中链脂肪酸对肥胖小鼠脂代谢的调节作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.证实中链脂肪酸(MCFA)具有效降低高脂肪饲料诱导的肥胖小鼠体重、改善脂代谢的作用。
     2.探讨MCFA上述作用的可能机制、作用通路及靶点,为进一步研究MCFA调节机体脂代谢的作用提供理论依据。
     3.探讨辛酸和癸酸单体对高脂肪饲料诱导的肥胖小鼠体重、体脂肪及脂代谢的影响。
     方法
     1. C57BL/6J小鼠肥胖模型的建立
     4-5周龄C57BL/6J雄性小鼠100只,普通饲料适应喂养1周后,按空腹体重随机选择15只小鼠设为对照组(control),喂饲普通饲料(AIN-96G),其余小鼠喂饲高脂饲料(脂肪占总重量19.42%,产热比40.5%)。喂养4周后,在高脂饲料喂养的小鼠中,选择体重高于对照组平均体重10%的个体,进行体重分布分析,在分布频率峰值范围内随机选取小鼠15只,设为肥胖组(HFD-1);采用同样方法在剩余小鼠中随机选取15只,设为肥胖抵抗组(HFD-2)。对3组小鼠进行体长、Lee’s指数、BMI、体重增长值、肝脏重、肠系膜周围脂肪垫、附睾周围脂肪垫及肾周脂肪垫重量以及血清葡萄糖、TG、TC、HDL-C和LDL-C测定,计算HDL-C/LDL-C比值,同时取部分附睾周围脂肪组织固定进行HE染色。在喂养4周内,每周测空腹体重一次,每隔1天更换垫料和水,称量饲料消耗量,并计算食物功效比。
     2. MCFA对C57BL/6J肥胖小鼠脂代谢的调节作用
     按第一部分实验方法复制肥胖小鼠模型,将复制成功的肥胖小鼠分三部分进行急性灌胃实验、短期灌胃实验和长期喂养实验。
     (1)急性灌胃实验
     将36只建模成功的肥胖C57BL/6J小鼠按空腹体重随机分为2组,每组18只,分别灌胃含有MCFA的油脂(MCT)和含有LCFA的油脂(LCT),剂量为2mg/kg,两组分别于灌胃后1小时、2小时、4小时各处死6只,取腹主动脉血测血清中TG、TC、HDL-C、LDL-C,并计算HDL-C/LDL-C比值。
     (2)短期灌胃实验
     24只C57BL/6J肥胖小鼠按空腹体重随机分为两组,每组12只,分别灌胃MCT和LCT,剂量为2mg/kg,每日灌胃1次,持续2周。在实验期间以高脂饲料喂饲动物,每隔1日进行饲料消耗量的称量和记录,并计算食物功效比。2周后,称量小鼠空腹体重后,麻醉小鼠,测量小鼠体长,计算Lee’s指数、BMI和体重增长值。取腹主动脉血处死小鼠,测量血清TG、TC、HDL-C和LDL-C,计算HDL-C/LDL-C比值。同时取小鼠肝脏、肠系膜周围脂肪垫、附睾周围脂肪垫及肾周脂肪垫并称重。另取部分肝脏组织制作匀浆,测定蛋白浓度以及TG、TC、ApoA1和ApoB浓度,并计算ApoA1/ApoB比值。
     (3)长期喂养实验
     30只C57BL/6J肥胖小鼠按空腹体重随机分为两组,每组15只,分别给予含2%MCT和LCT的高脂饲料喂养,12周后结束实验,测定指标同短期实验。同时,取部分附睾周围脂肪组织固定进行HE染色。
     3. MCFA调节C57BL/6J肥胖小鼠脂代谢的机制研究
     在上述长期喂养实验基础上,采用ELISA法测定血清样本中HSL、cAMP、PKA、FFA、GLY、NADR和T3浓度。冻存部分肝脏组织和附睾周围脂肪组织,用0.9%氯化钠注射液按10%浓度制成组织匀浆,采用BCA法测定脂肪组织及肝脏组织蛋白浓度,采用ELISA法测定脂肪组织中HSL、ATGL、cAMP、PKA、LPL、FAS、ACC、Leptin、APN、PPAR-γ、TNF-α水平,肝脏组织中LPL、FAS、ACC、ME、G6PD、Leptin、APN、PPAR-γ、TNF-α水平。采用Real-time PCR法检测脂肪组织中HSL、ATGL、UCP2、β3-AR、Leptin、PPAR-γ、SREBP-1和C/EBP-α的mRNA表达。采用Westernblotting法检测脂肪组织中β3-AR的蛋白表达。另外,参考Fredrikson G和Belfrage P报道的方法测定血清和脂肪组织中HSL的活性。
     4.辛酸和癸酸对C57BL/6J肥胖小鼠脂代谢调节作用的比较
     按上述长期实验研究的方法,喂饲C57BL/6J肥胖小鼠含有2%辛酸(C8)、癸酸(C10)和油酸(C18)的高脂饲料,每组12只,8周后结束实验。观察指标包括:小鼠每周空腹体重、饲料消耗量及食物功效比、小鼠体长、Lee’s指数、BMI和体重增长值、小鼠肝脏及脂肪组织重、脂肪细胞形态学观察、小鼠血清TG、TC、HDL-C、LDL-C、HDL-C/LDL-C比值、脂肪组织中HSL、ATGL、cAMP、PKA、Leptin、TNF-α、PPAR-γ水平以及HSL、ATGL、β3-AR的mRNA表达,肝脏组织中ApoA1、ApoB、LPL、FAS、CYP7A1、HMGCoA、TNF-α水平以及CYP7A1和HMGCoA的mRNA表达。
     结果
     1. C57BL/6J小鼠肥胖模型的建立
     高脂饲料喂养4周后,HFD-1肥胖组小鼠体重、体长、Lee’s指数、BMI、体重增长值、肝重及各部分脂肪组织重以及血糖、TC和LDL-C水平均显著高于HFD-2肥胖抵抗组和对照组(P<0.05),HDL-C/LDL-C比值显著低于HFD-2组和对照组(P<0.05)。脂肪细胞形态学观察结果显示HFD-1组细胞的长径和短径均显著大于HFD-2组和对照组(P<0.05),单个视野小型脂肪细胞数量少于HFD-2组和对照组(P<0.05)。HFD-1组的肥胖小鼠模型建立成功。
     2. MCFA对C57BL/6J肥胖小鼠脂代谢的调节作用
     急性灌胃实验结果显示小鼠灌胃MCT、LCT后2小时和4小时,MCT组血清TG均明显低于LCT组(P<0.05),其他血脂相关指标未显示统计学差异(P>0.05)。短期灌胃实验结果显示小鼠体重、血脂、肝脏脂代谢指标等,灌胃MCT与LCT2周后比较均无显著性差异(P>0.05)。长期喂养实验结果显示MCT饲料组小鼠体重、体长、Lee’s指数、BMI、体重增长值、肝脏重、肾周脂肪重、附睾周脂肪重、血脂相关指标如血清TG、TC和LDL-C浓度均显著低于LCT组(P<0.05),血清HDL-C水平和HDL-C/LDL-C比值、小鼠肝脏组织匀浆的ApoA1浓度及ApoA1/ApoB比值,均显著高于LCT组(P<0.05)。脂肪细胞形态学观察结果显示,长期喂养MCT饲料的小鼠脂肪细胞长径和短径显著低于LCT组,而单个视野平均细胞数高于LCT组,差异均有统计学意义(P<0.05)。
     3. MCFA调节C57BL/6J肥胖小鼠脂代谢的机制研究
     喂饲MCT12周的C57BL/6J小鼠,ELISA法测定结果显示,与脂肪动员相关的各项指标如血清HSL和NADR水平,肝脏组织LPL水平,脂肪组织中ATGL、HSL和cAMP水平显著高于LCT组(P<0.05),其他指标如血清FFA浓度,脂肪组织中FAS、Leptin和TNF-α水平显著低于LCT组(P<0.05),PPAR-γ水平及肝脏中FAS、ACC、Leptin、APN及TNF-α水平两组之间比较均无统计学差异(P>0.05)。mRNA表达测定结果显示:小鼠脂肪组织中ATGL、HSL、UCP2和β3-AR的mRNA表达量均显著高于LCT组(P<0.05),Leptin、SREBP-1和C/EBP-α的mRNA表达量均显著低于LCT组,PPAR-γ mRNA表达两组之间无显著性差异(P>0.05)。Western blotting测定结果显示,MCT组β3-AR蛋白表达显著高于LCT组(P<0.01)。此外,MCT组脂肪组织中HSL活性显著高于LCT组(P<0.01),而血清中HSL活性,两组之间比较无显著性差异(P>0.05)。
     4. MCFA不同单体对C57BL/6J肥胖小鼠脂代谢调节作用的比较
     C57BL/6J小鼠喂饲分别含有C8、C10和C18脂肪酸的饲料8周后,C10组小鼠体重、Lee’s指数、BMI、体重增长值、附睾周围脂肪组织重均显著低于C18组(P<0.05),脂肪细胞形态学观察结果显示,C10组脂肪细胞体积明显减小,与C18组比较,细胞长径和短径均显著降低,而单个视野平均细胞数高于C18组(P<0.05),且与甘油三酯代谢相关指标如血清TG、脂肪组织中ATGL、HSL、cAMP水平均显著高于C18组(P<0.05),Leptin和TNF-α水平以及肝脏中FAS水平均显著低于C18组(P<0.05)。此外,脂肪组织中ATGL、HSL和β3-AR的mRNA表达量均显著高于C18组(P<0.05)。
     C8组与C18组比较,主要体现在与胆固醇代谢相关指标存在显著性差异,如血清TC和LDL-C浓度低于C18组(P<0.05),血HDL-C/LDL-C比值,肝脏组织中ApoA1浓度、ApoA1/ApoB比值和CYP7A1水平均显著高于C18组(P<0.05)。此外,C8组与C10、C18组分别比较,肝脏中CYP7A1的mRNA表达量均显著增高(P<0.05),而HMGCoA的mRNA表达量,三组之间比较无显著性差异(P>0.05)。
     结论
     1.MCFA作为天然来源的小分子中链脂肪酸可有效减轻肥胖小鼠体重,减少机体脂肪聚集,改善血甘油三脂、血胆固醇水平。
     2.以上作用的可能机制为:
     (1) MCFA由于其独特的代谢途径增加机体能量消耗,进而作用于中枢增加交感神经系统的活性,使外周NADR释放增加,激活脂肪细胞膜上的β3-AR,导致UCP2的表达增加,增强了与甘油三酯代谢相关酶ATGL、HSL的表达活性和水平,使体内脂肪动员加速,进而促进脂肪组织分解。
     (2)这种激活机体能量代谢的作用不是通过激活Leptin表达实现的。
     (3) MCFA可能通过下调脂肪组织中TNF-α、SREBP-1及C/EBP-α水平和mRNA表达,抑制脂肪细胞分化途径,减少脂肪细胞聚集,进而改善机体脂代谢紊乱。
     (4) MCFA对肝脏中脂肪酸合成途径的调节、对肝脏中脂肪因子的调节、以及MCFA对Leptin、APN和PPAR-γ途径的调节作用并不确定。
     3.MCFA中的辛酸和癸酸均可有效改善肥胖小鼠血甘油三酯和血胆固醇水平,但辛酸主要通过增加肝脏CYP7A1的表达调节小鼠胆固醇代谢,癸酸主要通过增加脂肪组织β3-AR、ATGL、HSL等表达水平调节小鼠甘油三酯代谢。二者的协同作用可能是MCFA降体重、改善血脂水平的机制之一。
Objective
     1.To confirm that medium-chain fatty acids (MCFA) as a natural source of small moleculefatty acids can effectively reduce body weight of obese mice, and improve lipid metabolism.
