酮病奶牛肝脏脂肪酸氧化代谢特征及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用荧光定量PCR和ELISA等分子生物学技术以及犊牛肝细胞体外原代培养方法,检测了酮病奶牛肝脏脂肪酸氧化代谢关键酶表达水平变化规律,同时观察了NEFA、BHBA、葡萄糖等代谢产物和胰岛素、胰高血糖素、瘦蛋白等内分泌因子对体外培养的犊牛肝细胞脂肪酸氧化代谢关键酶表达水平的影响。证实了酮病奶牛肝脏脂肪酸氧化代谢途径关键酶类表达水平降低,同时探讨了各种代谢产物和内分泌因子对其关键酶表达水平的调控作用。为进一步揭示奶牛酮病的发生机理和制定相应的防治措施奠定了理论基础和实践依据。
     建立了脂肪酸氧化代谢途径关键酶类基因表达荧光定量PCR检测方法。根据GenBank中发表的牛ACSL、CPTⅠ、CPTⅡ、ACADL、HMGCS、ACC等基因序列,设计PCR引物,分别扩增出用于基因表达水平定量的目的片段,成功建立了各基因的荧光定量PCR检测方法。
     检测了酮病奶牛肝脏脂肪酸氧化代谢途径关键酶类基因表达水平。与健康奶牛相比,酮病奶牛肝脏组织中ACSL mRNA和蛋白表达水平显著增高,而CPTⅠ、CPTⅡ、ACADL、HMGCS、ACC mRNA和蛋白表达显著降低;实验奶牛血清NEFA浓度与肝组织中ACSL蛋白含量呈显著正相关,而与CPTⅡ、ACADL、HMGCS、ACC蛋白含量呈显著负相关;血清BHBA浓度与肝组织中与CPTⅡ、ACADL、HMGCS蛋白含量呈显著负相关。表明酮病奶牛肝脏脂肪酸氧化代谢能力减弱,血清中高水平的NEFA和/或BHBA是引起酮病奶牛肝脏脂肪酸氧化代谢能力减弱的关键因素。
     评价了代谢产物对肝细胞脂肪酸氧化代谢关键酶表达的影响。首先通过向培养液中添加不同浓度的外源性NEFA(0、0.2、0.4、0.8、1.6、3.2mM)、BHBA(0、0.5、0.75、1.0、1.5、3.0mM)、葡萄糖(0、1.0、2.0、4.0、8.0、16.0mM),观察代谢产物对肝细胞脂肪酸氧化代谢关键酶基因表达的影响。结果显示:1) NEFA显著促进犊牛肝细胞ACSL、ACADL、HMGCS的转录和翻译,呈剂量依赖性;显著抑制ACC的转录和翻译;对CPTⅠ的转录和翻译呈现低浓度促进而高浓度抑制的双重调控作用;但并未对CPTⅡ表现出明显的调控作用。2)BHBA显著促进犊牛肝细胞中ACSL的转录和翻译,呈剂量依赖性;显著抑制犊牛肝细胞中CPTⅠ、HMGCS的转录和翻译,呈剂量依赖性;但并未对CPTⅡ、ACADL、ACC等基因表现出显著的调控作用。3)GLU对ACSL的转录和翻译呈现低浓度促进而高浓度抑制的双重调控作用;显著抑制CPTⅡ、HMGCS的转录和翻译;显著促进ACC的转录和翻译,呈剂量依赖性;GLU可以促进CPTⅠ转录,但对其翻译水平没有明显的调控作用;GLU并未对ACADL的转录和翻译产生显著的调控作用。说明NEFA、BHBA、葡萄糖等代谢产物参与肝脏脂肪酸氧化代谢过程的调节。
     考察了内分泌因子对肝细胞脂肪酸氧化代谢关键酶表达的影响。首先通过向培养液中添加不同浓度的外源性内分泌因子胰岛素(0、5、10、20、50、100nM)、胰高血糖素(0、0.01、0.1、1、10、100nM)、瘦蛋白(0、2.5、5、10、50、100ng/mL),观察内分泌因子对肝细胞脂肪酸氧化代谢关键酶基因表达的影响。结果显示:1) INS显著抑制肝细胞ACSL、CPTⅠ、ACADL基因的转录和翻译,呈剂量依赖性;显著促进ACC基因的转录和翻译,呈剂量依赖性;显著抑制CPTⅡ基因转录,但对其翻译水平没有明显的调控作用;对HMGCS基因未表现出明显的调控作用。2)GLN显著提高ACSL、CPTⅠ基因的转录和翻译,显著抑制HMGCS、ACC基因的转录和翻译,呈剂量依赖性;GLN可以显著促进CPTⅡ基因转录,但并未对其翻译水平产生明显影响;GLN对ACADL基因未产生明显的调控作用。3)LP显著促进肝细胞ACSL、CPTⅠ、CPTⅡ、ACADL基因的转录和翻译,呈剂量依赖性;显著抑制ACC基因的转录和翻译,呈剂量依赖性;但对HMGCS基因未产生明显的调控作用。指示胰岛素抑制而胰高血糖素、瘦蛋白可促进肝脏脂肪酸氧化代谢过程。
     通过以上实验得出如下结论:1)酮病奶牛肝脏脂肪酸氧化代谢能力减弱,血液中高水平的NEFA和/或BHBA是抑制肝脏脂肪酸氧化代谢的关键调控因素。2)酮病奶牛肝脏脂肪酸活化增强而氧化代谢能力减弱,可能导致大量活化的脂酰辅酶A趋向于再酯化生成甘油三酯,从而引发奶牛肝脂沉积。3)葡萄糖、NEFA和BHBA等代谢产物和胰岛素、胰高血糖素和瘦蛋白等内分泌因子可以通过调节脂肪酸氧化代谢关键酶基因的转录和翻译影响肝脏脂肪酸氧化代谢过程。
An underlying mechanism on fatty acid oxidation metabolism capability in theliver of ketotic cows will be brought to light through analyzing the expressing level ofkey enzymes such as acyl-CoA synthetase long-chain (ACSL), carnitinepalmitoyltransferase Ⅰ (CPTⅠ), carnitine palmitoyltransferase Ⅱ (CPTⅡ), acyl-CoAdehydrogenase long-chain (ACADL),3-hydroxy-3-methylglutaryl-CoA synthase(HMGCS), and acetyl-CoA (ACC) in the liver of ketotic cows, and the effect ofmetabolite and hormone on those key enzymes mRNA and protein levels in hepatocytesin vitro. Ⅰn this study, cytobiology and molecular biology were applied to research thealterations of fatty acid oxidation capability in the liver of ketotic cows. The results areas follow:
     Compared with non-ketotic cows, mRNA abundance of ACSL was increased by5.7-fold in ketotic cows. However, mRNA abundance of CPT Ⅰ, CPT Ⅱ, ACADL,HMGCS, and ACC were decreased by18%,70%,44%,52%, and64%, respectively,compared with non-ketotic cows. ACSL protein levels in the liver of ketotic cows weresignificantly higher, whereas levels of the following enzymes were significantly lower:CPT Ⅱ, ACADL, HMGCS, and ACC. Serum glucose concentration did not appear to beassociated with protein levels of ACSL, CPT Ⅰ, CPT Ⅱ, ACADL HMGCS, or ACC inthe liver of experimental cows. However, serum NEFA concentration was negativelycorrelated with protein levels of CPT Ⅱ, HMGCS, ACADL, and ACC and waspositively correlated with ACSL in experimental cows. Serum BHBA concentrationwas negatively correlated with protein levels of CPT Ⅱ, HMGCS, and ACADL inexperimental cows.
