2009,72(13-15):3253-3262.
    [192] Zhu Q, Li X. Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks. Fuzzy Sets and Systems,2012,203:74-94.
    [193] Akhmet M U, Bu¨yu¨kadal. Differential equations with state-dependent piecewise constant argu-ment. Nonlinear Analysis,2010,72(11):4200-4210.
    [194] Chen B S, Chiang C H, Nguang S K. Robust H∞synchronization design of nonlinear couplednetwork via fuzzy interpolation method. IEEE Transactions on Circuits and Systems I: RegularPapers,2011,58(2):349-362.
    [195] Chen M Y. Synchronization in time-varying networks: A matrix measure approach. Physical Re-view E,2007,76(1):016104.
    [196] Lu¨ J H, Yu X, Chen G. Chaos synchronization of general complex dynamical networks. PhysicaA,2004,334(1-2):281-302.
    [197] Wu W, Chen T. Global synchronization criteria of linearly coupled neural network systems withtime-varying coupling. IEEE Transactions on Neural Networks,2008,19(2):319-332.
    [198] Lu W. Adaptive dynamical networks via neighborhood information: Synchronization and pinningcontrol. Chaos,2007,17(2):023122.
    [199] Qin B Z, Lu X B. Adaptive approach to global synchronization of directed networks with fastswitching topologies. Physics Letters A,2010,374(38):3942-3950.
    [200] Chen L, Qiu C, Huang H B. Synchronization with on-off coupling: Role of time scales in networkdynamics. Physical Review E,2009,79(4):045101.
    [201] Li Z, Jiao L C, Lee J J. Robust adaptive global synchronization of complex dynamical networksby adjusting time-varying coupling strength. Physica A,2008,387(5-6):1369-1380.
    [202] Chua L O. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory,1971,CT-18(5):507-519.
    [203] Strukov D B, Snider G S, Stewart D R, Williams R S. The missing memristor found. Nature,2008,453(7191):80-83.
    [204] Itoh M, Chua L O. Memristor oscillators. International Journal of Bifurcation and Chaos,2008,18(11):3183-3206.
    [205] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S.‘Memristive’ switchesenable ‘stateful’ logic operations via material implication. Nature,2010,464(7290):873-876.
    [206] Hu J, Wang J. Global uniform asymptotic stability of memristor-based recurrent neural networkswith time delays. in: IEEE World Congress on Computational Intelligence and International JointConference on Neural Networks.2010.18-23.
    [207] Bao B C, Xu J, Liu Z. Initial state dependent dynamical behaviors in a memristor based chaoticcircuit. Chinese Physics Letters,2010,27(7):070504.
    [208] Wen S P, Wu A L, Zeng Z G. Synchronization control of a class of memristor-based recurrentneural networks. Information Sciences,2012,183(1):106-116.
    [209] Wen S P, Zeng Z G, Huang T W. Exponential stability analysis of memristor-based recurrent neuralnetworks with time-varying delays. Neurocomputing,2012,97:233-240.
    [210] Wen S P, Zeng Z G. Dynamics analysis of a class of memristor-based recurrent networks withtime-varying delays in the presence of strong external stimuli. Neural Processing Letters,2012,35(1):47-59.
    [211] Wen S P, Zeng Z G, Huang T W. Adaptive synchronization of memristor-based Chua’s circuits.Physics Letters A,2012,376(44):2775-2780.
    [212] Wu A L, Zeng Z G, Zhu X S, Zhang J. Exponential synchronization of memristor-based recurrentneural networks with time delays. Neurocomputing,2011,74(17):3043-3050.
    [213] Wu A L, Zeng Z G. Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Networks,2012,36:1-10.
    [214] Wu A L, Zeng Z G. Exponential stabilization of memristive neural networks with time delays.IEEE Transactions on Neural Networks and Learning Systems,2012,23(12):1919-1929
    [215] Zhang G D, Shen Y, Sun J W. Global exponential stability of a class of memristor-based recurrentneural networks with time-varying delays. Neurocomputing,2012,97:149-154.
    [216] Fang X D, Tang Y H, Wu J J. SPICE modeling of memristors with multilevel resistance states.Chinese Physics B,2012,21(9):098901.
    [217] Zhou J, Huang D. The influences of model parameters on the characteristics of memristors. Chi-nese Physics B,2012,21(4):048401.
    [218] Farnood M B, Saeed B K. Memristor-based circuits for performing basic arithmetic operations.Procedia Computer Science,2011,3:128-132.
    [219] Bao B C, Liu Z, Xu J P. Transient chaos in smooth memristor oscillator. Chinese Physics B,2010,19:030510.
    [220] Ehsan N O, Muhammad S. Electric currents in networks of interconnected memristors. PhysicalReview E,2011,83(3):031105.
    [221] Filippov A. Differential Equations with Discontinuous Right-hand Sides. Boston: Kluwer Aca-demic Publishers,1988.
    [222] Forti M, Nistri P. Global convergence of neural networks with discontinuous neuron activations.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2003,50(11):1421-1435.
    [223] Liu X, Chen T, Cao J, Lu W. Dissipativity and quasi-synchronization for neural networks withdiscontinuous activations and parameter mismatches. Neural Networks,2011,24(10):1013-1021.
    [224] Massimiliano D M, Mario D B, Edmondo D T, Manfredi S. Synchronization of networks of non-identical Chua’s circuits: analysis and experiments. IEEE Transactions on Circuits and Systems I:Regular Papers,2012,59(5):1029-1041.
    [225] Jin X, Yang G, Che W. Adaptive pinning control of deteriorated nonlinear coupling networks withcircuit realization. IEEE Transactions on Neural Networks and Learning Systems,2012,23(9):1345-1355.
    [226] Ganguli S, Huh D. Sompolinsky H. Memory traces in dynamical systems. Proceedings of theNational Academy of Sciences of the United States of America,2008,105(48):18970-18975.
    [227] Ishii H, Tempo R, Bai E W. A web aggregation approach for distributed randomized pagerankalgorithms. IEEE Transactions on Automatic Control,2012,57(11):2703-2717.
    [228] Xiong W J, Ho D W C, Wang Z. Consensus analysis of multiagent network via aggregated andpinning approaches. IEEE Transactions on Neural Networks,2011,22(8):1231-1239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700