     2.To investigate the mechanism and the possible effective pathways and targets of MCFA inbody and offer the incidence for theory of MCFA regulating lipid metabolism.
     3.To observe the effect of caprylic acid and capric acid on body weight, body fat and lipidmetabolism of obese mice and to confirm the influence of MCFA on triglyceride andcholesterol metabolism.
     Methods
     1. Mouse obesity model
     100C57BL/6J male mice, aged4-5weeks, were used and were fed normal diet to adaptcircumstance one week. According to their fasting weight,15mice were randomly chosen tofeed normal diet (AIN-96G), which was used to be a control group. The other mice were fedhigh fat diet (HFD). The diet contains19.42%fat from the total weight and fat carloie is40.5%from total carloie. After four weeks feeding, the mice fed high-fat, weight higher than10%of individuals in the average body weight of the control group, weight distributionanalysis, randomly selected15mice in the distribution of peak frequency,as the obese group(HFD-1), weight less than control mice10%of individuals at the same time, after weightdistribution analysis, randomly selected15mice in the distribution of peak frequency range,set to the obesity resistance group (HFD-2). The body length, Lee's index, BMI, and weightgain during the study of mice as well as serum glucose, TG, TC and HDL-C and LDL-C,HDL-C/LDL-C ratio were measured and calculated. The liver, mesenteric fat fads,epididymal fat pads and perirenal fat fads were taken out and weighed. Another slice ofepididymal adipose tissue was HE stained. During the study, the body weights of the miceand diet consumption were measured, and food efficiency ratio (KJ/d) were calculated.
     2. Regulations of lipid metabolism of MCFA on the C57BL/6J obese mice
     The obese model of mice was estabolished according to the methods of the first part ofthe experiment, and the obese mice were divided into three parts to carry out threeexperiments: acute gavage experiment, short-term gavage experiments and long-term feedingexperiments.
     (1) Acute gavage experiment
     36obese C57BL/6J male mice were randomly divided into2groups (n=18) according to the fasting weight, and were orally administered the MCT containing MCFA and LCTcontaining LCFA, which was a dose of2mg/kg. After1hour,2hours,4hours, respectively,6mice of each group were sacrificed, then, blood dsampling were taken from the abdominalaortic ateroia and serum TG, TC, HDL-C and LDL-C, and HDL-C/LDL-C ratio weremeasured.
     (2) short-term gavage experiment
     24C57BL/6J obese male mice were randomly divided into two groups (n=12) accordingto the fasting weight, and were orally administered MCT and LCT, which was a dose of2mg/kg daily for two weeks. During the study, mice were fed high fat diet, diet consumptionwas recorded and food efficiency ratio (KJ/d) were calculated. After two weeks, body weightwas weighed, and the body length, Lee's index, BMI, and weight gain were measured. SerumTG, TC and HDL-C and LDL-C, HDL-C/LDL-C ratio were measured and calculate, and liver,mesenteric fat pads, epididymal pads, perirenal fat pads were excised weighed. Another sliceof liver tissue was made into homogenates, and concentration of protein, TG, TC, ApoA1andApoB were determined and ApoA1/ApoB ratio was calculated.
     (3) Long-term feeding experiment
     30C57BL/6J obese mice were randomly divided into two groups (n=15) according tothe fasting weight, and were fed high fat diet with2%concentration of MCT or LCT. After12weeks, the same indicators used in the short-term experiment were determinated. At thesame time, the epididymal adipose tissue was kept for HE staining
     3. Study of mechanism of MCFA regulating lipid metabolism in C57BL/6J obese mice
     In the long-term feeding experiment, blood samples were collected after12weeks, anda part of the liver tissue and epididymal adipose tissue were frozen, then, were made of10%concentration of tissue homogenates with0.9%sodium chloride injection. Theconcentrations of HSL, cAMP, PKA, FFA, GLY, NADR and T3in the serum, the levels ofHSL, ATGL, cAMP, PKA, LPL, FAS, ACC, Leptin, APN, PPAR-γ, TNF-α in adipose tissue,and the levels of LPL, FAS, the ACC, ME, G6PD, Leptin, APN, PPAR-γ, TNF-α in livertissue, were measured by ELISA methods. The protein concentration of the adipose tissueand liver tissue homogenates were determinated by BCA method. mRNA expression ofHSL, ATGL, UCP2, β3-AR, leptin, PPAR-γ, SREBP-1and C/EBP-α in adipose tissue weretested by Real-time PCR assay. The protein expression of β3-AR in adipose tissue weretested using Western blotting analysis. In addition, the HSL activities in serum and adiposetissue were determinated according to the reports of Fredrikson G and Belfrage P.
     4. Regulations of lipid metabolism by different MCFA on C57BL/6J obese mice
     The same experiment was done as the long-term feeding experiment, which was usinghigh fat diet containing2%concentration of octanoic acid (C8), decanoic acid (C10) andoleic acid (C18). After eight weeks, according to above methods, index as followed weremeasured. They were fasting body weight weekly, consumption of diets, food efficiency ratio,body length of mice, Lee's index, BMI and weight gain, the weight of liver and adiposetissue, fat cell morphology, the concentrations of TG, TC, HDL-C, LDL-C, HDL-C/LDL-C in serum, the levels of HSL, ATGL, cAMP, PKA and Leptin, TNF-α, PPAR-γ, and mRNAexpression of HSL, ATGL and β3-AR in adipose tissue, the levels of ApoA1, ApoB, LPL,FAS, CYP7A1, HMGCoA, TNF-α, and mRNA expression of CYP7A1and HMGCoA inliver tissue.
     Results
     1. Mouse obesity model
     At the end of study, the body weight of mice, the body length, Lee's index, BMI, andweight gain, the weight of liver and adipose tissue, the concentrations of serum glucose, TC,LDL-C in the HFD-1group were significantly higher than that of in the HFD-2group and thecontrol group (P<0.05). The ratio HDL-C/LDL-C in the HFD-1group was significantlylower than that of in the HFD-2group and the control group (P<0.05). Results of fat cellmorphology analysis showed that cell diameter, short diameter in the HFD-1group weresignificantly greater, and the number of fat cells of a single field of vision was less, than thatof in the HFD-2group and the control group (P<0.05). Obese mice model in the HFD-1group was successfully established.
     2. Regulations of lipid metabolism of MCFA on the C57BL/6J obese mice
     The results of acute gavage experiment showed that mice fed the MCT or LCT after twohours and four hours, the concentration of serum TG in the MCT group was significantlylower than that of in the LCT group (P<0.05), and other blood lipid-related indicators werenot shown significant differences (P>0.05). The results of short-term gavage experimentshowed that the body weight of mice, the index of blood lipids, the indicators of liverhomogenates were not shown significant differences between MCT group and LCT groupafter two weeks (P>0.05). The results of long-term feeding experiment showed that the bodyweight of mice, body length, Lee's index, BMI, and weight gain, liver weight, the weight ofperirenal and epididymal adipose tissue, the concentrations of serum TG, TC and LDL-C inthe MCT diet group were significantly lower, while the levels of serum HDL-C andHDL-C/LDL-C ratio, the concentrations of ApoA1of liver homogenates, and ApoA1/ApoBratio, were significantly higher than that of in the LCT diet group (P<0.05). The results of fatcell morphology analysis showed that cell diameter and short diameter of adipose tissue weresignificantly lower, and the number of cells of a single field of vision was significantly higherin the MCT group than that of in the LCT group (P<0.05).