     Bovine hepatocyte was cultured by the modified two collagenase perfusion. Theeffects of NEFA (0、0.2、0.4、0.8、1.6、3.2mM), BHBA (0、0.5、0.75、1.0、1.5、3.0mM), and glucose (0、1.0、2.0、4.0、8.0、16.0mM) on mRNA andprotein expression of ACSL, CPTⅠ, CPTⅡ, ACADL, HMGCS, ACC in hepatocyte were detected by real-time PCR and ELISA. The results showed that: with increasedconcentration of NEFA, ACSL, ACADL, HMGCS transcription and translation levelswere increased, and ACC transcription and translation levels were decreased in culturedbovine hepatocytes, transcription was decreased with NEFA but translation levels wasnot changed, the transcription and translation of CPTⅠwere increased with lowerconcentration of NEFA and then decreased with increasing concentration of NEFA inthe media, and there was no obvious change in the CPTⅡtranscription and translation.With increased concentration of BHBA, ACSL transcription and translation levels wereincreased, and CPTⅠ, HMGCS transcription and translation were decreased in culturedbovine hepatocytes. There was no obvious change in the CPTⅡ, ACADL, ACCtranscription and translation levels with increasing BHBA concentrations in the culturemedia of bovine hepatocytes. With increased concentration of glucose, ACCtranscription and translation levels were increased, and CPTⅡ, HMGCS transcriptionand translation were decreased in cultured bovine hepatocytes, CPTⅡ transcriptionlevels were increased with glucose but translation levels was not changed. Thetranscription and translation of ACSL were increased with lower concentration ofglucose and then decreased with increasing concentration of glucose in the media. Therewas no obvious change in the ACADL transcription and translation levels withincreasing glucose concentrations.
     Bovine hepatocyte was cultured by the modified two collagenase perfusion. Theeffects of insulin (0、5、10、20、50、100nM), glucagon (0、0.01、0.1、1、10、100nM), and leptin (0、2.5、5、10、50、100ng/mL) on mRNA and proteinexpression of ACSL, CPTⅠ, CPTⅡ, ACADL, HMGCS, ACC in hepatocyte weredetected by real-time PCR and ELISA. The results showed that: with increasedconcentration of insulin, ACC transcription and translation levels were increased, andACSL, CPTⅠ, ACADL transcription and translation levels were decreased in culturedbovine hepatocytes, CPTⅡ transcription was decreased with insulin but translationlevels was not changed, and there was no obvious change in the HMGCS transcriptionand translation. With increased concentration of glucagon, ACSL, CPTⅠ transcriptionand translation levels were increased, and HMGCS, ACC transcription and translationlevels were decreased in cultured bovine hepatocytes, CPTⅡ transcription was increased with glucagon but translation levels was not changed, and there was noobvious change in the ACADL transcription and translation.With increasedconcentration of leptin, ACSL, CPTⅠ, CPTⅡ, ACADL transcription and translationlevels were increased, and ACC transcription and translation levels were decreased incultured bovine hepatocytes, and there was no obvious change in the HMGCStranscription and translation.
     As above-mentioned, fatty acid β-oxidation capability was altered in the liver ofketotic cows. Increased activation and decreased β-oxidation of fatty acid suggests morefatty acyl-CoA esterification into triacylglyceride, which may lead to liver lipidosis.High serum NEFA and BHBA concentrations play key roles in metabolism of fatty acidin ketotic cows. The intermediate metabolic products such as NEFA, BHBA, glucoseand hormeones such as insulin, glucagon, leptin could regulate the fatty acid oxidationmetablism capability through promoting or inhibiting the expression of fatty acidoxidation-related enzymes.
引文
[1] Jordan E. R., Fourdraine R. H. Characterization of the management practices of thetop milk producing herds in the country [J]. Journal of dairy science,1993,76(10):3247-56.
    [2] Duffield T., Bagg R., DesCoteaux L., et al. Prepartum monensin for the reduction ofenergy associated disease in postpartum dairy cows [J]. Journal of dairy science,2002,85(2):397-405.
    [3] Hansen L. B. Consequences of selection for milk yield from a geneticist's viewpoint[J]. Journal of dairy science,2000,83(5):1145-50.
    [4] Dohoo I. R., Martin S. W. Subclinical ketosis: prevalence and associations withproduction and disease [J]. Canadian Journal of Comparative Medicine,1984,48(1):1.
