长期施肥下太湖地区水稻土不同团聚体颗粒组的酶活性及微生物生物量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物通过参与土壤物质的生物化学循环在土壤生态系统中起着重要作用,土壤的环境条件及农业生产管理都会引起农业土壤微生物群落结构及功能活性的变化,从而影响土壤养分循环及整体土壤质量。
     土壤是由许多大小不一的团聚体和原生土壤颗粒组成,土壤团聚体是矿物质、有机质、生物质相互作用在特定条件下的组合,是行使土壤功能的基本结构。由于不同团聚体中养分、通气和水分状况存在很大差异,从而造成这些微域生境中由微生物和酶参与的养分转化的差异,因而从土壤微域环境角度研究酶活性及微生物生物量可以更加客观的反映田间土壤的生物过程。
     本文以太湖地区长期肥料试验田为研究对象,采用低能量超声波物理分散法分离土壤团聚体,研究长期不同施肥处理下(化肥与秸秆配施、化肥与猪粪配施、单施化肥和不施肥)耕层土壤不同团聚体中酶活性及微生物生物量氮分布特征及对农田施肥措施的响应,探讨农田管理措施对土壤微域环境生物学特性的影响,为保持和提高土壤生物功能提供理论依据。主要研究结果如下:
     1、供试土壤(水稻土)中不同团聚体粒组以2000-200μm和20-2μm粒组所占比例较高。化肥配施猪粪显著提高2000-200μm组所占比例,同时20-2μm粒组比例显著减少。由此可见,有机肥的施用有利于土壤小颗粒进一步团聚形成较大团聚体;
     2、各种酶活性在不同团聚体中活性变化存在差异。脲酶和蔗糖酶主要在<2μm的粘粒粒组中活性最高,纤维素酶、多酚氧化酶和荧光素二乙酸酯(FDA)水解酶活性则以2000-200μm粗砂粒中最高。肥料的施用特别是化肥与有机肥的配合施用显著提高2000-200μm粒组中蔗糖酶、脲酶、纤维素酶和FDA水解酶的活性,而且由于粒径的不同造成的酶活性的变化大于施肥处理所引起的变化。总体比较,2000-200μm的粗团聚体酶活性对土壤总酶活性的贡献率较高,该粒组在土壤养分循环及环境过程中起着至关重要的作用。
     3、微生物生物量氮在不同团聚体中含量变化存在差异.<2μm的粘粒组中微生物生物量氮含量最高,而200-20μm的细砂粒组中微生物生物量氮含量最低。化肥与有机肥配施特别是化肥与猪粪配施显著提高了团聚体颗粒组中的微生物生物量氮含量。但微生物量生物量氮在微域环境中的分布受颗粒组成的影响较大;
     4、计算五种酶活性的几何平均数(GMea)作为酶活性综合指标,发现施肥显著提高了2000-200μm大团聚体的酶综合活性。由此可见大团聚体中土壤的酶活性对施肥措施具有敏感响应,施肥尤其是有机和无机肥配合施用可以通过促进大团聚体的形成和提高大团聚体中酶活性来提高整体土壤的生物功能;
     5、将GMea/MBN作为微生物对土壤酶活性功能影响的指标。不同施肥处理下微生物量氮对酶活性的贡献均在大团聚体中较大。与单施化肥和不施肥处理下不同,化肥与有机肥配施处理下GMea/MBN变化趋势与GMea不同,表现为2000-200μm和<2μm两粒组酶综合活性均较高,但微生物量氮对酶活性的贡献却在大颗粒粒组中较大。这可能说明两粒组维持酶活性的机理不同。
Microorganism plays a great part in soil ecosystem by involving in soil biochemical cycle. Both soil environment and agricultural production management can lead to changes in soil microbial community and function, which then has an impact on the cycle of soil nutrient as well as soil quality.
     Soil is consisted of large numbers of different sizes of particle size fractions and original particles. Soil particle size fractions, the basic functional cells of soil, are formed through binding of soil minerals with organic matter and/or soil organisms with varying strengths as a process of interaction of mineral, organic matter and biota in soils. It is the great differences in nutrient, aeration and water among different fractions in size that results in the variation in microbe and enzymes-involved nutrient transformation in the microhabitat. Therefore, research on enzyme activities and microbial biomass from the angle of soil microhabitat can reflect a more objective biological process in filed.