     3. Study of mechanism of MCFA regulating lipid metabolism in C57BL/6J obese mice
     The results of ELISA analysis showed that the levels of serum HSL and NADR, LPLlevel of liver tissue, ATGL, HSL and cAMP levels of adipose tissue of C57BL/6J obese micein MCT group were significantly higher, and serum FFA concentration, the levels of FAS,leptin and TNF-α of adipose tissue in MCT group were significantly lower than that of inLCT group (P<0.05). The indicators of PPAR-γ of adipose tissue, FAS, ACC, Leptin, APNand TNF-α of liver were not shown significant differences between the two groups (P>0.05).mRNA expression of ATGL, HSL, UCP2, β3-AR in adipose tissue were significantly higher, and mRNA expression of leptin, SREBP-1and C/EBP-α in adipose tissue were significantlylower in MCT group than that of in LCT group(P<0.05), and no significant differenceswere shown in PPAR-γ mRNA expression between MCT and LCT group. β3-AR proteinexpression in adipose tissue was significantly higher in MCT group than in LCT group(P<0.01). In addition, the results of HSL activities assay showed that HSL activities inadipose tissue in the MCT group were significantly higher than in the LCT group (P<0.01),while HSL activities in the serum, were not shown significant differences between the twogroups (P>0.05).
     4. Regulations of lipid metabolism by different MCFA on C57BL/6J obese mice
     C57BL/6J mice were fed high fat diet containing C8, C10or C18fatty acids after8weeks, in the C10group, the body weight of mice, Lee's index, BMI, and weight gain, theweight of epididymal adipose tissue were significantly reduced, fat cell volume wassignificantly reduced by analysis of morphology, such as cell length and short diameter weresignificantly decreased, while the average number of cells of a single field of visionsignificantly increased, moreover, the concentrations of serum TG, the levels of ATGL, HSL,cAMP in adipose tissue were significantly increased, the levels of leptin and TNF-α inadipase tissue and FAS level in liver were significantly decreased, compared with the C18group (P<0.05). mRNA expression of ATGL, HSL, and β3-AR of adipose tissue in the C10group were significantly higher than that of in the C18group(P<0.05).
     In the C8group, the concentrations of serum TC and LDL-C were significantly lower,and HDL-C/LDL-C ratio of serum, ApoA1concentration and ApoA1/ApoB ratio, the level ofCYP7A1in liver tissue were significantly higher than that of in the C18group (P<0.05). Inaddition, mRNA expression of CYP7A1in liver tissue in the C8group were significantlyincreased compared with the C10and C18groups (P<0.05). mRNA expression ofHMGCoA of liver was not shown any significant differences between the three groups(P>0.05).
     Conclusions
     1. Medium-chain fatty acids (MCFA) as a natural source of small molecule nutrients caneffectively reduce body weight, reduce body fat accumulation, and improve blood lipids,blood cholesterol levels of obese mice.
     2. Its mechanism may be:
     (1) MCFAcould increase body energy consumption due to its unique metabolic pathways,then, it could increase the activities of the sympathetic nervous system, and thus increasedrelease of the peripheral NADR, which activated the expression of β3-AR on the fat cellmembrane, and leaded to increasing of expression of UCP2and enhancing the activities andlevels of enzymes related triglyceride metabolism, such as of ATGL and HSL. These couldaccelerate fat mobilization of body, and contribute to the decomposition of adipose tissue, asresults.
     (2) The role of activation energy metabolism was not achieved by stimulating leptin.
     (3) MCFA may inhibit fat cell differentiation pathway, reduce the aggregation of fat cellsby down-regulating the levels and mRNA expression of TNF-α, SREBP-1and C/EBP-α inadipose tissue, thus improve the body's lipid metabolism disorders.
     (4) It was uncertain that MCFA should regulate the pathway of fatty acid synthesis andexpression of adipokines in the liver, and regulatory role of leptin, APN, and PPAR-γpathway.
     3. Octanoic acid (C8) and decanoic acid (C10) both could be effective in improving thelevels of blood lipids and blood cholesterol of obese mice, but octanoic acid was mainlyregulation of cholesterol metabolism in mice by increasing hepatic CYP7A1expression,while, decanoic acid mainly regulated triglyceride metabolism in mice by and increasing theexpression levels of β3-AR, ATGL and HSL in adipose tissue. The synergistic effect ofoctanoic acid and decanoic acid may be one of the mechanisms of the MCFA reducing bodyweight and improving blood lipids.
引文
[1].邹大进.实用临床肥胖病学.北京:中国医药科技出版社,1999
    [2]. Wilson PW,D'Agostino RB,Sullivan L, et al. Overweight and obesity as determinants ofcardiovascular risk: the Framingham experience. Arch Intern Med.2002,162(16):1867-1872
    [3]. Kjaerbye-Thygesen A,Frederiksen K,Hogdall EV, et al. Smoking and overweight:negative prognostic factors in stage III epithelial ovarian cancer. Cancer EpidemiolBiomarkers Prev.2006,15(4):798-803
    [4]. Grundy SM. Multifactorial causation of obesity: implications for prevention. Am J ClinNutr.1998,67(3Suppl):563S-572S
    [5]. Labib M. The investigation and management of obesity. J Clin Pathol.2003,56(1):17-25
    [6]. Haslam DW,James WP. Obesity. Lancet.2005,366(9492):1197-1209
    [7].卫生部,科技部,国家统计局.国务院新闻发布材料.2004
    [8].陈捷,赵秀丽,武峰,等.我国14省市中老年人肥胖超重流行现状及其与高血压患病率的关系.中华医学杂志.2005,85(40):2832-2834
    [9].陈春明,赵文华,杨正,等.中国慢性病控制中膳食关键因素的研究.中华流行病学杂志.2006,27(9):739-743
    [10]. Gura T. Obesity drug pipeline not so fat. Science.2003,299(5608):849-852
    [11].张玉武.葛根素的减肥作用及其机理研究.苏州大学,硕士学位论文.2007
    [12].葛可佑.中国营养百科全书.北京:人民卫生出版社,2006
    [13].孙长颢.营养与食品卫生学(第6版).北京:人民卫生出版社,2007
    [14].竹内弘幸,青山敏明.中鎖脂肪酸の機能とその応用.バイオサイエンスとインダストリ.2004,62):248-251
    [15]. Schulz H. Regulation of fatty acid oxidation in heart. J Nutr.1994,124(2):165-171
    [16]. Rinaldo P,Matern D,Bennett MJ. Fatty acid oxidation disorders. Annu Rev Physiol.2002,64(3):477-502
    [17]. Papamandjaris AA,MacDougall DE,Jones PJ. Medium chain fatty acid metabolism andenergy expenditure: obesity treatment implications. Life Sci.1998,62(14):1203-1215
    [18]. Bach AC,Babayan VK. Medium-chain triglycerides: an update. Am J Clin Nutr.1982,36(5):950-962
    [19].国立健康栄養研究所.健康食品のデータベース(日本語版).東京:国立健康栄養研究所第一出版,2004
    [20]. Tantibhedhyangkul P,Hashim SA. Medium-chain triglyceride feeding in prematureinfants: effects on fat and nitrogen absorption. Pediatrics.1975,55(3):359-370
    [21]. Graham GG,Baertl JM,Cordano A, et al. Lactose-free, medium-chain triglycerideformulas in severe malnutrition. Am J Dis Child.1973,126(3):330-335
    [22]. Liu YM. Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia.2008,49(Suppl8):33-36
    [23].久木留毅,佐藤真樹,鈴木佳恵,等.男子レスリング競技者への食事介入と中鎖脂肪酸の摂取が体組成に及ぼす影響.第61回日本栄養食糧学会大会,京都:日本栄養食糧学会大会事務局.2007,23-24
    [24].夏秋瑜,赵松林,李从发,等.中碳链脂肪酸甘油三酯的研究进展.食品研究与开发.2007,28(7):150-153
    [25].常致成.生物工程在油脂化学工业中的应用(Ⅲ)—MCFA甘油酯在医药和化妆品中的应用.中国油脂.1999,6):50-52
    [26].薛长勇,吴坚.生物活性脂类:中链脂肪酸及其与脂代谢和糖代谢.临床药物治疗杂志.2011,9(4):4-7
    [27]. St-Onge MP,Jones PJ. Physiological effects of medium-chain triglycerides: potentialagents in the prevention of obesity. J Nutr.2002,132(3):329-332
    [28]. Geliebter A,Torbay N,Bracco EF, et al. Overfeeding with medium-chain triglyceridediet results in diminished deposition of fat. Am J Clin Nutr.1983,37(1):1-4
    [29]. Saudubray JM,Martin D,de Lonlay P, et al. Recognition and management of fatty acidoxidation defects: a series of107patients. J Inherit Metab Dis.1999,22(4):488-502
    [30]. Noguchi O,Takeuchi H,Kubota F, et al. Larger diet-induced thermogenesis and lessbody fat accumulation in rats fed medium-chain triacylglycerols than in those fed long-chaintriacylglycerols. J Nutr Sci Vitaminol (Tokyo).2002,48(6):524-529
    [31]. Han J,Hamilton JA,Kirkland JL, et al. Medium-chain oil reduces fat mass anddown-regulates expression of adipogenic genes in rats. Obes Res.2003,11(6):734-744