    [5] Kremer W. D. J., Noordhuizen-Stassen E. N., Grommers F. J., et al. Severity ofExperimental Escherichia coli Mastitis in Ketonemic and Nonketonemic DairyCows [J]. Journal of dairy science,1993,76(11):3428-36.
    [6] Bell A. W. Regulation of organic nutrient metabolism during transition from latepregnancy to early lactation [J]. Journal of Animal Science,1995,73(9):2804-19.
    [7] Friggens N. C. Body lipid reserves and the reproductive cycle: towards a betterunderstanding [J]. Livestock Production Science,2003,83(2-3):219-36.
    [8] Grummer R. R. Impact of changes in organic nutrient metabolism on feeding thetransition dairy cow [J]. Journal of Animal Science,1995,73(9):2820-33.
    [9] Grummer R. R. Etiology of lipid-related metabolic disorders in periparturient dairycows [J]. Journal of Dairy Science,1993,76(12):3882-96.
    [10] Ingvartsen K. L., Andersen J. B. Integration of metabolism and intake regulation: areview focusing on periparturient animals [J]. Journal of Dairy Science,2000,83(7):1573-97.
    [11] Grummer R. R., Mashek D. G., Hayirli A. Dry matter intake and energy balance inthe transition period [J]. The Veterinary clinics of North America Food animalpractice,2004,20(3):447-470.
    [12] Drackley J. K., Overton T. R., Douglas G. N. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period[J]. Journal of Dairy Science,2001,84:E100-E12.
    [13] Reynolds C. K., Aikman P. C., Lupoli B., et al. Splanchnic metabolism of dairycows during the transition from late gestation through early lactation [J]. Journal ofDairy Science,2003,86(4):1201-17.
    [14] Pullen D. L., Palmquist D. L., Emery R. S. Effect on days of lactation andmethionine hydroxy analog on incorporation of plasma fatty acids into plasmatriglycerides [J]. Journal of dairy science,1989,72(1):49-58.
    [15] McNamara J. P. Regulation of adipose tissue metabolism in support of lactation [J].Journal of dairy science,1991,74(2):706-19.
    [16] Underwood J. P. Protein nutrition of dairy cows during the transition period [J].PhD Diss, University of Illinois, Urbana, IL, USA,2003.
    [17] Bertoni G., Trevisi, E., Calamari, L., Lombardelli, R. Additional energy and proteinsupplementation of dairy cows during early lactation: milk yield, metabolic-endocrine status and reproductive performances [J]. Zoot Nutr Anim,1998,24:17-29.
    [18]Drackley J. K. Biology of dairy cows during the transition period: the final frontier?[J]. Journal of Dairy Science,1999,82(11):2259-73.
    [19] Emery R. S., Liesman J. S., Herdt T. H. Metabolism of long chain fatty acids byruminant liver [J]. The Journal of nutrition,1992,122(3Suppl):832.
    [20] Kleppe B. B., Aiello R. J., Grummer R. R., et al. Triglyceride accumulation andvery low density lipoprotein secretion by rat and goat hepatocytes in vitro [J].Journal of dairy science,1988,71(7):1813-22.
    [21] Graulet B., Gruffat D., Durand D., et al. Fatty acid metabolism and very lowdensity lipoprotein secretion in liver slices from rats and preruminant calves [J].Journal of biochemistry,1998,124(6):1212-9.
    [22] Grum D. E., Drackley J. K., Younker R. S., et al. Nutrition during the dry periodand hepatic lipid metabolism of periparturient dairy cows [J]. Journal of dairyscience,1996,79(10):1850-64.
    [23] Skaar T. C., Grummer R. R., Dentine M. R., et al. Seasonal effects of prepartumand postpartum fat and niacin feeding on lactation performance and lipidmetabolism [J]. Journal of dairy science,1989,72(8):2028-38.
    [24] Bobe G., Young J. W., Beitz D. C. Invited Review: Pathology, Etiology, Prevention,and Treatment of Fatty Liver in Dairy Cows [J]. Journal of dairy science,2004,87(10):3105-24.
    [25] Duffield T., Herdt T. H. Subclinical ketosis in lactating dairy cattle [J]. VeterinaryClinics of North America, Food Animal Practice,2000,16(2):231-53.
    [26] Herdt T. H. Ruminant adaptation to negative energy balance. Influences on theetiology of ketosis and fatty liver [J]. The Veterinary Clinics of North AmericaFood Animal Practice,2000,16(2):215.
    [27] Jorritsma R., Wensing T., Kruip T. A. M., et al. Metabolic changes in earlylactation and impaired reproductive performance in dairy cows [J]. Veterinaryresearch,2003,34(1):11-26.
    [28] LeBlanc S. J., Leslie K. E., Duffield T. F. Metabolic predictors of displacedabomasum in dairy cattle [J]. Journal of dairy science,2005,88(1):159-70.
    [29] Dann H. M., Morin D. E., Bollero G. A., et al. Prepartum intake, postpartuminduction of ketosis, and periparturient disorders affect the metabolic status ofdairy cows [J]. Journal of dairy science,2005,88(9):3249-64.
    [30] Drackley J. K., Beitz D. C., Young J. W. Regulation of in vitro metabolism ofpalmitate by carnitine and propionate in liver from dairy cows [J]. Journal of dairyscience,1991,74(9):3014-24.
    [31] Murondoti A., Jorritsma R., Beynen A. C., et al. Unrestricted feed intake during thedry period impairs the postpartum oxidation and synthesis of fatty acids in the liverof dairy cows [J]. Journal of dairy science,2004,87(3):672-9.
    [32] Zammit V. A. The malonyl-CoA-long-chain acyl-CoA axis in the maintenance ofmammalian cell function [J]. Biochemical journal,1999,343(Pt3):505.
    [33] Loor J. J., Dann H. M., Everts R. E., et al. Temporal gene expression profiling ofliver from periparturient dairy cows reveals complex adaptive mechanisms inhepatic function [J]. Physiological genomics,2005,23(2):217-26.
