金山店铁矿粉矿岩体巷道围岩稳定性分析及支护措施模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在FLAC~(3D)数值模拟的过程中,最重要的是模拟中采用的本构模型与实际的围岩环境吻合,由于金山店粉状矿体性质的特殊性,采用普通的土壤和岩土所用的mohr-coulomb本构模型显然忽视了它的蠕变特性和碎胀特性。本文分析粉状矿体所表现出来的变形特性,选择比较合适的poyting-thomson粘弹性本构模型,以此修改FLAC~(3D)软件源程序文件,通过visual studio 2005自定义poyting-thomson模型的动态链接库文件(.dll)内嵌于FLAC~(3D)软件源程序库内,作为FLAC~(3D)软件数值模拟的本构模型。
     本论文针对粉矿矿体建立起精确的数值模拟模型对巷道的锚喷网支护提供合理的建议。首先,在数值模拟的参数获取上,一方面在现场位移监测数据的基础上,经过位移反分析得到;另一方面通过实测的原岩物理力学参数得到。其次,在建立模型的过程中,拟定出6种模拟巷道围岩的方案,通过对比分析,最终选择需开挖无破裂区围岩模型。再次,在本构模型的选择上,通过自带的mohr-coulomb模型和二次开发的poyting-thomson模型对比分析,揭示了巷道围岩变形机制,同时比较彼此的优缺点,最后确定poyting-thomson本构模型作为该粉矿岩体模拟所使用的模型。然后,在围岩稳定性分析上,通过Fish语言编写了合理的支护结构,围岩模型,以及单元体的安全系数程序,运用FLAC~(3D)数值模拟分析围岩稳定情况。最后,在锚喷网结构参数的选择上分别从锚杆类型、锚杆的长度、锚杆的排距、围岩支护刚度等几个主要影响围岩变形破坏的因素进行对比分析,最终选择适合该粉矿巷道的支护方式和合理支护参数,以此作为实际施工中的前期预备和参考依据。
In the numerical simulation of the process, the most important is to simulate the constitutive model used in the surrounding environment and the actual match, due to the nature of Jinshandian special powdered ore bodies, using common soil and rock used in the mohr-coulomb The constitutive model is clearly ignored its hulking creep characteristics and properties. Based on the analysis based on this powder Kuangti shown on the basis of the deformation properties, select the more appropriate poyting-thomson viscoelastic constitutive model, as Xiugai FLAC~(3D) software source documents, through visual studio 2005 custom full by Ding - Thomson model is embedded in the software source code repository FLAC~(3D) as FLAC~(3D) numerical simulation software, the constitutive model.
     In this thesis, the body set up for powder ore accurate numerical simulation model of the bolting and shotcrete net to provide reasonable protection recommendations. First, the parameters for the numerical simulation on the one hand in the field on the basis of displacement monitoring data, obtained through the displacement back analysis; the other hand, the original rock by measuring the physical and mechanical parameters are. Secondly, in the model building process, to work out six kinds of simulation programs roadway, by comparing the final selection to be no excavation of rock fracture zone model. Again, the choice of the constitutive model, through the built-mohr-coulomb model and the secondary development of poyting-thomson model of comparative analysis reveals the surrounding rock deformation mechanism, and compare the advantages and disadvantages to each other to finalize poyting-thomson constitutive model as a simulation of the rock mineral powder used by the model. Then, in the surrounding rock stability analysis, written by Fish a reasonable support structure, rock models, and procedures for the safety factor of unit cell, the use of numerical simulation FLAC~(3D) the stability of surrounding rock. Finally, in the shotcrete on the choice of network structure parameters, respectively, from the anchor type, anchor length, anchor the row spacing, stiffness of surrounding rock deformation and failure of several major factors that affect the rock were analyzed, the final choice The fine ore for roadway support parameters and reasonable manner, as the actual construction of the pre-preparation and reference.
引文
[1] Johson.R.Aand Schweitzer.Mining at Ultral-depth,Evaluation of Aternatives,Proc.2nd North AM.Roch.Mech.Symp.NARM’96,Montreal,1996:359-366.
    [2]冯夏庭,王泳嘉.深部开采诱发的岩爆及其防治策略的研究进展[J].中国矿业,1998,7(5):42-45.