    [32]. St-Onge MP,Bosarge A. Weight-loss diet that includes consumption of medium-chaintriacylglycerol oil leads to a greater rate of weight and fat mass loss than does olive oil. Am JClin Nutr.2008,87(3):621-626
    [33]. Kasai M,Nosaka N,Maki H, et al. Effect of dietary medium-and long-chaintriacylglycerols (MLCT) on accumulation of body fat in healthy humans. Asia Pac J ClinNutr.2003,12(2):151-160
    [34]. Liu Y,Wang J,Zhang R, et al. A good response to oil with medium-and long-chain fattyacids in body fat and blood lipid profiles of male hypertriglyceridemic subjects. Asia Pac JClin Nutr.2009,18(3):351-358
    [35]. Xue C,Liu Y,Wang J, et al. Chinese hypertriglycerideamic subjects of different agesresponded differently to consuming oil with medium-and long-chain fatty acids. BiosciBiotechnol Biochem.2009,73(8):1711-1717
    [36]. Xue C,Liu Y,Wang J, et al. Consumption of medium-and long-chain triacylglycerolsdecreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur JClin Nutr.2009,63(7):879-886
    [37]. Shinohara H,Ogawa A,Kasai M, et al. Effect of randomly interesterified triacylglycerolscontaining medium-and long-chain fatty acids on energy expenditure and hepatic fatty acidmetabolism in rats. Biosci Biotechnol Biochem.2005,69(10):1811-1818
    [38]. Mabayo RT,Furuse M,Yang SI, et al. Medium-chain triacylglycerols enhance release ofcholecystokinin in chicks. J Nutr.1992,122(8):1702-1705
    [39].耿珊珊.中链甘油三酯饮食对神经肽Y及瘦素的作用研究.卫生研究.2009,38(5):538-541
    [40]. Ogawa A,Nosaka N,Kasai M, et al. Dietary medium-and long-chain triacylglycerolsaccelerate diet-induced thermogenesis in humans. J Oleo Sci.2007,56(6):283-287
    [41]. Yang JY,Rayalam S,Della-Fera MA, et al. Octanoate and decanoate induce apoptosis in3T3-L1adipocytes. J Med Food.2009,12(5):959-966
    [42].王建军,王恬.中链脂肪酸的生物学特性及其在动物生产中的应用.动物营养学报.2011,23(7):1073-1078
    [43]. Uno K,Katagiri H,Yamada T, et al. Neuronal pathway from the liver modulates energyexpenditure and systemic insulin sensitivity. Science.2006,312(5780):1656-1659
    [44]. Friedman MI,Harris RB,Ji H, et al. Fatty acid oxidation affects food intake by alteringhepatic energy status. Am J Physiol.1999,276(4Pt2): R1046-1053
    [45]. Oller do Nascimento CM,Ribeiro EB,Oyama LM. Metabolism and secretory functionof white adipose tissue: effect of dietary fat. An Acad Bras Cienc.2009,81(3):453-466
    [46]. Vazquez-Vela ME,Torres N,Tovar AR. White adipose tissue as endocrine organ and itsrole in obesity. Arch Med Res.2008,39(8):715-728
    [47]. Grujic D,Susulic VS,Harper ME, et al. Beta3-adrenergic receptors on white and brownadipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulinsecretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem.1997,272(28):17686-17693
    [48]. Coman OA,Paunescu H,Ghita I, et al. Beta3adrenergic receptors: molecular,histological, functional and pharmacological approaches. Rom J Morphol Embryol.2009,50(2):169-179
    [49].邓晓宇,邓福杰.肾上腺素能受体的临床研究进展.山东医药.2010,50(9):109-110
    [50].汤锦花,严海东.营养性肥胖大鼠模型的建立及评价.同济大学学报(医学版).2010,31(1):32-34
    [51]. Levin BE,Triscari J,Hogan S, et al. Resistance to diet-induced obesity: food intake,pancreatic sympathetic tone, and insulin. Am J Physiol.1987,252(3Pt2): R471-478
    [52]. Levin BE,Triscari J,Sullivan AC. Metabolic features of diet-induced obesity withouthyperphagia in young rats. Am J Physiol.1986,251(3Pt2): R433-440
    [53].刘忠荣.中药丁香减肥作用及机理研究.成都中医药大学,博士学位论文.2005
    [54]. Clement K,Vaisse C,Lahlou N, et al. A mutation in the human leptin receptor genecauses obesity and pituitary dysfunction. Nature.1998,392(6674):398-401
    [55].林纬.肥胖c57BL/6小鼠腹部脂肪组织Visfatin基因表达变化及吡格咧酮对其表达的影响.福建医科大学,硕士学位论文.2007
    [56]. Shi H,Akunuru S,Bierman JC, et al. Diet-induced obese mice are leptin insufficientafter weight reduction. Obesity (Silver Spring).2009,17(9):1702-1709
    [57]. Furnes MW,Zhao CM,Chen D. Development of obesity is associated with increasedcalories per meal rather than per day. A study of high-fat diet-induced obesity in young rats.Obes Surg.2009,19(10):1430-1438
    [58]. Spiegelman BM,Flier JS. Obesity and the regulation of energy balance. Cell.2001,104(4):531-543
    [59]. Feinleib M. Epidemiology of obesity in relation to health hazards. Ann Intern Med.1985,103(6(Pt2)):1019-1024
    [60]. Kannel WB. Range of serum cholesterol values in the population developing coronaryartery disease. Am J Cardiol.1995,76(9):69C-77C
    [61]. Rossouw JE. Lipid-lowering interventions in angiographic trials. Am J Cardiol.1995,76(9):86C-92C
    [62].黄冰生,董吁钢,李永强.肺炎衣原体感染和高脂血症对心肌细胞NF-kappa B和AP-1的影响.中国病理生理杂志.2005,21(9):1709-1712
    [63].马国栋,刘艳环,丁忠,等.有氧运动对饮食性高脂血症小鼠血脂改善效果的观察.中国应用生理学杂志.2004,20(1):41-42
    [64].吴斐华,梁敬钰,陈荣,等.毛平车前活性部位调节血脂作用的研究.中国药科大学学报.2005,36(5):448-452
    [65].刘英华,张永,于晓明,等.中链脂肪酸改善高脂饲料短期和长期喂养C57BL/6J小鼠的脂蛋白水平的作用.实用预防医学.2011,18(9):1610-1613
    [66].王丽娟,李晓蓉,李宇航,等.高脂饲料对C57BL/6J小鼠血脂及转氨酶的动态影响.中国比较医学杂志.2007,17(10):572-575
    [67]. Tardif JC,Gregoire J,L'Allier PL, et al. Effects of reconstituted high-density lipoproteininfusions on coronary atherosclerosis: a randomized controlled trial. JAMA.2007,297(15):1675-1682
    [68]. Shi W,Wang X,Wong J, et al. Effect of macrophage-derived apolipoprotein E onhyperlipidemia and atherosclerosis of LDLR-deficient mice. Biochem Biophys Res Commun.2004,317(1):223-229
    [69]. Simon E,Fernandez-Quintela A,Del Puy Portillo M, et al. Effects of medium-chain fattyacids on body composition and protein metabolism in overweight rats. J Physiol Biochem.2000,56(4):337-346
    [70]. Takeuchi H,Sekine S,Kojima K, et al. The application of medium-chain fatty acids:edible oil with a suppressing effect on body fat accumulation. Asia Pac J Clin Nutr.2008,17(Suppl1):320-323
    [71]. Wang P,Mariman E,Renes J, et al. The secretory function of adipocytes in thephysiology of white adipose tissue. J Cell Physiol.2008,216(1):3-13
    [72].陈瑞冠.脂肪细胞与脂肪组织.临床儿科杂志.2009,27(3):299-300
    [73].牛淑玲.围产期奶牛干物质摄入减少及脂肪动员的神经内分泌调控机制.吉林大学,博士学位论文.2005
    [74]. Belfrage P,Fredrikson G,Nilsson NO, et al. Regulation of adipose-tissue lipolysis byphosphorylation of hormone-sensitive lipase. Int J Obes.1981,5(6):635-641
    [75]. Fredrikson G,Stralfors P,Nilsson NO, et al. Hormone-sensitive lipase from adiposetissue of rat. Methods Enzymol.1981,71(Pt C):636-646
    [76].曹瑞.共轭亚油酸对饮食诱导肥胖大鼠肝脏脂质代谢的影响及其机制研究.第四军医大学,硕士学位论文.2006
    [77]. Chakravarthy MV,Zhu Y,Yin L, et al. Inactivation of hypothalamic FAS protects micefrom diet-induced obesity and inflammation. J Lipid Res.2009,50(4):630-640
    [78]. Larson TR,Edgell T,Byrne J, et al. Acyl CoA profiles of transgenic plants thataccumulate medium-chain fatty acids indicate inefficient storage lipid synthesis indeveloping oilseeds. Plant J.2002,32(4):519-527
    [79].曾凡勇,秦锐,郭锡熔.脂肪酸合成酶在高脂饮食诱导的肥胖易感和肥胖抗性大鼠白色脂肪组织中的表达差异.临床儿科杂志.2007,25(1):54-57
    [80].查锡良.生物化学(第7版).北京:人民卫生出版社,2008
    [81]. Sengupta A,Ghosh M. Hypolipidemic effect of mustard oil enriched with medium chainfatty acid and polyunsaturated fatty acid. Nutrition.2011,27(11-12):1183-1193
    [82]. Lei T,Xie W,Han J, et al. Medium-chain Fatty acids attenuate agonist-stimulatedlipolysis, mimicking the effects of starvation. Obes Res.2004,12(4):599-611
    [83]. Araki K,Masaki T,Katsuragi I, et al. Effects of pravastatin on obesity, diabetes, andadiponectin in diet-induced obese mice. Obesity (Silver Spring).2008,16(9):2068-2073
    [84]. Baranova A,Gowder SJ,Schlauch K, et al. Gene expression of leptin, resistin, andadiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liverdisease and insulin resistance. Obes Surg.2006,16(9):1118-1125
    [85]. Galvez BG,San Martin N,Rodriguez C. TNF-alpha is required for the attraction ofmesenchymal precursors to white adipose tissue in Ob/ob mice. PLoS One.2009,4(2): e4444
    [86]. Lee MS,Kim CT,Kim Y. Green tea (-)-epigallocatechin-3-gallate reduces body weightwith regulation of multiple genes expression in adipose tissue of diet-induced obese mice.Ann Nutr Metab.2009,54(2):151-157
    [87].张冰,陈言东.瘦素与脂肪肝.包头医学院学报.2008,24(6):648-651
    [88]. Kahn BB,Flier JS. Obesity and insulin resistance. J Clin Invest.2000,106(4):473-481
    [89]. Tan GD,Goossens GH,Humphreys SM, et al. Upper and lower body adipose tissuefunction: a direct comparison of fat mobilization in humans. Obes Res.2004,12(1):114-118