    [34] Van Den Top A. M., Wensing T., Geelen M. J. H., et al. Time trends of plasmalipids and enzymes synthesizing hepatic triacylglycerol during postpartumdevelopment of fatty liver in dairy cows [J]. Journal of dairy science,1995,78(10):2208-20.
    [35] Van den Top A. M., Geelen M. J., Wensing T., et al. Higher postpartum hepatictriacylglycerol concentrations in dairy cows with free rather than restricted accessto feed during the dry period are associated with lower activities of hepaticglycerolphosphate acyltransferase [J]. The Journal of nutrition,1996,126(1):76.
    [36] Brindle N. P., Zammit V. A., Pogson C. I. Regulation of carnitinepalmitoyltransferase activity by malonyl-CoA in mitochondria from sheep liver, atissue with a low capacity for fatty acid synthesis [J]. Biochemical Journal,1985,232(1):177-82.
    [37] Knapp J. R., Baldwin Jr R. L. Regulation of ketogenesis in dairy cattle [J]. J AnimSci,1990,68(Suppl1):522.
    [38] Dann H. M., Drackley J. K. Carnitine Palmitoyltransferase I in Liver ofPeriparturient Dairy Cows: Effects of Prepartum Intake, Postpartum Induction ofKetosis, and Periparturient Disorders [J]. Journal of dairy science,2005,88(11):3851-9.
    [39] Cappon G. D., Liu R. C. M., Frame S. R., et al. Effects of the rat hepaticperoxisome proliferator, Wyeth14,643, on the lactating goat [J]. Drug andchemical toxicology,2002,25(3):255-66.
    [40] Selberg K. T., Staples, C. R., Luchini, N. D., Badinga, L. Dietary transoctadecenoic acids upregulate the liver gene encoding peroxisome proliferator-activated receptor-α in transition dairy cows [J]. JDairy Res,2005,72:107-14.
    [41] Andersen J. B., Larsen T., Nielsen M. O., et al. Effect of energy density in the dietand milking frequency on hepatic long chain fatty acid oxidation in early lactatingdairy cows [J]. Journal of Veterinary Medicine Series A,2002,49(4):177-83.
    [42] Overton T. R., Drackley J. K., Douglas G. N., et al. Hepatic gluconeogenesis andwhole-body protein metabolism of periparturient dairy cows as affected by sourceof energy and intake of the prepartum diet [J]. J Dairy Sci,1998,81(Suppl1):295.
    [43] Greenfield R. B., Cecava M. J., Donkin S. S. Changes in mRNA expression forgluconeogenic enzymes in liver of dairy cattle during the transition to lactation [J].Journal of dairy science,2000,83(6):1228-36.
    [44] Hartwell J. R., Cecava M. J., Donkin S. S. Rumen undegradable protein, rumen-protected choline and mRNA expression for enzymes in gluconeogenesis andureagenesis in periparturient dairy cows [J]. Journal of dairy science,2001,84(2):490-7.
    [45] Santos J. E. P., DePeters E. J., Jardon P. W., et al. Effect of prepartum dietaryprotein level on performance of primigravid and multiparous Holstein dairy cows[J]. Journal of dairy science,2001,84(1):213-24.
    [46] Van Saun R. J., Idleman S. C., Sniffen C. J. Effect of undegradable protein amountfed prepartum on postpartum production in first lactation Holstein cows [J].Journal of dairy science,1993,76(1):236-44.
    [47] Bell A. W., Burhans W. S., Overton T. R. Protein nutrition in late pregnancy,maternal protein reserves and lactation performance in dairy cows [J]. Proceedingsof the Nutrition Society,2000,59(01):119-26.
    [48] Gerloff B. J., Herdt T. H. Hepatic lipidosis from dietary restriction in nonlactatingcows [J]. Journal of the American Veterinary Medical Association,1984,185(2):223.
    [49] Rukkwamsuk T., Wensing T., Geelen M. J. H. Effect of overfeeding during the dryperiod on regulation of adipose tissue metabolism in dairy cows during theperiparturient period [J]. Journal of dairy science,1998,81(11):2904-11.
    [50] Stockdale C. R. Body condition at calving and the performance of dairy cows inearly lactation under Australian conditions: a review [J]. Australian journal ofexperimental agriculture,2001,41(6):823-39.
    [51] Chelikani P. K., Glimm D. R., Kennelly J. J. Short communication: Tissuedistribution of leptin and leptin receptor mRNA in the bovine [J]. Journal of dairyscience,2003,86(7):2369-72.
    [52] Ohtsuka H., Koiwa M., Hatsugaya A., et al. Relationship between serum TNFactivity and insulin resistance in dairy cows affected with naturally occurring fattyliver [J]. The Journal of veterinary medical science/the Japanese Society ofVeterinary Science,2001,63(9):1021.
    [53] Kushibiki S., K. Hodate, H. Shingu, Y. Obara, E. Touno, M. Shinoda, Y.Yokomizo.. Metabolic and lactatational responses during recombinant bovinetumor necrosis factor-α treatment in lactating cows [J]. Journal of dairy science,2003,86:819–27.
    [54] Smith T. R., Hippen A. R., Beitz D. C., et al. Metabolic characteristics of inducedketosis in normal and obese dairy cows [J]. Journal of dairy science,1997,80(8):1569-81.
    [55] Hippen A. R., She P., Young J. W., et al. Alleviation of fatty liver in dairy cowswith14-day intravenous infusions of glucagon [J]. Journal of dairy science,1999,82(6):1139-52.
    [56] Gerloff B. J. Dry cow management for the prevention of ketosis and fatty liver indairy cows [J]. The Veterinary clinics of North America Food animal practice,2000,16(2):283.
    [57] Bobe G., Ametaj B. N., Young J. W., et al. Potential treatment of fatty liver with14-day subcutaneous injections of glucagon [J]. Journal of dairy science,2003,86(10):3138-47.
    [58] Goff J. P., Horst R. L. Physiological Changes at Parturition and Their Relationshipto Metabolic Disorders1,2[J]. Journal of Dairy Science,1997,80(7):1260-8.