    [3]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994,5.
    [4]郭然,潘长良,于润沧.有岩爆倾向硬岩矿床采矿理论与技术[M].北京:冶金工业出版社,2003.
    [5]翼贞文,王怀新等.深井巷道围岩变形破坏规律及其控制[J].煤炭工程,2004,(2):32-34.
    [6]付国帐.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3):304-310.
    [7]钱七虎.非线性岩石力学进展一探部岩体力学的若干问题[J].中国岩石力学与工程学会主编,第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004,10-17.
    [8]翟新献,李化敏.深井软岩巷道围岩变形特性的研究[J].煤炭学报,1995,4(5)24-26.
    [9]靖洪文.深部巷道破裂围岩位移分析及应用[J].岩土力学,徐州:中国矿业大学,2001,4.
    [10]潘一山,李忠华等.我国冲击地压分布类型机理及防治研究[J].岩石力学与工程学报,2003,22( 11):1884-1851.
    [11] Diering D.H,Tunnels under pressure in an ultra-deep wifwatersrand Gold Mine ,The journal of the south African institute of mining and metallurgy,October,2000:319-324.
    [12] Malan D.F,and basson F.R.P.Ultral-Deep mining:the increased potential for squeezing conditions the journal of the south African institution of mining and metallurgy,November/December,1998:353-362.
    [13]周维垣.高等岩石力学[M].北京:水利水电出版社,1990.
    [14]刘文岗,赵毅鑫等.深部巷道锚杆支护围岩稳定性研究[J].煤炭科学技术,2004,32(1):28-31.
    [15]徐风毅,张永海.深井软岩巷道矿压显现与支护[J].井巷地压与支护,1993,4(2):35-40.
    [16]杜计平,张先尘等.煤矿深井采场矿压显现及其控制特点[J].中国矿业大学学报,2000,2 9( l):82-84.
    [17]李全生.我国淤矿开采技术发展的方向探讨[J].中国煤炭,2003,23(1):30-32.
    [18]郑颖人.地下工程锚喷支护设计指南[M].中国铁道出版社,1988.
    [19]于学馥,郑颖人,刘怀恒.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983.
    [20]同济大学重庆建筑工程学院编.岩体力学[M].北京:中国建幼口二业出版社,1981.
    [21]李洪志.中国煤矿膨胀型软岩力学化学行为及支护对策研究[D].中国矿业大学(北京)博士论文,1995.
    [22]李世平.岩石力学简明教程[M].徐州:中国矿院出版社,1986.
    [23] NA尤尔钦科用能量理论计算锚杆支架参数.煤矿掘进技术译文集一锚杆支护[M].北京:煤炭工业出版社,1976.
    [24] Fine J.辛洪波译.有限元法在岩石力学中的应用[M].北京:冶金工业出版社,1979.
    [25]陈宗基.中国土力学岩体力学中若千重要问题的看法[J].岩石力学与工程学报,1963,9(5):127-132.
    [26]陈宗基.地下巷道长期稳定性的力学问题[M].岩石力学与工程学报,1982,2(1):86-92.
    [27]于学馥,乔端.轴变论和围岩稳定轴比规律[J].有色金属,1981,2(3):47-51.
    [28]冯豫.我国软岩巷道支护的研究[J].矿山压力与顶板管理,1990,24(2):67-72.
    [29]陆家良.软岩巷道支护原则及支护方法[J].软岩工程,1990,17(1):93-81.
    [30]郑雨天.关于软岩巷道地压与支护的基本观点[J].软岩巷道掘进与支护论文集,1985,5.
    [31]朱效嘉.锚杆支护理论进展[J].光爆锚喷,1996,12(1):17-21.
    [32]谢和平,周宏伟.FLAC在煤矿开采沉陷预测中的应用及其对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [33]董方庭.巷道围岩松动圈支护理论[J].锚杆支护,1997,9(1):7-12.
    [34]董方庭.巷道围岩松动圈支护理论及其应用技术[M].北京:煤炭工业出版社,2001.
    [35] Vagenas N. Dispatch control of a fleet of remote controlled automatic load-haul-dump vehicles in underground mines[J]. International Journal of Production Research, 1991, 29(11):2347-2363.