    [90]. Lafontan M,Langin D. Lipolysis and lipid mobilization in human adipose tissue. ProgLipid Res.2009,48(5):275-297
    [91].邓斌,马静.中链脂肪酸与胰岛素抵抗.国外医学卫生学分册.2006,33(6):362-366
    [92]. Cheng Y,Meng Q,Wang C, et al. Leucine deprivation decreases fat mass by stimulationof lipolysis in white adipose tissue and upregulation of uncoupling protein1(UCP1) inbrown adipose tissue. Diabetes.2010,59(1):17-25
    [93]. Wang SP,Laurin N,Himms-Hagen J, et al. The adipose tissue phenotype ofhormone-sensitive lipase deficiency in mice. Obes Res.2001,9(2):119-128
    [94]. Jenkins CM,Mancuso DJ,Yan W, et al. Identification, cloning, expression, andpurification of three novel human calcium-independent phospholipase A2family memberspossessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem.2004,279(47):48968-48975
    [95]. Villena JA,Roy S,Sarkadi-Nagy E, et al. Desnutrin, an adipocyte gene encoding a novelpatatin domain-containing protein, is induced by fasting and glucocorticoids: ectopicexpression of desnutrin increases triglyceride hydrolysis. J Biol Chem.2004,279(45):47066-47075
    [96]. Kershaw EE,Hamm JK,Verhagen LA, et al. Adipose triglyceride lipase: function,regulation by insulin, and comparison with adiponutrin. Diabetes.2006,55(1):148-157
    [97]. Gaidhu MP,Anthony NM,Patel P, et al. Dysregulation of lipolysis and lipid metabolismin visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK.Am J Physiol Cell Physiol.2010,298(4): C961-971
    [98]. Zechner R,Strauss JG,Haemmerle G, et al. Lipolysis: pathway under construction. CurrOpin Lipidol.2005,16(3):333-340
    [99]. Mottillo EP,Shen XJ,Granneman JG. Role of hormone-sensitive lipase inbeta-adrenergic remodeling of white adipose tissue. Am J Physiol Endocrinol Metab.2007,293(5): E1188-1197
    [100]. Kawamura M,Jensen DF,Wancewicz EV, et al. Hormone-sensitive lipase indifferentiated3T3-L1cells and its activation by cyclic AMP-dependent protein kinase. ProcNatl Acad Sci U S A.1981,78(2):732-736
    [101]. Zimmermann R,Strauss JG,Haemmerle G, et al. Fat mobilization in adipose tissue ispromoted by adipose triglyceride lipase. Science.2004,306(5700):1383-1386
    [102]. Mano-Otagiri A,Iwasaki-Sekino A,Nemoto T, et al. Genetic suppression of ghrelinreceptors activates brown adipocyte function and decreases fat storage in rats. Regul Pept.2010,160(1-3):81-90
    [103]. Arch JR,Ainsworth AT,Cawthorne MA, et al. Atypical beta-adrenoceptor on brownadipocytes as target for anti-obesity drugs. Nature.1984,309(5964):163-165
    [104]. Collins S,Cao W,Robidoux J. Learning new tricks from old dogs: beta-adrenergicreceptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol.2004,18(9):2123-2131
    [105]. de Souza CJ,Burkey BF. Beta3-adrenoceptor agonists as anti-diabetic and anti-obesitydrugs in humans. Curr Pharm Des.2001,7(14):1433-1449
    [106]. Lowell BB,Flier JS. Brown adipose tissue, beta3-adrenergic receptors, and obesity.Annu Rev Med.1997,48(2):307-316
    [107]. Miyoshi H,Perfield JW,2nd,Souza SC, et al. Control of adipose triglyceride lipaseaction by serine517of perilipin A globally regulates protein kinase A-stimulated lipolysis inadipocytes. J Biol Chem.2007,282(2):996-1002
    [108]. Ukropec J,Anunciado RP,Ravussin Y, et al. UCP1-independent thermogenesis in whiteadipose tissue of cold-acclimated Ucp1-/-mice. J Biol Chem.2006,281(42):31894-31908
    [109].张敏.解偶联蛋白(UCPs)与肥胖关系研究及UCP4基因在脂肪细胞中的功能探讨.南京医科大学,博士学位论文.2007
    [110]. Tsuboyama-Kasaoka N,Sano K,Shozawa C, et al. Studies of UCP2transgenic andknockout mice reveal that liver UCP2is not essential for the antiobesity effects of fish oil.Am J Physiol Endocrinol Metab.2008,294(3): E600-606
    [111].伊迎春,林汉华.甲状腺素对大鼠脂肪组织解偶联蛋白-2基因表达的影响.医药导报.22(6):369-371
    [112]. Zhang Y,Proenca R,Maffei M, et al. Positional cloning of the mouse obese gene and itshuman homologue. Nature.1994,372(6505):425-432
    [113]. Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell.2004,116(2):337-350
    [114]. Lopez IP,Milagro FI,Marti A, et al. High-fat feeding period affects gene expression inrat white adipose tissue. Mol Cell Biochem.2005,275(1-2):109-115
    [115]. Zhao S,Chu Y,Zhang C, et al. Diet-induced central obesity and insulin resistance inrabbits. J Anim Physiol Anim Nutr (Berl).2008,92(1):105-111
    [116].张秉全,马建,徐洪涛.瘦素(Leptin)的研究进展.黑龙江医药.2008,21(2):17-19
    [117]. Bueno AA,Oyama LM,de Oliveira C, et al. Effects of different fatty acids and dietarylipids on adiponectin gene expression in3T3-L1cells and C57BL/6J mice adipose tissue.Pflugers Arch.2008,455(4):701-709
    [118]. Takeuchi H,Noguchi O,Sekine S, et al. Lower weight gain and higher expression andblood levels of adiponectin in rats fed medium-chain TAG compared with long-chain TAG.Lipids.2006,41(2):207-212
    [119]. Carswell EA,Old LJ,Kassel RL, et al. An endotoxin-induced serum factor that causesnecrosis of tumors. Proc Natl Acad Sci U S A.1975,72(9):3666-3670
    [120]. Hotamisligil GS,Shargill NS,Spiegelman BM. Adipose expression of tumor necrosisfactor-alpha: direct role in obesity-linked insulin resistance. Science.1993,259(5091):87-91
    [121]. Wallach D,Varfolomeev EE,Malinin NL, et al. Tumor necrosis factor receptor and Fassignaling mechanisms. Annu Rev Immunol.1999,17(4):331-367
    [122]. Zabolotny JM,Kim YB,Welsh LA, et al. Protein-tyrosine phosphatase1B expression isinduced by inflammation in vivo. J Biol Chem.2008,283(21):14230-14241
    [123]. Liang H,Yin B,Zhang H, et al. Blockade of tumor necrosis factor (TNF) receptor type1-mediated TNF-alpha signaling protected Wistar rats from diet-induced obesity and insulinresistance. Endocrinology.2008,149(6):2943-2951
    [124].赵改霞.固醇调节元件结合蛋白(SREBPs)的研究进展.山东大学,硕士学位论文.2005
    [125].徐剑,史轶蘩.过氧化物酶体增殖物激活受体g与肥胖.国外医学内分泌学分册.2004,24(6):381-383
    [126]. Saladin R,Fajas L,Dana S, et al. Differential regulation of peroxisome proliferatoractivated receptor gamma1(PPARgamma1) and PPARgamma2messenger RNA expressionin the early stages of adipogenesis. Cell Growth Differ.1999,10(1):43-48
    [127]. Yamauchi T,Kadowaki T.[The molecular mechanisms by which PPAR gamma/RXRinhibitors improve insulin resistance]. Nihon Rinsho.2001,59(11):2245-2254
    [128]. Grobe JL,Venegas-Pont M,Sigmund CD, et al. PPARgamma differentially regulatesenergy substrate handling in brown vs. white adipose: focus on "The PPARgamma agonistrosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without alteringglucose uptake". Am J Physiol Regul Integr Comp Physiol.2009,296(5): R1325-1326
    [129]. Shin SS,Jung YS,Yoon KH, et al. The Korean traditional medicineGyeongshingangjeehwan inhibits adipocyte hypertrophy and visceral adipose tissueaccumulation by activating PPARalpha actions in rat white adipose tissues. J Ethnopharmacol.2010,127(1):47-54
    [130]. Kim K,Kim KH,Kim HH, et al. Hepatitis B virus X protein induces lipogenictranscription factor SREBP1and fatty acid synthase through the activation of nuclearreceptor LXRalpha. Biochem J.2008,416(2):219-230
    [131]. Hagen RM,Rodriguez-Cuenca S,Vidal-Puig A. An allostatic control of membrane lipidcomposition by SREBP1. FEBS Lett.2010,584(12):2689-2698
    [132]. Hua X,Wu J,Goldstein JL, et al. Structure of the human gene encoding sterolregulatory element binding protein-1(SREBF1) and localization of SREBF1and SREBF2tochromosomes17p11.2and22q13. Genomics.1995,25(3):667-673
    [133]. Lewis CA,Griffiths B,Santos CR, et al. Genetic ablation of S6-kinase does not preventprocessing of SREBP1. Adv Enzyme Regul.2010,51(1):280-290
    [134]. Taghibiglou C,Mackenzie IR,Wang YT, et al. Sterol regulatory element bindingprotein-1(SREBP1) activation in motor neurons in excitotoxicity and amyotrophic lateralsclerosis (ALS): Indip, a potential therapeutic peptide. Biochem Biophys Res Commun.2011,413(2):159-163
    [135]. Goldstein JL,Rawson RB,Brown MS. Mutant mammalian cells as tools to delineatethe sterol regulatory element-binding protein pathway for feedback regulation of lipidsynthesis. Arch Biochem Biophys.2002,397(2):139-148