    [59] Nikov S., Ivanov I., Simeonov S. P., et al. Liver diseases and their relationship toforestomach function in highly productive cows][J]. Veterinarno-meditsinski nauki,1981,18(10):46.
    [60] Murondoti A., Tivapasi M. T., Geelen M. J. H., et al. The effect of postpartumrumen undegradable protein supplementation on hepatic gluconeogenic enzymeactivities in dairy cows with fatty liver [J]. International journal for vitamin andnutrition research,2002,72(5):336-40.
    [61] Drackley J. K., Richard M. J., Beitz D. C., et al. Metabolic changes in dairy cowswith ketonemia in response to feed restriction and dietary1,3-butanediol [J].Journal of dairy science,1992,75(6):1622-34.
    [62] Douglas G. N., Drackley J. K., Overton T. R., et al. Lipid metabolism andproduction by Holstein cows fed control or high fat diets at restricted or ad libitumintakes during the dry period [J]. J Dairy Sci,1998,81(Suppl1):295.
    [63] Douglas G. N., J. Rehage, A. D. Beaulieu, A. O. Bahaa, J. K. Drackley.. Peripartalchanges in fatty acid profiles of blood, adiposetissue, and liver of dairy cows canbe modulated by diet [J]. Journal of dairy science,2002,85(Suppl.1):185.
    [64] Wentink G. H., V. P. M. G. Rutten, T. S. G. A. M. van den Ingh, A. Hoek. Impairedspecific immunoreactivity in cows with hepatic lipidosis [J]. Vet ImmunolImmunopathol,1997,56:77–83.
    [65] Katoh N. Relevance of apolipoproteins in the development of fatty liver and fattyliver-related peripartum diseases in dairy cows [J]. Journal of veterinary medicalscience,2002,64(4):293-307.
    [66]Reid I. M. Incidence and severity of fatty liver in dairy cows [J]. Veterinary Record,1980,107(12):281-4.
    [67] Jorritsma R., Jorritsma H., Schukken Y. H., et al. Relationships between fatty liverand fertility and some periparturient diseases in commercial Dutch dairy herds [J].Theriogenology,2000,54(7):1065-74.
    [68] Mehrzad J., Duchateau L., Burvenich C. Blood and milk neutrophilchemiluminescence and viability in primiparous and pluriparous dairy cows duringlate pregnancy, around parturition and early lactation [J]. Journal of dairy science,2002,85(12):3268-76.
    [69] Gilbert R. O., Grohn Y. T., Miller P. M., et al. Effect of parity on periparturientneutrophil function in dairy cows [J]. Veterinary immunology andimmunopathology,1993,36(1):75-82.
    [70] Tempelman R. J., Saama P. M., Freeman A. E., et al. Genetic variation in bovineneutrophil sensitivity to glucocorticoid challenge [J]. Acta AgriculturaeScandinavica, Section A-Animal Science,2002,52(4):189-202.
    [71] Duffield T. F., Kelton D. F., Leslie K. E., et al. Use of test day milk fat and milkprotein to detect subclinical ketosis in dairy cattle in Ontario [J]. The CanadianVeterinary Journal,1997,38(11):713.
    [72] Kauppinen K. Correlation of whole blood concentrations of acetoacetate, beta-hydroxybutyrate, glucose and milk yield in dairy cows as studied under fieldconditions [J]. ActaVet Scand,1983,24:337–48.
    [73] Grohn Y., Thompson J. R., Bruss M. L. Epidemiology and genetic basis of ketosisin Finnish Ayrshire cattle [J]. Preventive Veterinary Medicine,1984,3(1):65-77.
    [74] Andersson L., Emanuelson U. An epidemiological study of hyperketonaemia inSwedish dairy cows; determinants and the relation to fertility [J]. PreventiveVeterinary Medicine,1985,3(5):449-62.
    [75] Bendixen P. H., Vilson B., Ekesbo I., et al. Disease frequencies in dairy cows inSweden. IV. Ketosis [J]. Preventive Veterinary Medicine,1987,5(2):99-109.
    [76] Markusfeld O. The association of displaced abomasum with various periparturientfactors in dairy cows. A retrospective study [J]. Preventive Veterinary Medicine,1986,4(2):173-83.
    [77] Markusfeld O., Galon N., Ezra E. Body condition score, health, yield and fertilityin dairy cows [J]. Veterinary record,1997,141(3):67-72.
    [78] Markusfeld O. Relationship between overfeeding, metritis and ketosis in highyielding dairy cows [J]. Veterinary Record,1985,116(18):489-91.
    [79] Bigras-Poulin M., Meek A. H., Martin S. W. Interrelationships among healthproblems and milk production from consecutive lactations in selected OntarioHolstein cows [J]. Preventive Veterinary Medicine,1990,8(1):15-24.
    [80] Van Dorp R. T., Martin S. W., Shoukri M. M., et al. An epidemiologic study ofdisease in32registered Holstein dairy herds in British Columbia [J]. Canadianjournal of veterinary research,1999,63(3):185.
    [81] Kushibiki S., Hodate K., Ueda Y., et al. Administration of recombinant bovinetumor necrosis factor-alpha affects intermediary metabolism and insulin andgrowth hormone secretion in dairy heifers [J]. Journal of animal science,2000,78(8):2164-71.
    [82] Bradford B. J., Mamedova L. K., Minton J. E., et al. Daily Injection of TumorNecrosis Factor-a Increases Hepatic Triglycerides and Alters Transcript Abundanceof Metabolic Genes in Lactating Dairy Cattle [J]. Journal of Nutrition,139(8):1451-6.
    [83] Trevisi E., Amadori M., Bakudila A. M., et al. Metabolic changes in dairy cowsinduced by oral, low-dose interferon-alpha treatment [J]. Journal of animal science,2009,87(9):3020-9.
    [84] Tveit B., Lingaas F., Svendsen M., et al. Etiology of acetonemia in Norwegiancattle.1. Effect of ketogenic silage, season, energy level, and genetic factors [J].Journal of dairy science,1992,75(9):2421-32.