     In this paper, variation of enzyme activity and microbial biomass nitrogen in particle size fractions and their responses to fertilization practices were studied in a paddy soil under a long-term fertilizer application trial, including the treatments of chemical fertilizer with straw return (CFS), chemical fertilizer plus pig manure (CFM), chemical fertilizer alone (CF) and no fertilizer application (NF). Particle size fractions (2000-200,200-20,20-2 and <2μm) were obtained by low-energy sonication along with a combination of wet sieving and centrifugation. The main results were as follows:
     1. The aggregates were dominated by the size fractions of 2000-200μm and 20-2μm. However, the size fraction of 2000-200μm was increased and that of 20-2μm decreased under the fertilization treatment of chemical fertilizer plus pig manure compared to that under no fertilization, which showed that the use of organic fertilizer benefits the formation of small particles to large ones.
     2. The predominance of enzyme activities in different particle size fractions differed from each other. Urease and invertase activity were mainly found in the clay fraction (<2μm), whereas the coarse sand particle accumulated the higher amounts of cellulase, polyphenoloxidase and fluorescein diacetate (FDA) hydrolysis activity. Moreover, the use of fertilizer, especially combined fertilization of inorganic and organic fertilizers, significantly increased the activities of urease, invertase, cellulase and FDA hydrolase in the coarse sand fractions. And the size difference of the fraction exerted a greater effect on the variation of the enzyme activities than the fertilization treatment did. Overall, the size fraction of 2000-200μm had higher contribution to total enzyme activity in bulk soil, which may make the coarse size fraction significant in soil nutrient cycling and environmental process.
     3. The content of microbial biomass nitrogen in different size fractions differed from each other. The size fraction of<2μm contained the highest microbial biomass nitrogen, while the 200-20μm fraction accumulated the least. Furthermore, the combined fertilization of inorganic and organic fertilizers, especially the chemical fertilizer plus pig manure dramatically increased the content of microbial biomass nitrogen in particles. However, soil fraction has a greater effect on the content of microbial biomass nitrogen in different size fractions than fertilization does, which is the same as enzyme activities.
     4. The geometric mean of the assayed enzymes (GMea) was used as a combined soil enzyme activities index, which was higher in the size fraction of 2000-200μm and significantly increased by fertilization as well, indicating a high sensitivity of enzyme activity in larger aggregates to fertilization practices. Soil bio-function was enhanced by the combined fertilization of inorganic and organic fertilizers through the formation of larger aggregates and the increase of enzyme activities in them.
     5. GMea/MBN was considered as an indicator to evaluate the influence on enzymatic function by soil microbes. The contribution of the microbial biomass nitrogen to enzyme activities was greater in larger particle size fractions under different fertilization treatments. The trend of GMea/MBN was different from GMea in the treatments of CFM and CFS, whereas that similar in NF and CF. The size fractions of 2000-200μm and<2μm both had higher GMea, while GMea/MBN is higher only in larger fractions, possibly implying the different mechanisms maintaining enzyme activities in the two size fractions.
