综采工作面设备回撤通道围岩控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厚煤层大采高综采高产高效工作面,推进速度快,采掘接替压力大,工作面搬家倒面频繁,传统施工方法已不能满足其快速回撤的要求。预掘设备撤出巷作为回撤通道解决了这个难题,回撤通道位于停采线附近,布置在煤层中,并平行于工作面。昌汉沟煤矿煤层顶底板岩体强度低,在经受掘进和采动影响的双重作用下,回撤通道围岩破坏严重,维护困难,稳定性差,影响综采设备的快速回撤。因此,对回撤通道围岩控制进行全面系统的研究,是保证工作面快速搬家和正常生产的关键所在。
     本文综合运用理论研究、数值模拟和现场实测的方法,对工作面末采期覆岩运动规律进行了分析,提出了工作面停采时回撤区可能存在的三种顶板结构,现场实测表明,工作面贯通回撤通道时,老顶岩梁在停采线后方断裂,此时,顶板处于相对稳定阶段,巷道顶板承受上覆岩层静载荷作用。根据FLAC~(3D)数值分析软件模拟和巷道项板运动现场监测,确定工作面距回撤通道约10~9m时,采动对巷道产生明显影响,工作面距回撤通道约3.6m时,动压影响最为剧烈,并确定巷道顶板和正帮是围岩破坏的主要控制部位。通过现场实测支架阻力,并采用理论公式估算出直接顶和老顶厚度,进而推导回撤通道顶板控制所需支架的支护阻力,针对原支护方案存在问题和不足,结合顶板结构特征,进行巷道支护优化设计。选取高阻力的液压支架支撑顶板,注马丽散提高顶板岩体强度,采用具有可切割性的玻璃钢锚杆支护巷道正帮,锚索补强支护负帮,底板铺设混凝土。数值分析比较表明,针对巷道围岩主控部位提出的主动支护和被动支护相结合的支护方案是可行的,能有效控制围岩变形,实现设备的快速安全回撤。
The large mining height fully-mechanized working face in special thick coal seam is high-outputs and high-efficiency mining face, it is serious for the pressure between coal mining and driving, and the velocity of advancing is fast, and frequent for movement of combined driving working face, the traditional technology can't achieve the aim that face withdraws quickly and safely. It is a good measure to solve the difficulty that driving equipment withdrawing roadway as dismantling tunnel. The tunnel is laid out near terminal line, paralleling to working face, and often lying in coal seam. The surrounding rock intensity of coal seam of is weak in Changhangou mine, Since affected by mining strongly during driving and serving, the surrounding rock of roadway broken severely, and it is difficult for the roadway to be supported and stabilized, and making the equipment removing slow. So it is key for the equipment removing quickly to study comprehensive and systemic on surrounding rock control of the dismantling tunnel.
     Theory study, numerical simulation and actual measurement were combined applied in this paper. The overburden moving law was analyzed at the end mining of working face, have suggested that three kinds of roof structure in the area of equipment removing when working face stopped mining, this indicate that the main roof broken behind the terminal line when working face cut through the dismantling tunnel, at this time, the roof is in the relatively stable stage, and the roof of roadway bears overburden steady loading. According to analysis of numerical simulation and actual measurement, determined that mining effected roadway obviously with the distance 10~9m between working face and dismantling tunnel, the influence of dynamic pressure is most intensive when the distance is 3.6m, and the primary control area is roof and main side of the roadway. The thickness of immediate roof and main roof were estimated by theory equation, and then deduced the support load needed by roof control, the support of roadway was designed for the problem and shortage of original support combining the roof structure. Powered support of high working resistance poling roof, improving rock intensity by filling Malisan, glass reinforced plastic bolt that may be cut was used to support the main side of roadway, and concrete was laid on the floor. Comparison of numerical simulation indicate that the support scheme combined active and passive support for the major control area is feasible, and deformation of surrounding rock can be controlled effectively, and equipment can be removed quickly and safely.
引文
1.魏同.中国煤炭工业可持续发展的系统分析[J].中国煤炭经济学院学报,1996(1):3-10.
    2.鲍云樵.关于制定新的中国能源政策的建议[J].中外能源,2006,11(4):15-19.
    3.张俊云,侯忠杰.浅埋采场矿压及覆岩破断规律[J].矿山压力与顶板管理,1998,3:9-12.