    [85] Danfer A., Tetens V., Agergaard N. Review and an experimental study on thephysiological and quantitative aspects of gluconeogenesis in lactating ruminants [J].Comparative Biochemistry and Physiology Part B: Biochemistry and MolecularBiology,1995,111(2):201-10.
    [86] Chandler P. Milk fever may be caused by potassium and sodium, not calcium [J].Feedstuffs,1997,69(15):10-23.
    [87]何生虎.奶牛低血钙症与阴阳离子平衡[J].甘肃畜牧兽医,2006,4:43-5.
    [88] Ender F., Dishington I. W., Helgebostad A. Parturient paresis and related forms ofhypocalcaemic disorders induced experimentally in dairy cows [J]. ActaVeterinaria Scandinavica,1962,3:5-52.
    [89] Block E. Manipulating dietary anions and cations for prepartum dairy cows toreduce incidence of milk fever [J]. Journal of Dairy Science,1984,67(12):2939-48.
    [90] Bell A. W. Lipid metabolism in liver and selected tissues and in the whole body ofruminant animals [J]. Progress in lipid research,1979,18(3):117.
    [91] Lomax M. A., Baird G. D. Blood flow and nutrient exchange across the liver andgut of the dairy cow [J]. British Journal of Nutrition,1983,49:481-96.
    [92] Demant E. J. F., Richieri G. V., Kleinfeld A. M. Stopped-flow kinetic analysis oflong-chain fatty acid dissociation from bovine serum albumin [J]. BiochemicalJournal,2002,363(Pt3):809.
    [93] Luiken J. J. F. P., Dyck D. J., Han X. X., et al. Insulin induces the translocation ofthe fatty acid transporter FAT/CD36to the plasma membrane [J]. American Journalof Physiology-Endocrinology And Metabolism,2002,282(2): E491-E5.
    [94] Wilmsen H. M., Ciaraldi T. P., Carter L., et al. Thiazolidinediones upregulateimpaired fatty acid uptake in skeletal muscle of type2diabetic subjects [J].American Journal of Physiology-Endocrinology And Metabolism,2003,285(2):E354-E62.
    [95] Gaster M., Rustan, A. C., Aas, V., Beck-Nielsen, H. Reduced lipid oxidation inskeletal muscle from type2dia-betic subjects may be of genetic origin: evidencefrom cul-tured myotubes [J]. Diabetes,2004,53:542–8.
    [96] Aas V., Rokling-Andersen M., Wensaas A. J., et al. Lipid metabolism in humanskeletal muscle cells: effects of palmitate and chronic hyperglycaemia [J]. ActaPhysiologica Scandinavica,2005,183(1):31-41.
    [97] Bhuiyan A. K., Murthy M. S., Pande S. V. Some properties of the malonyl-CoAsensitive carnitine long/medium chain acyltransferase activities of peroxisomes andmicrosomes of rat liver [J]. Biochemistry and molecular biology international,1994,34(3):493-503.
    [98] Aiello R. J., Kenna T. M., Herbein J. H. Hepatic gluconeogenic and ketogenicinterrelationships in the lactating cow [J]. Journal of Dairy Science,1984,67(8):1707-15.
    [99] Zammit V. A. Role of insulin in hepatic fatty acid partitioning: emerging concepts[J]. Biochemical Journal,1996,314(Pt1):1-14.
    [100] Cadorniga-Valino C., Grummer R. R., Armentano L. E., et al. Effects of fattyacids and hormones on fatty acid metabolism and gluconeogenesis in bovinehepatocytes [J]. Journal of dairy science,1997,80(4):646-56.
    [101] Louet J. F., Le May C., Pegorier J. P., et al. Regulation of liver carnitinepalmitoyltransferase I gene expression by hormones and fatty acids [J].Biochemical Society Transactions,2001,29(Pt2):310.
    [102] Castaneda-Gutierrez E., Pelton S. H., Gilbert R. O., et al. Effect of peripartumdietary energy supplementation of dairy cows on metabolites, liver function andreproductive variables [J]. Animal reproduction science,2009,112(3-4):301-15.
    [103] Brivet M., Boutron A., Slama A., et al. Defects in activation and transport of fattyacids [J]. Journal of inherited metabolic disease,1999,22(4):428-41.
    [104] Hug G., Bove K. E., Soukup S. Lethal neonatal multiorgan deficiency of carnitinepalmitoyltransferase II [J]. New England Journal of Medicine,1991,325(26):1862-4.
    [105] Taroni F., Verderio E., Dworzak F., et al. Identification of a common mutation inthe carnitine palmitoyltransferase II gene in familial recurrent myoglobinuriapatients [J]. Nature genetics,1993,4(3):314-20.
    [106] Aoyama T., Souri M., Ushikubo S., et al. Purification of human very-long-chainacyl-coenzyme A dehydrogenase and characterization of its deficiency in sevenpatients [J]. Journal of Clinical Investigation,1995,95(6):2465-73.
    [107] Chace D. H., Adam B. W., Smith S. J., et al. Validation of accuracy-based aminoacid reference materials in dried-blood spots by tandem mass spectrometry fornewborn screening assays [J]. Clinical chemistry,1999,45(8):1269-77.
    [108] Loehr J. P., Goodman S. I., Frerman F. E. Glutaric acidemia type II: heterogeneityof clinical and biochemical phenotypes [J]. Pediatric research,1990,27(3):311-5.
    [109] Pretorius C. J., Loy Son G. G., Bonnici F., et al. Two siblings with episodicketoacidosis and decreased activity of succinyl-CoA:3-ketoacid CoA-transferasein cultured fibroblasts [J]. Journal of inherited metabolic disease,1996,19(3):296-300.
    [110]石如玲,,姜玲玲.过氧化物酶体脂肪酸β氧化[J].中国生物化学与分子生物学报,2009,25(1):12-6.
    [111] Hashimoto T. Peroxisomal beta-oxidation enzymes [J]. Cell Biochem Biophys,2000,32:63-72.