引文
Adam G, Duncan H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils [J]. Soil Biology and Biochemistry,2001,33:943-951
    Ahmed M, Oades J M. Distribution of organic matter and adenosine triphosphate after fractionation of soils by physical procedures [J]. Soil Biology and Biochemistry,1984,16:465-470
    Allison S D, Jastrow J D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils [J]. Soil Biology and Biochemistry,2006,38:3245-3256
    Bittman S, Forge T A, Kowalenko C G Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer [J]. Soil Biology and Biochemistry, 2005,37:613-623
    Christensen B T. Physical separation of soil and organic matter in primary particle-size and density separates [J]. Adv. Soil Sci.,1992,20:1-90
    Doran J W, Parkin T B. Defining and assessing soil quality. In:Doran J W, Coleman D C, Bezdicek D F, et al.eds. Defining soil quality for a sustainable environment. SSSA Spec. Publ. Am. Soc. Agron., Madison, WI,1994,35:3-21
    Edwards A P, Bremoer J M. Microaggregates in soils [J]. J. Soil Sci.,1967,18:6-73
    Elfstrand S, Hedlund K, Martensson A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring [J]. Applied Soil Ecology,2007,35:610-621
    Elliott E T. Aggregate structure and carbon nitrogen and phosphorus in native and cultivated soils [J]. Soil Sci. Soc. Am. J.1986,50:627-633
    Hernandez-Hernandez R M, Lopez-Hernandez D. Microbial biomass, mineral nitrogen and carbon content in savanna soil aggregates under conventional and no-tillage [J]. Soil Biology and Biochemistry,2002,34:1563-1570
    Hinojosa M B, Garcla-Ruiz R, Vinegla B, et al. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcollar toxic spill [J]. Soil Biology and Biochemistry, 2004,36:1637-1644
    Jastrow J D, Amonette J E, Bailey V L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration [J]. Climatic Change,2007,80:5-23
    Kandeler E, Stemmer M, Klimanekc EM. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management [J].Soil Biology and Biochemistry,1999, 31:261-273
    Kandeler E, Marschner P, Tscherko D, et al. Microbial community composition and functional diversity in the rhizosphere of maize [J]. Plant and Soil,2002,238:301-312
    Ladd J N, Gestel M V, Monrozier L J, et al. Distribution of organic 14C and 15N in particle-size fractions of soils incubated with 14C,15N-labeled glucose/NH4, and legume and wheat straw residues [J]. Soil Biology and Biochemistry,1996,28 (7):893-905
    Lal R. Carbon sequestration in dry land ecosystems of West Asia and North Africa [J]. Land Degrade. Dev.2002,13:45-59
    Li L Q, Zhang X H, Zhang P J. Variation of organic carbon and nitrogen in aggregate size fractions of a paddy soil under fertilization practices from Tai Lake Region, China [J]. Journal of the Science of Food and Agriculture,2007,87:1052-1058
    Larson W E, Pierce F J. Conservation and enhancement of soil quality, In Proc.of the hit. workshop on evaluation for sustainable land management in the developing world. International Board for Soil Resource and Management (IBSRAM).Proceeding no.123vol.2.Bangkok, Thailand,1991
    Marhan S, Kandeler E, Scheu S. Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L. (Oligochaeta, Lumbricidae) [J]. Applied Soil Ecology,2007,35:412-422
    Mertz C, Kleber M, Jahn R. Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation [J]. Org. Geochem.,2005,36:1311-1322
    Miller M, Dick R P. Dynamics of soil C and microbial biomass in whole soil and aggregates in two cropping systems [J]. Applied Soil Ecology,1995,2:253-261
    Monreal C M, Schulten H R, Kodama H. Age, turnover and molecular diversity of soil organic matter in aggregates of a Gleysol [J].Can. J. Soil Sci.1997,77:379-388.
    Morra J M, Blank R R, Shafii B. Size fraction of soil organ-mineral complexes using ultrasonic dispersion [J]. Soil Sci.1991,152:294-303
    Nannipieri P, Ascher J, Ceccherini M T, et al. Microbial diversity and soil functions [J].European Journal of Soil Science,2003,54:655-670
    Neergaadhe B, Petersen L. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of vertisol [J]. Plant and Soil 2000,218:173-183
    Oades J M. Soil organic matter and structural stability:Mechanisms and implications for management [J]. Plant Soil,1984,76:319-337
    Oades R D, Morris S R, Moyes R B. Alumina-Supported tungsten catalysts for the hydrogenation of carbon monoxide [J]. Catalysis Today.1991,10(3):379-385