    [136]. Ericsson J,Jackson SM,Kim JB, et al. Identification of glycerol-3-phosphateacyltransferase as an adipocyte determination and differentiation factor1-and sterolregulatory element-binding protein-responsive gene. J Biol Chem.1997,272(11):7298-7305
    [137]. Mourrieras F,Foufelle F,Foretz M, et al. Induction of fatty acid synthase and S14geneexpression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closelycorrelated with glucose6-phosphate concentrations. Biochem J.1997,326(Pt2):345-349
    [138]. Espenshade PJ,Cheng D,Goldstein JL, et al. Autocatalytic processing of site-1proteaseremoves propeptide and permits cleavage of sterol regulatory element-binding proteins. JBiol Chem.1999,274(32):22795-22804
    [139]. Sakai J,Nohturfft A,Cheng D, et al. Identification of complexes between theCOOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) andSREBP cleavage-activating protein. J Biol Chem.1997,272(32):20213-20221
    [140]. Neer EJ,Schmidt CJ,Nambudripad R, et al. The ancient regulatory-protein family ofWD-repeat proteins. Nature.1994,371(6495):297-300
    [141]. Kim JB,Sarraf P,Wright M, et al. Nutritional and insulin regulation of fatty acidsynthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest.1998,101(1):1-9
    [142]. Foretz M,Guichard C,Ferre P, et al. Sterol regulatory element binding protein-1c is amajor mediator of insulin action on the hepatic expression of glucokinase andlipogenesis-related genes. Proc Natl Acad Sci U S A.1999,96(22):12737-12742
    [143].刘英华,薛长勇,郑子新,等.中长链脂肪酸食用油对高甘油三酯血症患者血脂及脂蛋白水平的影响.中华临床营养杂志.2009,17(1):17-21
    [144].刘英华,于晓明,张荣欣,等.中链脂肪酸对高甘油三酯血症合并不同水平HDL-C患者血脂和脂蛋白的影响.军医进修学院学报.2012,33(2):116-119
    [145].刘英华,张永,于晓明,等.中链脂肪酸对高脂饲料喂养的C57BL/6J小鼠高密度脂蛋白的影响.军医进修学院学报.2012,33(2):110-113
    [146].刘英华,张永,张新胜,等.中链脂肪酸对高脂饲料诱导的C57BL/6J肥胖小鼠体脂肪的影响.军医进修学院学报.2011,32(7):760-763
    [147]. Nagao K,Yanagita T. Medium-chain fatty acids: functional lipids for the preventionand treatment of the metabolic syndrome. Pharmacol Res.2010,61(3):208-212
    [148]. Heo KN,Lin X,Han IK, et al. Medium-chain fatty acids but not L-carnitine acceleratethe kinetics of [14C]triacylglycerol utilization by colostrum-deprived newborn pigs. J Nutr.2002,132(7):1989-1994
    [149]. Matulka RA,Thompson DV,Burdock GA. Lack of toxicity by medium chaintriglycerides (MCT) in canines during a90-day feeding study. Food Chem Toxicol.2009,47(1):35-39
    [150]. Mu H,Hoy CE. Effects of different medium-chain fatty acids on intestinal absorptionof structured triacylglycerols. Lipids.2000,35(1):83-89
    [151]. Labarthe F,Khairallah M,Bouchard B, et al. Fatty acid oxidation and its impact onresponse of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of amedium-chain fatty acid. Am J Physiol Heart Circ Physiol.2005,288(3): H1425-1436
    [152]. Allard MF,Parsons HL,Saeedi R, et al. AMPK and metabolic adaptation by the heart topressure overload. Am J Physiol Heart Circ Physiol.2007,292(1): H140-148
    [153]. Stanley WC,Recchia FA,Lopaschuk GD. Myocardial substrate metabolism in thenormal and failing heart. Physiol Rev.2005,85(3):1093-1129
    [154]. Nagata J,Kasai M,Watanabe S, et al. Effects of highly purified structured lipidscontaining medium-chain fatty acids and linoleic acid on lipid profiles in rats. BiosciBiotechnol Biochem.2003,67(9):1937-1943
    [155]. Jorgensen JR,Fitch MD,Mortensen PB, et al. In vivo absorption of medium-chain fattyacids by the rat colon exceeds that of short-chain fatty acids. Gastroenterology.2001,120(5):1152-1161
    [156]. Yang JY,Della-Fera MA,Rayalam S, et al. Regulation of adipogenesis bymedium-chain fatty acids in the absence of hormonal cocktail. J Nutr Biochem.2009,20(7):537-543
    [157]. Burcelin R,Crivelli V,Dacosta A, et al. Heterogeneous metabolic adaptation ofC57BL/6J mice to high-fat diet. Am J Physiol Endocrinol Metab.2002,282(4): E834-842
    [158]. Jolley CD,Dietschy JM,Turley SD. Induction of bile acid synthesis by cholesterol andcholestyramine feeding is unimpaired in mice deficient in apolipoprotein AI. Hepatology.2000,32(6):1309-1316
    [159]. Tiemann M,Han Z,Soccio R, et al. Cholesterol feeding of mice expressing cholesterol7alpha-hydroxylase increases bile acid pool size despite decreased enzyme activity. Proc NatlAcad Sci U S A.2004,101(7):1846-1851
    [1].孙长颢.营养与食品卫生学(第6版).北京:人民卫生出版社,2007
    [2].吕以仙.有机化学(第7版).北京:人民卫生出版社,2008
    [3].竹内弘幸,青山敏明.中鎖脂肪酸の機能とその応用.バイオサイエンスとインダストリ.2004,62):248-251
    [4]. Babayan VK. Modification of food to control fat intake. J Am Oil Chem Soc.1974,51(6):260-264
    [5].朱燕华.构造脂质.食品工业(中国台湾).2000,3):1-6
    [6]. Langone MA,Sant'Anna GL, Jr. Process development for production of medium chaintriglycerides using immobilized lipase in a solvent-free system. Appl Biochem Biotechnol.2002,98-100):997-1008
    [7].常致成.生物工程在油脂化学工业中的应用(Ⅲ)—MCFA甘油酯在医药和化妆品中的应用.中国油脂.1999,6):50-52
    [8].夏秋瑜,赵松林,李从发,等.中碳链脂肪酸甘油三酯的研究进展.食品研究与开发.2007,28(7):150-153
    [9].久木留毅,佐藤真樹,鈴木佳恵,等.男子レスリング競技者への食事介入と中鎖脂肪酸の摂取が体組成に及ぼす影響.第61回日本栄養食糧学会大会,京都:日本栄養食糧学会大会事務局.2007,23-24
    [10]. Ruiz-Sanz JI,Aldamiz-Echevarria L,Arrizabalaga J, et al. Polyunsaturated fatty aciddeficiency during dietary treatment of very long-chain acyl-CoA dehydrogenase deficiency.Rescue with soybean oil. J Inherit Metab Dis.2001,24(4):493-503
    [11]. Ulrich H,Pastores SM,Katz DP, et al. Parenteral use of medium-chain triglycerides: areappraisal. Nutrition.1996,12(4):231-238
    [12]. Bach AC,Babayan VK. Medium-chain triglycerides: an update. Am J Clin Nutr.1982,36(5):950-962
    [13].国立健康栄養研究所.健康食品のデータベース(日本語版).東京:国立健康栄養研究所第一出版,2004
    [14]. Tantibhedhyangkul P,Hashim SA. Medium-chain triglyceride feeding in prematureinfants: effects on fat and nitrogen absorption. Pediatrics.1975,55(3):359-370
    [15]. Graham GG,Baertl JM,Cordano A, et al. Lactose-free, medium-chain triglycerideformulas in severe malnutrition. Am J Dis Child.1973,126(3):330-335
    [16]. Liu YM. Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia.2008,49(Suppl8):33-36
    [17]. St-Onge MP,Jones PJ. Physiological effects of medium-chain triglycerides: potentialagents in the prevention of obesity. J Nutr.2002,132(3):329-332
    [18]. Papamandjaris AA,MacDougall DE,Jones PJ. Medium chain fatty acid metabolism andenergy expenditure: obesity treatment implications. Life Sci.1998,62(14):1203-1215
    [19]. Geliebter A,Torbay N,Bracco EF, et al. Overfeeding with medium-chain triglyceridediet results in diminished deposition of fat. Am J Clin Nutr.1983,37(1):1-4
    [20]. Saudubray JM,Martin D,de Lonlay P, et al. Recognition and management of fatty acidoxidation defects: a series of107patients. J Inherit Metab Dis.1999,22(4):488-502
    [21]. Touma EH,Rashed MS,Vianey-Saban C, et al. A severe genotype with favourableoutcome in very long chain acyl-CoA dehydrogenase deficiency. Arch Dis Child.2001,84(1):58-60
    [22]. Duran M,Wanders RJ,de Jager JP, et al.3-Hydroxydicarboxylic aciduria due tolong-chain3-hydroxyacyl-coenzyme A dehydrogenase deficiency associated with suddenneonatal death: protective effect of medium-chain triglyceride treatment. Eur J Pediatr.1991,150(3):190-195
    [23]. Cox GF,Souri M,Aoyama T, et al. Reversal of severe hypertrophic cardiomyopathy andexcellent neuropsychologic outcome in very-long-chain acyl-coenzyme A dehydrogenasedeficiency. J Pediatr.1998,133(2):247-253
    [24]. Brown-Harrison MC,Nada MA,Sprecher H, et al. Very long chain acyl-CoAdehydrogenase deficiency: successful treatment of acute cardiomyopathy. Biochem Mol Med.1996,58(1):59-65
    [25]. Roe CR,Sweetman L,Roe DS, et al. Treatment of cardiomyopathy and rhabdomyolysisin long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J ClinInvest.2002,110(2):259-269
    [26]. Brunengraber H,Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis.2006,29(2-3):327-331
    [27]. Rinaldo P,Matern D,Bennett MJ. Fatty acid oxidation disorders. Annu Rev Physiol.2002,64(3):477-502
    [28]. Bower JF,Davis JM,Hao E, et al. Differences in transport of fatty acids and expressionof fatty acid transporting proteins in adipose tissue of obese black and white women. Am JPhysiol Endocrinol Metab.2006,290(1): E87-E91