    [112] Hostetler H. A., K ier AB, Schroeder F. Very-long-chain and branched-chainfatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activatedreceptor alpha (PPARalpha)[J]. Biochemistry and molecular biologyinternational,2006,45(24):7669-781.
    [113] Reddy J. K., Goel S. K., Nemali M. R., et al. Transcription regulation ofperoxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators [J]. Proceedings ofthe National Academy of Sciences,1986,83(6):1747-51.
    [114] Hu T., F oxworthy P, Siesky A. Hepatic peroxisomal fatty acid beta-oxidation isregulated by liver X receptor alpha [J]. Endocrinology,2005,146(12):5380-7.
    [115]王素玲王.,姜玲玲.胆汁酸合成增加与肝D-双功能蛋白表达增强、活性升高的相关性[J].第四军医大学学报,2008,29(6):516-8.
    [116] Suzuki Y., Jiang L. L., Souri M., et al. D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newlyidentified peroxisomal disorder [J]. The American Journal of Human Genetics,1997,61(5):1153-62.
    [117] Ferdinandusse S., Kostopoulos P., Denis S., et al. Mutations in the gene encodingperoxisomal sterol carrier protein X (SCPx) cause leukencephalopathy withdystonia and motor neuropathy [J]. The American Journal of Human Genetics,2006,78(6):1046-52.
    [118] Heitmann R. N., Dawes D. J., Sensenig S. C. Hepatic ketogenesis and peripheralketone body utilization in the ruminant [J]. The Journal of nutrition,1987,117(6):1174-80.
    [119] Hegardt F. G. Mitochondrial3-hydroxy-3-methylglutaryl-CoA synthase: a controlenzyme in ketogenesis [J]. Biochemical Journal,1999,338(Pt3):569-82.
    [120] Vernon A., Barnes. EEG, hypometabolism, and ketosis during transcendentalmeditation indicate it does not increase epilepsy risk [J]. Medical Hypotheses,2005,65(1):202-3.
    [121] Xu C., Wang Z. Comparative proteomic analysis of livers from ketotic cows [J].Veterinary research communications,2008,32(3):263-73.
    [122] Xu C., Liu G., Li X., et al. Decreased complete oxidation capacity of fatty acid inthe liver of ketotic cows [J]. Asian-Australasian J Anim,2010,23:312-7.
    [123] Ingvartsen K. L. Feeding-and management-related diseases in the transition cow:Physiological adaptations around calving and strategies to reduce feeding-relateddiseases [J]. Animal Feed Science and Technology,2006,126(3):175-213.
    [124] Van Dorland H. A., Richter S., Morel I., et al. Variation in hepatic regulation ofmetabolism during the dry period and in early lactation in dairy cows [J]. Journalof dairy science,2009,92(5):1924-40.
    [125] Melendez P., Goff J. P., Risco C. A., et al. Incidence of subclinical ketosis in cowssupplemented with a monensin controlled-release capsule in Holstein cattle,Florida, USA [J]. Preventive veterinary medicine,2006,73(1):33-42.
    [126] Busato A., Faissler D., Kopfer U., et al. Body condition scores in dairy cows:associations with metabolic and endocrine changes in healthy dairy cows [J].Journal of Veterinary Medicine Series A,2002,49(9):455-60.
    [127] Hachenberg S., Weinkauf C., Hiss S., et al. Evaluation of classification modespotentially suitable to identify metabolic stress in healthy dairy cows during theperipartal period [J]. Journal of animal science,2007,85(8):1923-32.
    [128] Xu C., Wang Z., Zhang R. H., et al. Effect of NEFA and glucose levels on CPT-ImRNA expression and translation in cultured bovine hepatocytes [J]. The Journalof veterinary medical science/the Japanese Society of Veterinary Science,2011,73(1):97-101.
    [129] Ness G. C., Chambers C. M. Feedback and Hormonal Regulation of Hepatic3-hydroxy-3-methylglutaryl Coenzyme A Reductase: The Concept of CholesterolBuffering Capacity [J]. Proceedings of the Society for Experimental Biology andMedicine,2000,224(1):8-19.
    [130] Mashek D. G., Grummer R. R. Effects of long chain fatty acids on lipid andglucose metabolism in monolayer cultures of bovine hepatocytes [J]. Journal ofdairy science,2003,86(7):2390-6.
    [131] Stanley W. C., Meadows S. R., Kivilo K. M., et al. β-Hydroxybutyrate inhibitsmyocardial fatty acid oxidation in vivo independent of changes in malonyl-CoAcontent [J]. American Journal of Physiology-Heart and Circulatory Physiology,2003,285(4): H1626-H31.
    [132]孙玉成.围产期奶牛肝VLDL组装与分泌主要相关蛋白基因表达的调控[D].吉林大学,2006.
    [133]苏蔚. NEFA对体外培养肝细胞PC mRNA和PEPCK mRNA丰度及活性的影响[D].吉林大学,2007.
    [134]张才,王利民,刘国文,苏蔚,黄建龙,谢光洪,王哲.犊牛肝细胞的分离与原代培养[J].细胞生物学杂志,2007,29:880-4.
    [135] Bertics S. J., Grummer R. R., Cadorniga-Valino C., et al. Effect of prepartum drymatter intake on liver triglyceride concentration and early lactation [J]. Journal ofDairy Science,1992,75(7):1914-22.
    [136] Dale H., Vik-Mo L., Fjellheim P. A field survey of fat mobilization and liverfunction of dairy cows during early lactation. Relationship to energy balance,appetite and ketosis [J]. Nordisk veterinaermedicin,1979,31(3):97.
    [137]王镜岩,主编.生物化学(第三版)[M].高等教育出版社,2002,
    [138] Kunau W. H., Dommes V., Schulz H. beta-oxidation of fatty acids inmitochondria, peroxisomes, and bacteria: a century of continued progress [J].Progress in lipid research,1995,34(4):267-342.