    Paul E A, Romkens AM, Vander P J. Evolution of CO2 and soil carbon dynamics in biological managed, row-crop agro-ecosystems [J]. Applied Soil Ecology,1999,11:53-65
    Preston M J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole carbon source utilization profiles [J]. FEMS Microb. Ecol.,2002,42:1-14
    Puget P, Angers D A, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils [J]. Soil Biology and Biochemistry,1999,31(1):55-63
    Puget P, Chenu C, Balesdent J. Total and young organic matter distributions in aggregates of silty cultivated soils [J]. Eur. J. Soil Sci.,1995,46:449-459
    Ros M, Pascual J A, Garcia C, et al. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts [J]. Soil Biology and Biochemistry,2006, 8:3443-3452
    Ruiz R G, Ochoa V, Hinojosa M B, et al. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems [J]. Soil Biology and Biochemistry,2008,40: 2137-2145
    Sall S N, Masse D, Ndour N Y B, et al. Does cropping modify the decomposition function and the diversity of the soil microbial community of tropical fallow soil? [J]. Applied Soil Ecology,2006,31: 211-219
    Schmide M W I, Rumpel C. Evaluation of an ultrasonic dispersion procedure to isolate primary organ-mineral complexes from soils [J]. Eur. J. Soil Sci.,1999,50:87-94
    Schnitzer M, Kodama H. Interactions between organic and inorganic components in particle-size fractions separated from four soils [J]. Soil Sci. Soc. Am. J.,1992,56:1099-1105
    Schulten H R, Leinweber O. New insights into organic-mineral particles:composition, properties and models of molecular structure [J]. Biology Fertilize Soil.2000,30:399-432
    Schulten H R, Leinweber O, Sorge C. Composition of organic matter in particle-size fractions of an agricultural soil [J]. Journal of Soil Science,1993,44:667-691
    Singh S, Singh J S. Microbial biomass associated with water-stable aggregates in forest, savanna and cropland soils of a seasonally dry tropical region, India [J]. Soil Biology and Biochemistry,1995, 27(8):1027-1033
    Six J, Paustian K, Elliott E T, et al. Soil structure and organic matter. I. Distribution of aggregate-size classes and aggregate associated carbon [J]. Soil Sci.Soc.Am. J.2000,64:681-689
    Stemmer M, Gerzabek M H, Kandeler E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication [J]. Soil Biology and Biochemistry,1998,31(1):9-17
    Stemmer M, Gerzabek M H, Kandeler E. Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition [J]. Soil Biology and Biochemistry,1999,31:9-18
    Tarchitzky J, Hatcher P G, Chen Y. Properties and distribution of humic substances and inorganic structure-stabilizing components in particle-size fractions of cultivated Mediterranean soil [J]. Journal of Soil Science,1989,165 (4):328-342
    Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils [J]. J. Soil Sci.,1982,33: 141-163
    Tisdall J M. Possible role of soil microorganisms in aggregation in soils [J]. Plant and Soil,1994,159: 115-121
    Wang X C, LU Q. Effect of Waterlogged and Aerobic Incubation on Enzyme Activities in Paddy Soil [J]. Pedosphere,2006,16(4):532-539
    Van Bruggen A H C, Semenovb A M. In search of biological indicators for soil health and disease suppression [J]. Applied Soil Ecology,2000,15:13-24
    Van Gestel M, Merckx R, Vlassak K. Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying [J]. Soil Biology and Biochemistry,1996,28(4/5):503-510
    Zavarzina A G, Leontievsky A A, Golovleva L A, et al. Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18:an in vitro study [J]. Soil Biology and Biochemistry,2004,36, 359-369
    Zheng J F, Zhang X H, Li L Q, et al, Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil [J]. Agriculture, Ecosystem and Environment,2007,120:129-138
    陈恩凤.土壤肥力物质基础及其调控[M].北京:科学出版社,1990,118-252
    陈恩凤,关连珠,汪景宽等.土壤特征团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49-53
    丁爱芳,潘根兴,李恋卿.太湖地区几种水稻土团聚体颗粒组中PAHs的分布及其环境意义[J].环境科学学报,2006,26(2):293-299
    樊军,郝明德.长期轮作与施肥对土壤酶活性的影响[J].植物营养与肥料学报,2003,9(2):146-150
    高明,周保同,魏朝富等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报,2004,15(7):1177-1181
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    郝瑞军,李忠佩,车玉萍等.好气与淹水条件下水稻土各粒级团聚体有机碳矿化量[J].应用生态学报,2008,19(9):1944-1950
    黄昌勇.土壤学[M].北京:中国农业出版社,2000,3
    胡国成,章明奎.红壤团聚体力学和酸碱稳定性的初步研究[J].浙江农业科学,2000,3:125-127
    焦少俊,胡夏民,潘根兴等.施肥对太湖地区青紫泥水稻土稻季农田氮磷流失的影响[J].生态学杂志,2007,26(4):495-500
    刘恩科,赵秉强,李秀英等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,32(1):176-182
    刘洁,李宪臻,高培基.纤维素酶活力测定方法评述[J].工业微生物,1994,24(4):27-32.
