工作面侧向支承压力分布及保留巷道控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对布尔台煤矿3-1煤首采工作面一侧保留巷道受采动影响后围岩破坏严重的问题,综合运用岩体力学及矿山压力理论、结合数值模拟及现场实测,初步研究了上覆岩层空间结构与侧向支承压力分布规律的关系以及相邻工作面压力叠加的影响,分析了保留巷道受支承压力影响破坏的机理,并提出了治理措施。
     现场实测中,采取钻孔冲洗液法得到裂隙带高度140m,冒落带高度13.16m。侧向支承压力在工作面推过24m后开始显著上升并持续增加,直到156m达到最大值。理论分析得出走向推进达1.27H-1.5H进入充分采动阶段,上位岩层断裂后,采空区两侧煤壁上两个独立的不稳定较小多层拱结构组合成拱脚分别在两侧实体煤上的大空间结构,覆岩重量全部转移到两侧煤壁,侧向支承压力达到最大。经计算煤柱一侧采动时的塑性区宽度5.8m-9.5m。两侧采动后,煤柱基本处于塑性状态,其稳定性大大降低。
     通过FLAC3D数值模拟分析得到工作面推进支承压力分布规律与不同错距时两相邻工作面支承压力叠加的影响。保留巷道长时间受侧向支承压力的影响,加上后方工作面超前支承压力叠加作用,其稳定性将进一步降低。提出工作面与巷道合理布局,选取错距为50m-100m,加快工作面推进,尽量缩短侧向支承压力对保留巷道的作用时间。对大断面巷道联合支护参数进行优化,二次支护顶板与两帮均采用注浆锚杆,通过注浆及时加固围岩,,提高岩体的整体强度,限制破碎区向纵深发展。
     研究工作面侧向支承压力以及保留巷道控制,有利于采场巷道围岩的管理与维护,对矿井的高产高效具有重要的理论和现实意义。
After the reservation roadway on the side of the 3-1 coal seam first face in BuErtai mine affected by mining, the surrounding rock damaged seriously. It used integrated of rock mechanics, rock pressure theory, numerical simulation and field test to exploring the relationship of overlying strata spatial structure and side abutment pressure distribution, and superposition of adjacent abutment pressure. Then analyzed the mechanism of reservation roadway abutment pressure impact to failure, and proposed control measures.
     Field test, it uses the drilling fluid method to get that the fissure height is about 140m, the caving height of 13.16m. After the face was mined over 24m, the side abutment pressure start to increase significantly and continue to increase, it did not reach maximum until 156m. It is analysis result that the face access into full extraction stage when the distance advanced up to 1.27H-1.5H. There is the second structure under the coal seam that is a large cycle of broken roof sinking movement. There are two separate smaller multi-arches on both sides of the walls of waste area. After the key strata fracture, the two separate smaller multi-arches form the large space structure that the feet of arch structure distribute on both sides solid coal of the waste area. All the weight of overlying rock transferred to both sides solid coal of the waste area. The side abutment pressure reach maximum.The width of plastic zone at the side of coal pillar that one side mined is 5.8m-9.5m after calculated. After mining both sides, the coal pillar is basic in the plastic state; its stability is greatly reduced.
     By the means of analysis on FLAC3D numerical simulation, it got the law of abutment pressure distribution when the rapid face advance and abutment pressure superposition influence of two adjacent faces when different distances between the two adjacent faces. Reservation roadway dear the side abutment pressure with a long period. The stability of adjacent rock will be further reduced, when the front abutment pressure of the back face applied to the reservation roadway. It designed program proposed to layout face and roadway, and selected the distance about 50m-100m. It speed up the face forward to try to reduce the pressure on the abutment time to retain the role of the roadway. Optimize the combined support parameters of the large section roadway; it used bolt grouting to support the roof and two walls at the second support. It reinforced surrounding rock and improved the overall strength of rock by grouting in a timely manner, so restricted broken areas to the depth.
     Study the side abutment pressure distribution of fast mechanized mining face and control reservation roadway are beneficial to surrounding roadway management and maintenance, at the same time they have important theoretical and practical significance to the high production and efficiency of the mine.