    [29]. Coort SL,Bonen A,van der Vusse GJ, et al. Cardiac substrate uptake and metabolism inobesity and type-2diabetes: role of sarcolemmal substrate transporters. Mol Cell Biochem.2007,299(1-2):5-18
    [30]. Saggerson ED,Carpenter CA. Carnitine palmitoyltransferase and carnitineoctanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland,skeletal muscle and heart. FEBS Lett.1981,129(2):229-232
    [31]. Schulz H. Regulation of fatty acid oxidation in heart. J Nutr.1994,124(2):165-171
    [32]. Vistisen B,Nybo L,Xu X, et al. Minor amounts of plasma medium-chain fatty acids andno improved time trial performance after consuming lipids. J Appl Physiol.2003,95(6):2434-2443
    [33]. Sengupta A,Ghosh M. Integrity of erythrocytes of hypercholesterolemic andnormocholesterolemic rats during ingestion of different structured lipids. Eur J Nutr.2010,50(6):411-419
    [34]. Kinman RP,Kasumov T,Jobbins KA, et al. Parenteral and enteral metabolism ofanaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab.2006,291(4):E860-866
    [35]. Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids inhumans. Chem Senses.2009,34(2):145-150
    [36]. Higaki K,Yata T,Sone M, et al. Estimation of absorption enhancement by medium-chainfatty acids in rat large intestine. Res Commun Mol Pathol Pharmacol.2001,109(3-4):231-240
    [37]. Tsuzuki Y,Miyazaki J,Matsuzaki K, et al. Differential modulation in the functions ofintestinal dendritic cells by long-and medium-chain fatty acids. J Gastroenterol.2006,41(3):209-216
    [38]. Mu H,Hoy CE. Effects of different medium-chain fatty acids on intestinal absorption ofstructured triacylglycerols. Lipids.2000,35(1):83-89
    [39]. Metges CC,Wolfram G. Medium-and long-chain triglycerides labeled with13C: acomparison of oxidation after oral or parenteral administration in humans. J Nutr.1991,121(1):31-36
    [40]. Longnus SL,Wambolt RB,Barr RL, et al. Regulation of myocardial fatty acid oxidationby substrate supply. Am J Physiol Heart Circ Physiol.2001,281(4): H1561-1567
    [41]. Ala-Rami A,Ylihautala M,Ingman P, et al. Influence of calcium-induced workloadtransitions and fatty acid supply on myocardial substrate selection. Metabolism.2005,54(3):410-420
    [42]. Montessuit C,Papageorgiou I,Tardy-Cantalupi I, et al. Postischemic recovery of heartmetabolism and function: role of mitochondrial fatty acid transfer. J Appl Physiol.2000,89(1):111-119
    [43]. Chatham JC,Forder JR. Relationship between cardiac function and substrate oxidationin hearts of diabetic rats. Am J Physiol.1997,273(1Pt2): H52-58
    [44]. Vincent G,Comte B,Poirier M, et al. Citrate release by perfused rat hearts: a window onmitochondrial cataplerosis. Am J Physiol Endocrinol Metab.2000,278(5): E846-856
    [45]. Vincent G,Bouchard B,Khairallah M, et al. Differential modulation of citrate synthesisand release by fatty acids in perfused working rat hearts. Am J Physiol Heart Circ Physiol.2004,286(1): H257-266
    [46]. Allard MF,Parsons HL,Saeedi R, et al. AMPK and metabolic adaptation by the heart topressure overload. Am J Physiol Heart Circ Physiol.2007,292(1): H140-148
    [47]. Labarthe F,Khairallah M,Bouchard B, et al. Fatty acid oxidation and its impact onresponse of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of amedium-chain fatty acid. Am J Physiol Heart Circ Physiol.2005,288(3): H1425-1436
    [48]. Pravenec M,Kren V. Genetic analysis of complex cardiovascular traits in thespontaneously hypertensive rat. Exp Physiol.2005,90(3):273-276
    [49]. Vincent G,Khairallah M,Bouchard B, et al. Metabolic phenotyping of the diseased ratheart using13C-substrates and ex vivo perfusion in the working mode. Mol Cell Biochem.2003,242(1-2):89-99
    [50]. Hajri T, Ibrahimi A,Coburn CT, et al. Defective fatty acid uptake in the spontaneouslyhypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia,and myocardial hypertrophy. J Biol Chem.2001,276(26):23661-23666
    [51]. Okere IC,McElfresh TA,Brunengraber DZ, et al. Differential effects of heptanoate andhexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion. JAppl Physiol.2006,100(1):76-82
    [52]. Sundqvist KE,Vuorinen KH,Peuhkurinen KJ, et al. Metabolic effects of propionate,hexanoate and propionylcarnitine in normoxia, ischaemia and reperfusion. Does ananaplerotic substrate protect the ischaemic myocardium? Eur Heart J.1994,15(4):561-570
    [53]. Panchal AR,Comte B,Huang H, et al. Partitioning of pyruvate between oxidation andanaplerosis in swine hearts. Am J Physiol Heart Circ Physiol.2000,279(5): H2390-2398
    [54]. Comte B,Vincent G,Bouchard B, et al. Reverse flux through cardiac NADP(+)-isocitratedehydrogenase under normoxia and ischemia. Am J Physiol Heart Circ Physiol.2002,283(4):H1505-1514
    [55]. Stanley WC,Recchia FA,Lopaschuk GD. Myocardial substrate metabolism in thenormal and failing heart. Physiol Rev.2005,85(3):1093-1129
    [56]. Taegtmeyer H,Ballal K. No low-fat diet for the failing heart? Circulation.2006,114(20):2092-2093
    [57]. Sambandam N,Lopaschuk GD,Brownsey RW, et al. Energy metabolism in thehypertrophied heart. Heart Fail Rev.2002,7(2):161-173
    [58]. Neubauer S. The failing heart--an engine out of fuel. N Engl J Med.2007,356(11):1140-1151
    [59]. Lopaschuk GD,Wambolt RB,Barr RL. An imbalance between glycolysis and glucoseoxidation is a possible explanation for the detrimental effects of high levels of fatty acidsduring aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther.1993,264(1):135-144
    [60]. Tuunanen H,Engblom E,Naum A, et al. Free fatty acid depletion acutely decreasescardiac work and efficiency in cardiomyopathic heart failure. Circulation.2006,114(20):2130-2137
    [61]. Rennison JH,McElfresh TA,Okere IC, et al. High-fat diet postinfarction enhancesmitochondrial function and does not exacerbate left ventricular dysfunction. Am J PhysiolHeart Circ Physiol.2007,292(3): H1498-1506
    [62]. Bonnet D,Martin D,Pascale De L, et al. Arrhythmias and conduction defects aspresenting symptoms of fatty acid oxidation disorders in children. Circulation.1999,100(22):2248-2253
    [63]. Olpin SE. Implications of impaired ketogenesis in fatty acid oxidation disorders.Prostaglandins Leukot Essent Fatty Acids.2004,70(3):293-308
    [64]. Schuler AM,Gower BA,Matern D, et al. Influence of dietary fatty acid chain-length onmetabolic tolerance in mouse models of inherited defects in mitochondrial fatty acidbeta-oxidation. Mol Genet Metab.2004,83(4):322-329
    [65]. Vianey-Saban C,Divry P,Brivet M, et al. Mitochondrial very-long-chain acyl-coenzymeA dehydrogenase deficiency: clinical characteristics and diagnostic considerations in30patients. Clin Chim Acta.1998,269(1):43-62
    [66]. Shen JJ,Matern D,Millington DS, et al. Acylcarnitines in fibroblasts of patients withlong-chain3-hydroxyacyl-CoA dehydrogenase deficiency and other fatty acid oxidationdisorders. J Inherit Metab Dis.2000,23(1):27-44
    [67]. Jones PM,Butt Y,Bennett MJ. Accumulation of3-hydroxy-fatty acids in the culturemedium of long-chain L-3-hydroxyacyl CoA dehydrogenase (LCHAD) and mitochondrialtrifunctional protein-deficient skin fibroblasts: implications for medium chain triglyceridedietary treatment of LCHAD deficiency. Pediatr Res.2003,53(5):783-787
    [68]. Parini R,Invernizzi F,Menni F, et al. Medium-chain triglyceride loading test incarnitine-acylcarnitine translocase deficiency: insights on treatment. J Inherit Metab Dis.1999,22(6):733-739
    [69]. Shimojo N,Miyauchi T,Iemitsu M, et al. Effects of medium-chain triglyceride (MCT)application to SHR on cardiac function, hypertrophy and expression of endothelin-1mRNAand other genes. J Cardiovasc Pharmacol.2004,44(Suppl1): S181-185
    [70]. Rupp H,Schulze W,Vetter R. Dietary medium-chain triglycerides can prevent changesin myosin and SR due to CPT-1inhibition by etomoxir. Am J Physiol.1995,269(3Pt2):R630-640
    [71]. Madden MC,Wolkowicz PE,Pohost GM, et al. Acylcarnitine accumulation does notcorrelate with reperfusion recovery in palmitate-perfused rat hearts. Am J Physiol.1995,268(6Pt2): H2505-2512