    4.陈武,叶贵钧.鄂尔多斯煤田侏罗纪煤矿区环境地质评述[J].煤炭经济研究,2002,3:76-77.
    5.康世勇,郝峙.神府东胜煤田自然环境特点与矿区生态环境保护[J].能源环境保护,1999,4:15-16.
    6.王经明等.毛乌素沙漠东缘煤炭开采土地沙化的机理及其对策[M].西安:西安地图出版社,1998:376-383.
    7.王利.综采工作面要少搬家快搬家[J].煤炭技术,2008,27(2):21-22.
    8.曹怀军.快速搬家倒面浅谈[J].内蒙古煤炭经济,2008,2:65-67.
    9.钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,1994:72-100.
    10.钱鸣高,张顶立.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994,3:6-11.
    11.钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学,2003:60-120.
    12.宋振骐.实用矿山压力及控制[M].徐州:中国矿业大学出版社,1993:32-50.
    13.姜福兴.矿山压力与岩层控制[M].北京:煤炭工业出版社,2004:28-56.
    14.黄庆享.浅埋煤层长壁工作而开采项板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000:24.
    15.侯忠杰.地表厚松散层浅埋煤层组合关键层的稳定性分析[J].煤炭学报,2000,2:27-31.
    16.侯忠杰.组合关键层理论应用研究及参数确定[J].煤炭学报,2001,26(6):611-615.
    17.雷煌.综采工作面快速搬家成套装备与技术的应用[J].煤炭科学技术,2008,36(2):1-3.
    18.谢耀社,汪青仓.神东矿区工作面快速搬家技术[J].煤矿开采,2003,8(3):49-51.
    19.王根厚.神东矿区综采工作面回撤通道快速搬家简介[J].江西煤炭科技,2003,3:27-28.
    20.刘小奇,陈苏社.辅巷多通道综采搬家技术的应用[J].中国煤炭,1999,25(10):36-37.
    21.何满潮.软岩巷道工程概论[M].徐州:中国矿业大学出版社,1993.
    22.韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    23.董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    24.董方庭,宋宏伟.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    25.董方庭.巷道围岩松动圈支护理论[M].北京:煤炭工业出版社,1994.
    26.郑雨天.岩石力学的弹塑性粘性理论基础[M].北京:煤炭工业出版社,1988.
    27.何满潮.软岩变形机制分类与支护对策[J].广西煤炭,1992,2:15-18.
    28.林崇德,牛锡淖.软弱岩体巷道围岩的特性及其支护特点[J].煤炭学报,1998,1:25-29.
    29.林崇德,陆士良.煤巷软弱顶板锚杆支护作用的研究[J].煤炭学报,2000,25(5):482-485.
    30.葛家良.软岩巷道锚注支护技术及工程实践[J].岩石力学与工程学报,1997,2:71-77.
    31.黄庆享.浅埋煤层矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002,8:74-77.
    32.张镇.薄基岩浅埋采场上覆岩层运动规律研究与应用[D].青岛:山东科技大学,2007.
    33.宋振骐,宋扬等.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    34.谭云亮,吴士良等.矿山压力与岩层控制[MI.北京:煤炭工业出版社,2008,51-90.
    35.郭富利.综放工作面空巷围岩控制理论研究[D].山西太原:太原理工大学,2003.
    36.朱昌星.综放工作面开切眼与停采线大断面巷道支护技术研究[D].山东青岛:山东科技大学,2004.
    37.陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    38.沈明荣.岩体力学[M].上海:同济大学出版社,1999.
    39.黄长国.动压巷道变形破坏机理与修复加固技术研究[D].安徽:安徽理工大学,2007.
    40.王洪涛.深部巷道围岩破坏机理分析与防治技术[J].山东煤炭科技,2004,1:4-5.
    41.翟新献等.深部巷道围岩变形机理及对策[J].煤矿设计,1995,2:7-10.
    42.张迎新,张华恩.受动压影响巷道围岩稳定性浅析[J].煤炭技术,2002,21(11):53-57.
    43.张向阳.动压影响下大巷围岩变形机理与卸压控制研究[D].安徽:安徽理工大学,2007.
    44.刘福军,李志江.承受二次动压巷道支护分析[J].煤矿开采,2002,4:25-27.
    45.刘波,韩彦辉.FLAC原理实例与应用指南[M].北京:人民交通出版社,2005.