    [139] Dyck J. R. B., Lopaschuk G. D. Malonyl CoA control of fatty acid oxidation inthe ischemic heart [J]. Journal of molecular and cellular cardiology,2002,34(9):1099-109.
    [140] Goodwin G. W., Taegtmeyer H. Regulation of fatty acid oxidation of the heart byMCD and ACC during contractile stimulation [J]. American Journal ofPhysiology-Endocrinology And Metabolism,1999,277(4): E772-E7.
    [141] Saha A. K., Vavvas D., Kurowski T. G., et al. Malonyl-CoA regulation in skeletalmuscle: its link to cell citrate and the glucose-fatty acid cycle [J]. AmericanJournal of Physiology-Endocrinology And Metabolism,1997,272(4): E641-E8.
    [142] Saddik M., Gamble J., Witters L. A., et al. Acetyl-CoA carboxylase regulation offatty acid oxidation in the heart [J]. Journal of Biological Chemistry,1993,268(34):25836-45.
    [143] Stanley W. C., Hernandez L. A., Spires D., et al. Pyruvate dehydrogenase activityand malonyl CoA levels in normal and ischemic swine myocardium: effects ofdichloroacetate [J]. Journal of molecular and cellular cardiology,1996,28(5):905-14.
    [144] Kreipe L., Vernay M., Oppliger A., et al. Induced hypoglycemia for48hoursindicates differential glucose and insulin effects on liver metabolism in dairycows [J]. Journal of dairy science,94(11):5435-48.
    [145] Al-Trad B., Reisberg K., Wittek T., et al. Increasing intravenous infusions ofglucose improve body condition but not lactation performance in midlactationdairy cows [J]. Journal of dairy science,2009,92(11):5645-58.
    [146] Durrington P. N., Newton R. S., Weinstein D. B., et al. Effects of insulin andglucose on very low density lipoprotein triglyceride secretion by cultured rathepatocytes [J]. Journal of Clinical Investigation,1982,70(1):63-73.
    [147] Bjornsson O. G., Duerden J. M., Bartlett S. M., et al. The role of pancreatichormones in the regulation of lipid storage, oxidation and secretion in primarycultures of rat hepatocytes. Short-and long-term effects [J]. Biochemical Journal,1992,281(Pt2):381-6.
    [148] Radenne A., Akpa M., Martel C., et al. Hepatic regulation of fatty acid synthaseby insulin and T3: evidence for T3genomic and nongenomic actions [J].American Journal of Physiology-Endocrinology And Metabolism,2008,295(4):E884-E94.
    [149] Plagnes-Juan E., Lansard M., Seiliez I., et al. Insulin regulates the expression ofseveral metabolism-related genes in the liver and primary hepatocytes of rainbowtrout (Oncorhynchus mykiss)[J]. Journal of Experimental Biology,2008,211(15):2510-8.
    [150] Han C., Wang J., Li L., et al. The role of insulin and glucose in goose primaryhepatocyte triglyceride accumulation [J]. Journal of Experimental Biology,2009,212(10):1553-8.
    [151]张辉.脂联素对围产期奶牛脂肪动员的相关性研究[D].吉林大学,2007.
    [152] Hamel F. G., Bennett R. G., Upward J. L., et al. Insulin inhibits peroxisomal fattyacid oxidation in isolated rat hepatocytes [J]. Endocrinology,2001,142(6):2702-6.
    [153] Liu H. Y., Yehuda-Shnaidman E., Hong T., et al. Prolonged exposure to insulinsuppresses mitochondrial production in primary hepatocytes [J]. Journal ofBiological Chemistry,2009,284(21):14087-95.
    [154] Hussain K., Bryan J., Christesen H. T., et al. Serum glucagon counterregulatoryhormonal response to hypoglycemia is blunted in congenital hyperinsulinism [J].Diabetes,2005,54(10):2946-51.
    [155] Brockman R. P. Effects of glucagon and insulin on lipolysis and ketogenesis insheep [J]. Canadian Journal of Comparative Medicine,1976,40(2):166-70.
    [156] Ingvartsen K. L., Boisclair Y. R. Leptin and the regulation of food intake, energyhomeostasis and immunity with special focus on periparturient ruminants [J].Domestic animal endocrinology,2001,21(4):215-50.
    [157] Halaas J. L., Gajiwala K. S., Maffei M., et al. Weight-reducing effects of theplasma protein encoded by the obese gene [J]. Science,1995,269(5223):543-6.
    [158] Campfield L A S. F. J., Guisez Y, Devos R, Burn P. Recombinant mouse OBprotein:evidence for a peripheral signal linking adposity, and central neural networks [J]. Science,1995,269:546–9.
    [159] Pelleymounter M. A., Cullen M. J., Baker M. B., et al. Effects of the obese geneproduct on body weight regulation in ob/ob mice [J]. Science,1995,269(5223):540-3.
    [160] Henry B. A., Goding J. W., Alexander W. S., et al. Central administration of leptinto ovariectomized ewes inhibits food intake without affecting the secretion ofhormones from the pituitary gland: evidence for a dissociation of effects onappetite and neuroendocrine function [J]. Endocrinology,1999,140(3):1175-82.
    [161] Ajuwon K. M., Kuske J. L., Anderson D. B., et al. Chronic leptin administrationincreases serum NEFA in the pig and differentially regulates PPAR expression inadipose tissue [J]. The Journal of Nutritional Biochemistry,2003,14(10):576-83.
    [162] Chen Y., Heiman M. L. Chronic leptin administration promotes lipid utilizationuntil fat mass is greatly reduced and preserves lean mass of normal female rats [J].Regulatory peptides,2000,92(1):113-9.
    [163] Chen Y., Heiman M. L. Increased weight gain after ovariectomy is not aconsequence of leptin resistance [J]. American Journal of Physiology-Endocrinology And Metabolism,2001,280(2): E315-E22.
    [164] Reidy S. P., Weber J. M. Accelerated substrate cycling: a new energy-wasting rolefor leptin in vivo [J]. American Journal of Physiology-Endocrinology AndMetabolism,2002,282(2): E312-E7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700