    [36] Krisnamurthy, Batha, Karwan. Developing conflict-free routes for automated guided vehicle[J]. Operations Research, 1993, 4(6):1077-1090.
    [37] J. R. Sturgul. Discrete mine system simulation in the United States[J]. International Journal of Surface Mining, Reclamation and Environment, 1999, 13(2):37-41.
    [38] G. N. Panagiotou. Discrete-mine system simulation in Europe[J]. International Journal of Surface Mining, Reclamation and Environment, 1999, 13(2):43-46.
    [39]薛顺勋,聂国光,姜光杰等.软岩巷道支护指南[M].煤炭工业出版社,2002.
    [40]尹传理,李化敏.我国煤矿深部开采问题探讨[M].煤矿设计,1998,(8):7-11.
    [41]李仲学,赵文广.再谈国外系统模拟技术及其在矿业中应用的新进展[J].国外金属矿山,2000,3:51-56.
    [42]杨成林,周科平,杨念哥等.地下矿山运输系统建模与仿真[J].数学的实践与认识,2007,37(23):26-30.
    [43]周科平,郭明明,杨念哥等.地下矿山开拓运输VR仿真系统研究[J].计算机系统应用,2008,(11):6-10.
    [44]张晓霞.地下矿铁路运输系统计算机模拟[J].中国矿业,2000,9(49):579-582.
    [45]李静.计算机数字模拟技术在铜绿山矿地下运输系统中的应用[D].武汉:武汉理工大学,2003.
    [46]古德生.地下金属矿采矿科学技术的发展趋势[J].黄金,2004,25(1):18-22.
    [47]宋厚冰,蔡远利.交通系统计算机仿真研究综述[J].计算机仿真,2004,21(3):102-104.
    [48]刘勇,王德才,冯正超.离散事件仿真建模与仿真策略[J].西南师范大学学报(自然科学版).2005,30(6):1019-1025.
    [49] Johnslon J C, Einstein H H. A Survey of mining associated seismicity[J]. Proceedings, 2nd International Symposium on Rock bursts and Seismicity in Mines, Minneapolis, Minnesota, 1988, Fairhurst, Charles (Editor), A A Balkema, Rotterdam, Netherlands,1990:121-127.
    [50]何满朝,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [51] Brady B H G, Brown E T. Energy changes and stability in underground mining design application of boundary element methods[M]. IMM, 1981.61-67.
    [52] Brady B H G, Brown E T.地下采矿岩石力学[M].冯树仁译.北京:煤炭工业出版社,1990.
    [53] Hoek E, Brown E T. Underground Excavation in Rock[M]. London:Institute of Mining and Metallurgy, 1980.
    [54]李悼芬,王可钧.高水平地应力对岩石工程的影响[J].岩石力学与工程学报,1996,15(1):26-31.
    [55]唐宝庆,曹平.岩爆研究现状的分析[J].湖南有色金属,1996,12(l):7-10.
    [56]李庶林.岩爆倾向性的动态破坏实验研究[J].辽宁工程技术大学学报(自然科学版),2001,20(4):436-438.
    [57]潘一山,章梦涛,李国臻.稳定性动力准则的圆形洞室岩爆分析[J].岩土工程学报,1993,15(5):59-66.
    [58]潘一山,章梦涛,李国臻.洞室岩爆的尖角型突变模型[J].应用数学和力学,1995(10): 893-900.
    [59] Ortlepp W D. Grouted rock-studs as rockburst support[J]. Journal of the south institute of mining and metallurgy, 1994, 94(2):47-63.
    [60]周瑞忠.岩爆发生的规律和断裂力学机理分析[J].岩土工程学报,1995,17(6):111-117.
    [61]周卫滨.苍岭隧道岩爆预测和防治研究[D].杭州:浙江大学,2005:1-2.
    [62]谭以安.岩爆形成机理研究[J].水文地质工程地质,1989(1):34-38.
    [63]徐林生,王兰生.二郎山公路隧道岩爆岩石力学试验研究[J].公路隧道,2000(4):1-3.
    [64]缪晓军,吴继敏,李景波.圆形洞室岩爆成因分析及其地质灾害研究[J].河海大学学报(自然科学版),2002,30(5):37-40.