    [72]. Finck BN,Han X,Courtois M, et al. A critical role for PPARalpha-mediated lipotoxicityin the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc NatlAcad Sci U S A.2003,100(3):1226-1231
    [73]. Sengupta A,Ghosh M. Hypolipidemic effect of mustard oil enriched with medium chainfatty acid and polyunsaturated fatty acid. Nutrition.2011,27(11-12):1183-1193
    [74]. Shinohara H,Ogawa A,Kasai M, et al. Effect of randomly interesterified triacylglycerolscontaining medium-and long-chain fatty acids on energy expenditure and hepatic fatty acidmetabolism in rats. Biosci Biotechnol Biochem.2005,69(10):1811-1818
    [75]. Han J,Hamilton JA,Kirkland JL, et al. Medium-chain oil reduces fat mass anddown-regulates expression of adipogenic genes in rats. Obes Res.2003,11(6):734-744
    [76]. Wein S,Wolffram S,Schrezenmeir J, et al. Medium-chain fatty acids ameliorate insulinresistance caused by high-fat diets in rats. Diabetes Metab Res Rev.2009,25(2):185-194
    [77]. Matsuo T,Matsuo M,Kasai M, et al. Effects of a liquid diet supplement containingstructured medium-and long-chain triacylglycerols on bodyfat accumulation in healthyyoung subjects. Asia Pac J Clin Nutr.2001,10(1):46-50
    [78]. Takeuchi H,Kasai M,Taguchi N, et al. Effect of triacylglycerols containing medium-and long-chain fatty acids on serum triacylglycerol levels and body fat in college athletes. JNutr Sci Vitaminol (Tokyo).2002,48(2):109-114
    [79]. St-Onge MP,Lamarche B,Mauger JF, et al. Consumption of a functional oil rich inphytosterols and medium-chain triglyceride oil improves plasma lipid profiles in men. J Nutr.2003,133(6):1815-1820
    [80]. Bourque C,St-Onge MP,Papamandjaris AA, et al. Consumption of an oil composed ofmedium chain triacyglycerols, phytosterols, and N-3fatty acids improves cardiovascular riskprofile in overweight women. Metabolism.2003,52(6):771-777
    [81]. Liu Y,Xue C,Zhang Y, et al. Triglyceride with medium-chain fatty acids increases theactivity and expression of hormone-sensitive lipase in white adipose tissue of C57BL/6J mice.Biosci Biotechnol Biochem.2011,75(10):1939-1944
    [82]. Liu Y,Wang J,Zhang R, et al. A good response to oil with medium-and long-chain fattyacids in body fat and blood lipid profiles of male hypertriglyceridemic subjects. Asia Pac JClin Nutr.2009,18(3):351-358
    [83]. Xue C,Liu Y,Wang J, et al. Chinese hypertriglycerideamic subjects of different agesresponded differently to consuming oil with medium-and long-chain fatty acids. BiosciBiotechnol Biochem.2009,73(8):1711-1717
    [84]. Xue C,Liu Y,Wang J, et al. Consumption of medium-and long-chain triacylglycerolsdecreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur JClin Nutr.2009,63(7):879-886
    [85].刘英华,张永,于晓明,等.中链脂肪酸改善高脂饲料短期和长期喂养C57BL/6J小鼠的脂蛋白水平的作用.实用预防医学.2011,18(9):1610-1613
    [86].刘英华,张永,于晓明,等.中链脂肪酸对高脂饲料喂养的C57BL/6J小鼠高密度脂蛋白的影响.军医进修学院学报.2012,33(2):110-113
    [87]. Sigalet DL,Winkelaar GB,Smith LJ. Determination of the route of medium-chain andlong-chain fatty acid absorption by direct measurement in the rat. JPEN J Parenter EnteralNutr.1997,21(5):275-278
    [88].孙静.中链甘油三酯对脂代谢的影响及其机制研究进展.国外医学卫生学分册.2006,33(3):146-150
    [89]. Noguchi O,Takeuchi H,Kubota F, et al. Larger diet-induced thermogenesis and lessbody fat accumulation in rats fed medium-chain triacylglycerols than in those fed long-chaintriacylglycerols. J Nutr Sci Vitaminol (Tokyo).2002,48(6):524-529
    [90].刘英华,张永,张新胜,等.中链脂肪酸对高脂饲料诱导的C57BL/6J肥胖小鼠体脂肪的影响.军医进修学院学报.2011,32(7):760-763
    [91]. St-Onge MP,Bosarge A. Weight-loss diet that includes consumption of medium-chaintriacylglycerol oil leads to a greater rate of weight and fat mass loss than does olive oil. Am JClin Nutr.2008,87(3):621-626
    [92]. Kasai M,Nosaka N,Maki H, et al. Effect of dietary medium-and long-chaintriacylglycerols (MLCT) on accumulation of body fat in healthy humans. Asia Pac J ClinNutr.2003,12(2):151-160
    [93].薛长勇,吴坚.生物活性脂类:中链脂肪酸及其与脂代谢和糖代谢.临床药物治疗杂志.2011,9(4):4-7
    [94]. Ogawa A,Nosaka N,Kasai M, et al. Dietary medium-and long-chain triacylglycerolsaccelerate diet-induced thermogenesis in humans. J Oleo Sci.2007,56(6):283-287
    [95]. Borradaile NM,Schaffer JE. Lipotoxicity in the heart. Curr Hypertens Rep.2005,7(6):412-417
    [96]. Okere IC,Chandler MP,McElfresh TA, et al. Carnitine palmitoyl transferase-I inhibitionis not associated with cardiac hypertrophy in rats fed a high-fat diet. Clin Exp PharmacolPhysiol.2007,34(1-2):113-119
    [97]. Fox JE,Magga J,Giles WR, et al. Acyl coenzyme A esters differentially activate cardiacand beta-cell adenosine triphosphate-sensitive potassium channels in a side-chainlength-specific manner. Metabolism.2003,52(10):1313-1319
    [98]. Yamada KA,Kanter EM,Newatia A. Long-chain acylcarnitine induces Ca2+efflux fromthe sarcoplasmic reticulum. J Cardiovasc Pharmacol.2000,36(1):14-21
    [99]. Paradies G,Ruggiero FM. Enhanced activity of the tricarboxylate carrier andmodification of lipids in hepatic mitochondria from hyperthyroid rats. Arch BiochemBiophys.1990,278(2):425-430
    [100]. Lai JC,Liang BB,Jarvi EJ, et al. Differential effects of fatty acyl coenzyme Aderivatives on citrate synthase and glutamate dehydrogenase. Res Commun Chem PatholPharmacol.1993,82(3):331-338
    [101]. Iemitsu M,Shimojo N,Maeda S, et al. The benefit of medium-chain triglyceridetherapy on the cardiac function of SHRs is associated with a reversal of metabolic andsignaling alterations. Am J Physiol Heart Circ Physiol.2008,295(1): H136-144
    [102]. Wanten GJ,Calder PC. Immune modulation by parenteral lipid emulsions. Am J ClinNutr.2007,85(5):1171-1184
    [103]. Kostenis E. A glance at G-protein-coupled receptors for lipid mediators: a growingreceptor family with remarkably diverse ligands. Pharmacol Ther.2004,102(3):243-257
    [104]. Covington DK,Briscoe CA,Brown AJ, et al. The G-protein-coupled receptor40family(GPR40-GPR43) and its role in nutrient sensing. Biochem Soc Trans.2006,34(Pt5):770-773
    [105]. Wollin SD,Wang Y,Kubow S, et al. Effects of a medium chain triglyceride oil mixtureand alpha-lipoic acid diet on body composition, antioxidant status, and plasma lipid levels inthe Golden Syrian hamster. J Nutr Biochem.2004,15(7):402-410
    [106]. Hill JO,Peters JC,Swift LL, et al. Changes in blood lipids during six days ofoverfeeding with medium or long chain triglycerides. J Lipid Res.1990,31(3):407-416
    [107]. Buxton DB,Barron LL,Taylor MK, et al. Regulatory effects of fatty acids ondecarboxylation of leucine and4-methyl-2-oxopentanoate in the perfused rat heart. BiochemJ.1984,221(3):593-599
    [108]. Paxton R,Harris RA. Regulation of branched-chain alpha-ketoacid dehydrogenasekinase. Arch Biochem Biophys.1984,231(1):48-57
    [109]. Kimball SR,Jefferson LS. New functions for amino acids: effects on gene transcriptionand translation. Am J Clin Nutr.2006,83(2):500S-507S
    [110]. Staab CA,Hellgren M,Grafstrom RC, et al. Medium-chain fatty acids and glutathionederivatives as inhibitors of S-nitrosoglutathione reduction mediated by alcoholdehydrogenase3. Chem Biol Interact.2009,180(1):113-118
    [111]. Matulka RA,Thompson DV,Burdock GA. Lack of toxicity by medium chaintriglycerides (MCT) in canines during a90-day feeding study. Food Chem Toxicol.2009,47(1):35-39
    [112]. Larson TR,Edgell T,Byrne J, et al. Acyl CoA profiles of transgenic plants thataccumulate medium-chain fatty acids indicate inefficient storage lipid synthesis indeveloping oilseeds. Plant J.2002,32(4):519-527
    [113]. Hu FB,Stampfer MJ,Manson JE, et al. Dietary saturated fats and their food sources inrelation to the risk of coronary heart disease in women. Am J Clin Nutr.1999,70(6):1001-1008
    [114]. Liu C,Yang S,Liu W, et al. Preparation and characterization of medium-chain fattyacid liposomes by lyophilization. J Liposome Res.2010,20(3):183-190
    [115]. Liu WL,Liu W,Liu CM, et al. Medium-chain fatty acid nanoliposomes suppress bodyfat accumulation in mice. Br J Nutr.2011,106(9):1330-1336
    [116].阴婷婷,杨水兵,刘成梅,等.中链脂肪酸-VC复合脂质体制备及初步稳定性.食品科学.2011,32(12):106-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700