    刘京,常庆瑞,李岗等.连续不同施肥对土壤团聚性影响的研究[J].水土保持通报,2000,20(4):24-26
    李腊梅,陆琴,严蔚东等.太湖地区稻麦二熟制下长期秸秆还田对土壤酶活性的影响[J].土壤,2006,38(4):422-428
    李恋卿,潘根兴,张平究.太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应[J].环境科学学报.2001,21(5):607-612
    李辉信,袁颖红,黄欠如等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报.2006,43(3):422-429
    卢升高,竹蕾,郑晓萍.应用Le Bissonnais法测定富铁土中团聚体的稳定性及其意义[J].水土保持学报.2004,18(1):7-11
    刘世梁,傅伯杰,刘国华等.我国土壤质量及其评价研究的进展[J].土壤通报,2006,37(1):137-143
    刘占锋,傅伯杰,刘国华等.土壤质量与土壤质量指标及其评价[J].生态学报,2006,26(3):901-913
    李阜棣,喻子牛,何绍江.农业微生物实验技术[M].北京:中国农业出版社,1996:132-133
    吕晓男,孟赐福,麻万诸等.土壤质量及其演变[J].浙江农业学报,2004,16(2):105-109
    邱莉萍,刘军,王益权等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10(3):277-280
    邱莉萍,张兴昌,张晋爱.黄土高原长期培肥土壤团聚体中养分和酶的分布[J].生态学报,2006,26(2):365-372
    宋国菡.耕垦下表土有机碳库变化及水稻土有机碳的团聚体分布与结合形态[D].南京农业大学
    孙红斌,刘亚云,陈桂珠.PCBs对红树林沉积物中微生物及酶活性的影响[J].生态学报,2007,27(12):5398-5407
    王芳.水稻土团聚体颗粒组对外源污染物(镉,铜和菲)的吸附-解吸特性研究[D].南京农业大学
    汪景宽,汤方栋,张继宏等.不同肥力棕壤及其微团聚体中酶活性比较[J].沈阳农业大学学报,2000,31(2):185-189
    王树起,韩晓增,乔云发等.长期施肥对东北黑土酶活性的影响[J].应用生态学报,2008,19(3):551-556
    文倩,赵小蓉,妥德宝等.半干旱地区不同土壤团聚体中微生物量氮的分布特征[J].中国农业科学,2005,38(1):91-95
    吴金水,林启美,黄巧云等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006
    薛菁芳,高艳梅,汪景宽等.土壤微生物量碳氮作为土壤肥力指标的探讨[J].土壤通报,2007,38(2):247-250
    杨振明,闫飞,韩丽梅.我国主要土壤不同粒级的矿物组成及供钾特点[J].土壤通报,1999,30(4):163-167
    颜慧,钟文辉,李忠佩等.长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J].应用生态学报,2008,19(1):71-75
    郑聚锋.长期不同施肥下南方代表性水稻土有机碳矿化与CO2、CH4产生研究[D].南京农业大学博士学位论文.2007:32-33
    周礼恺,张志明,陈恩凤.黑土的酶活性[J].土壤学报,1981,18(2):158-166
    周礼凯.土壤酶学[M].北京:科学出版社,1987,116-267
    章明奎.成土过程对土壤团聚体形成的影响[J].热带亚热带土壤科学.1997,6(3):198-202
    张平究,李恋卿,潘根兴等.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化[J].生态学报,2004,24(12):2818-2824
    张祥霖,石盛莉,潘根兴等.互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J].地球科学进展,2008,23(9):974-981
    张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累和分布的影响[J].生态学杂志,2001,20(2):16-19
    周萍,宋国菡,潘根兴等.南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ.团聚体物理保护作用[J].土壤学报,2008,45(6):1063-1071
    周萍,潘根兴.长期不同施肥对黄泥土水稳性团聚体颗粒态有机碳的影响[J].土壤通报,2007,38(2):256-261
    郑勇,高勇生,张丽梅等.长期施肥对旱地红壤微生物和酶活性的影响[J].植物营养与肥料学报2008,14(2):316-321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700