引文
1. 宋振骐.实用矿山压力及控制[M].徐州:中国矿业大学出版社,1993
    2. 宋振骐,蒋金泉.煤矿岩层控制的研究重点与方向[J],岩石力学与工程学报,1996(2):128~134
    3.宋振骐,宋扬等.内外应力场理论及其在矿压控制中的应用[A],中国北方岩石力学与工程应用学术会议论文集[C],郑州:科学出版社,1991:43-51
    4. 姜福兴等,矿压控制设计[M],中国矿业大学出版社.1996
    5.吴士良.对采场矿山压力有明显影响的覆岩破坏运动演化规律[D].山东科技大学博士学位论文,2002
    6.姜福兴.矿山压力与岩层控制[M].北京:煤炭工业出版社,2004
    7.谭云亮,吴士良等.矿山压力与岩层控制[M].北京:煤炭工业出版社,2008
    8. 钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,1994
    9.钱鸣高,张顶立.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994,3:6-11
    10.许家林.岩层移动控制的关键层理论及其应用[D],江苏徐州:中国矿业大学博士学位论文,1999
    11.钱鸣高,缪协兴,许家林等.岩层控制关键层理论[M].徐州:中国矿业大学出版社,2003
    12.钱鸣高等.采场覆岩中关键层上载荷的变化规律[J],煤炭学报,1998 No.2
    13.钱鸣高,刘听成等.矿山压力及其控制[M],煤炭工业出版社,1991
    14.黄庆享.浅埋煤层长壁工作而开采项板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000
    15.黄庆享.浅埋煤层矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002,8:74-77
    16.侯忠杰.组合关键层理论应用研究及参数确定[J].煤炭学报,2001,26(6):611-615
    17.侯忠杰.地表厚松散层浅埋煤层组合关键层的稳定性分析[J].煤炭学报,2000,2:27-31
    18.张俊云,侯忠杰.浅埋采场矿压及覆岩破断规律[J].矿山压力与顶板管理,1998,3:9-12
    19.马其华.长壁采场覆岩“O”型空间结构及相关矿山压力研究[D].山东科技大学博士学位论文,2005
    20.何满潮.软岩变形机制分类与支护对策[J].广西煤炭,1992,2:15-18
    21.何满潮.软岩巷道工程概论[M].徐州:中国矿业大学出版社,1993
    22.史红.综采放顶煤采场厚层坚硬顶板稳定性分析及应用[D].山东科技大学博士学位论文,2005
    23.董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001
    24.董方庭,宋宏伟.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32
    25.董方庭.巷道围岩松动圈支护理论[M].北京:煤炭工业出版社,1994
    26.郑雨天.岩石力学的弹塑性粘性理论基础[M].北京:煤炭工业出版社,1988
    27.张向阳.动压影响下大巷围岩变形机理与卸压控制研究[D].安徽:安徽理工大学,2007
    28.张镇.薄基岩浅埋采场上覆岩层运动规律研究与应用[D].青岛:山东科技大学硕士学位论文,2007
    29.林崇德,陆士良.煤巷软弱顶板锚杆支护作用的研究[J].煤炭学报,2000,25(5):482-485
    30.葛家良.软岩巷道锚注支护技术及工程实践[J].岩石力学与工程学报,1997,2:71-77
    31.刘福军,李志江.承受二次动压巷道支护分析[J].煤矿开采,2002,4:25-27
    32.郭忠平.动压巷道变形及超前支承压力数值模拟分析[J].煤炭科技,2002,30(7):52-53
    33.史红,姜福兴.充分采动阶段覆岩多层空间结构支承压力研究[J].煤炭学报,2009,34(5):604-609
    34.史红,姜福兴.基于微地震监测的覆岩多层空间结构倾向支承压力研究[J].岩石力学与工程学报,2008.27(1):3274-3278
    35.姜福兴.岩层质量指数及其应用[J],岩石力学与工程学报,1994(3):270~278
    36.姜福兴,王春秋,宋振骐.采场覆岩空间结构与应力场动态关系探讨[A],中国科协第46次“青年科学家论坛”文集[C],中国科学技术出版社,1999
    37.姜福兴,Xun Luo.微震监测技术在矿井岩层破裂监测中的应用[J],岩土工程学报,2002(2):147~149