    46.彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2008.
    47.Itasca Consulting Group,Inc.FLAC3D User Manuals,Version 2.1,Minneapolis,Minnes ota,2002.
    48.陈育民.FLAC基础与工程实例[M].北京:中国水利水电出版社,2009.
    49.张炜,张东升.大采高工作面大断面回撤通道联合支护效果模拟分析[J].煤炭工程,2009,3:64-66.
    50.刘银志,贾明魁.高应力破碎带松软岩层大断面巷道支护技术研究[J].建井技术,2003,24(1):23-26.
    51.都海龙.数值模拟在松散煤层大断面巷道支护中的应用[J].煤矿开采,2008,6:48-50.
    52.郭忠平.动压巷道变形及超前支承压力数值模拟分析[J].煤炭科学技术,2002,7.
    53.庞凤玲.动压巷道支护技术探讨[J].煤炭科学技术,2006,3.
    54.储飞.新型注浆材料马丽散在刘桥一矿的应用[J].煤炭技术,2007,26(1):99-100.
    55.尤勇.马丽散加固巷帮联合支护在桃园煤矿的应用[J].煤炭科学技术,2006,3:41-43.
    56.杨文新.马丽散加固破碎顶板的应用[J].中州煤炭,2006,3:13-14.
    57.张日林.马丽散和玻璃钢锚杆在综采面过地质构造的应用[J].煤,2008,2:47-48.
    58.马念杰,张玉.新型玻璃钢锚杆研究[J].煤矿开采,2001,4:45-47.
    59.孔顺强.玻璃钢锚杆在支承压力不稳定巷道支护的应用[J].中州煤炭,2006,3:15-17.
    60.曲光.新型玻璃钢锚杆力学性能研究[J].煤炭科学技术,2007,35(4):63-65.
    61.杨永强.新型玻璃钢锚杆在东庞矿的应用[J].煤炭工程,2008,1:50-52.
    62.徐顺利.大跨度巷道锚梁网索耦合支护及数值模拟分析[J].煤矿支护,2009,1:36-39.
    63.杜善周,刘杰.乌兰木伦煤矿63110(Ⅱ)面回撤通道的支护方式[J].煤炭工程,2006,1:33-34.
    64.赵俊辉,范文亮.回撤通道贯通回采期顶板岩层控制分析[J].陕西煤炭,2003,1:34-37.
    65.赵军.大断面回撤通道锚杆支护技术与应用[J].煤炭科学技术,2005,33(11):5-7.
    66.贾嘉勇.综采面回撤通道新支护工艺在榆家梁矿的应用[J].陕西煤炭,2008,1:83-84.
    67.郑书兵.大采高工作面撤架通道加固支护技术[J].煤炭科学技术,2006,34(10):33-36.
    68.王吉生.特厚煤层大采高综采工作面设备撤出巷围岩稳定性研究[D].太原,太原理工大学,2007.
    69.张国祥.大采高综采工作面单通道搬家技术[J].煤炭科学技术,2008,36(9):17-18.
    70.刘成岭,梁子振.软破岩体围岩破坏机理和巷道稳定性研究[J].矿山压力与顶板管理,2002,2:83-84.
    71.付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3):304-309.
    72.Panastasiou P and Vardoulakis I,Bifurcation analysis of deep boreholes:Ⅱ,Scale e ffect,Int.J.Numer.Anal.Methods,Geomeeh.1998(13):183-198.
    73.WJ.Gale.Strata Control Dtillising Rock Reinforcement Techniques and Stress Control Methods in Australia Coal Mines Mining Engineer,1991.
    74.Stille H,Holmberg M,Nord G.support of weak rock with ground bolts andshotcrete.RockMech & Rock Engineering[J],1989(3):99-113.
    75.He Manchao.the Problem of large deformation in softrock engineering and practical analysis of floor-heaving[J],Journal of China University of Mining&Technology,1994.
    76.耿大新.巷道围岩变形规律及其应用研究[D].泰安,山东科技大学,2001.
    77.高春,赵晨光,刘英明.榆家梁矿大断面煤巷联合支护技术分析[J].能源技术与管理,2006,3:1-3.
    78.候朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,3:342-345.
    79.唐黄松,李盛德.锚索网支护在大断面煤巷中的应用[J].煤,2004,1:6-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700