    38.姜福兴,Xun Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震研究[J],岩土工程学报,2003(1):23-25
    39.谢和平,陈忠辉,王家臣。放顶煤开采巷道裂隙的分形研究[J],煤炭学报,1998.03-005
    40.陈忠辉,谢和平.综放开采顶煤冒放性的损伤力学分析[J],岩石力学与工程学报,2002.21.8
    41.姜福兴,汪华君,吴士良等.综放工作面支架“异常压力”的力源研究[J],煤炭学报,2004.29(5)523-526
    42.陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994
    43.樊胜强等.工作面滞后支承压力分布规律[J],黑龙江科技学院学报,2006.16(2)78-81
    44.刘红元,采动影响下覆岩破坏过程的模拟研究[D],东北大学,1999
    45.徐顺利.大跨度巷道锚梁网索耦合支护及数值模拟分析[J].煤矿支护,2009,1:36-39
    46.彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2008
    47.高春,赵晨光,刘英明.榆家梁矿大断面煤巷联合支护技术分析[J].能源技术与管理,2006,3:1-3
    48.候朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,3:342-345
    49.万镇.综采工作面设备回撤通道围岩控制研究[D].山东科技大学硕士学位论文,2009
    50.刘银志,贾明魁.高应力破碎带松软岩层大断面巷道支护技术研究[J].建井技术,2003,24(1):23-26
    51.都海龙.数值模拟在松散煤层大断面巷道支护中的应用[J].煤矿开采,2008,6:48-50
    52.曲光.新型玻璃钢锚杆力学性能研究[J].煤炭科学技术,2007,35(4):63-65
    53.沈明荣.岩体力学[M].上海:同济大学出版社,1999
    54.刘成岭,梁子振.软破岩体围岩破坏机理和巷道稳定性研究[J].矿山压力与顶板管理,2002,2:83-84
    55.杨文新.马丽散加固破碎顶板的应用[J].中州煤炭,2006,3:13-14
    56.张日林,关跃世,宋红飞.马丽散和玻璃钢锚杆在综采面过地质构造的应用[J].煤,2008,2:47-48
    57.马念杰,张玉.新型玻璃钢锚杆研究[J].煤矿开采,2001,4:45-47
    58.孔顺强.玻璃钢锚杆在支承压力不稳定巷道支护的应用[J].中州煤炭,2006,3:15-17
    59.黄长国.动压巷道变形破坏机理与修复加固技术研究[D].安徽:安徽理工大学,2007
    60.庞凤玲.动压巷道支护技术探讨[J].煤炭科学技术,2006,3
    61.耿大新.巷道围岩变形规律及其应用研究[D].泰安,山东科技大学,2001
    62.刘英明,赵晨光等.动压影响下煤巷矿压显现与支护的三维数值分析[J].能源技术与管理,2007,11(3):22-24
    63.张迎新,张华恩.受动压影响巷道围岩稳定性浅析[J].煤炭技术,2002,21(11):53-57
    64.张顶立.综放工作面煤岩稳定性研究及控制[D].江苏徐州:中国矿业大学博士学位论文,1994
    65. Panastasiou P and Vardoulakis I, Bifurcation analysis of deep boreholes:Ⅱ, Scale effect, Int. J.Numer. Anal.Methods,Geomeeh.1998(13):183-198
    66. Stille H, Holmberg M, Nord G. Support of weak rock with ground bolts and shotcrete[J]. RockMech & Rock Engineering,1989(3):99-113
    67. Itasca Consulting Group, Inc.FLAC3D User Manuals[M], Version 2.1, Minneapolis, Minnesota,2002
    68. H.Yavuz. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines Department of Mining Engineering, International Journal of Rock Mechanics & Mining Sciences 2004 (41):193-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700