    [65] Zubelewicz A, Mroz Z. Numerical simulation of rock burst process treated as problems of dynamic instability[J]. Rock Mechanics and Rock Engineering, 1983, 16: 253-274.
    [66] Mueller W. Numerical simulation of rock bursts[J]. Mining Science & Technology, 1991 (12): 27-42.
    [67] Cook N W, et al. Rock mechanics applied to rockburst[J].T S Afr. Ins. Min. Metall, May, 1966.
    [68]张志强,关宝树,翁汉民.岩爆发生条件的基本分析[J].铁道学报,1998,20(4):82-85.
    [69]单治钢.锦屏二级水电站引水隧洞岩爆初步研究[C]//第三届全国岩石动力学学术会议论文集.武汉:武汉测绘科技大学出版社,1992:523-537.
    [70]李庶林,冯夏庭,王泳嘉,等.深井硬岩岩爆倾向性评价[J].东北大学学报(自然科学版),2001,22(1):60-63.
    [71] Kidybinski A. Bursting liability indices of coal[J]. Rock Mech. Min. Sci & Geomech. Abstr., 1981, 18(2): 295-304.
    [72]蔡嗣经,张禄华,周文略.深井硬岩矿山岩爆灾害预测研究[J].中国安全生产科学技术,2005,1(5):17-20.
    [73] Singh S P. Assessment of the rockburst proneness in hard rock mines[C]//Pro. 5th Conf. on Grou. Contr. in Min.. Huntington: West Virginia University Press, 1986:242-248.
    [74] Singh S P. Burst energy release index[J].Rock Mechanics and Rock Engineering, 1988, 21(1):149-155.
    [75]潘一山,李忠华.矿井岩石结构稳定性的解析分析[C]//全国固体力学学术会议论文集.大连:大连理工大学出版社,2002.
    [76]谢和平.分形-岩石力学导论[M].北京:科学出版社,1997:249-261.
    [77]徐林生,王兰生.二郎山公路隧道岩爆特征与防治措施研究[J].中国公路学报,2003,16(1):74-76.
    [78]冯夏庭,王泳嘉.深部开采诱发的岩爆及其防治策略的研究进展[J].中国矿业,1998,7 (5):42-45.
    [79]刘建辉,李化敏.电磁辐射法在岩爆监测中的应用[J].矿业研究与开发,2006,26(1): 69-73.
    [80] Corner B. Seismic research associated with deep level mining: rock burst prediction and vibration damage to buildings in South Africa[J]. Geophysics, 1985(50): 2914-2915.
    [81] Senfaute G, Chambon C, Bigarre P, et al. Spatial distribution of mining tremors and the relationship to rockburst hazard[J]. Pure and Applied Geophysics, 1997, 150:451-459.
    [82]唐礼忠,潘长良,杨承祥,等.冬瓜山铜矿微震监测系统及其应用研究[J].金属矿山,2006(10):41-44.
    [83]李慎刚.动力扰动诱发矿柱岩爆的数值模拟研究[D].沈阳:东北大学,2005:16-17.
    [84] Bieniaski Z T. Engineering rock mass classification: a complete manual for engineers and geologists in mining, civil, and petroleum engineers[M]. New York: Wiley, 1989.
    [85] Barton N. Some new Q-value correlations to assist in site characterization and tunnel design[J]. Int. J. Rock Mech. and Mining Sci., 2002, 39(2): 185-216.
    [86] Xu, M.G., Yao, G.H., Ouyang, Z.H., et al. Investigation of comprehensive rockburst prediction during deep mining[C]//International Young Scholar Symposium on Rock Mechanics 2008, A. A. Balkema Press, 2008:851-856.
    [87]梁强新.高地应力判别和岩爆预测方法[J].西部探矿工程,2006,(9):284-285.
    [88]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [89]彭振斌,方建勤,颜荣贵,等.硬岩矿山深井岩爆预测方法的研究[J].矿冶工程,2003,23(5):8-11.
    [90]曹阳,杨伟忠,邓金灿,等.大厂矿区深井岩爆预测[J].矿冶,2002,11(3):1-6.
    [91]康德安,刘加权.红透山铜矿深部地压显现特点及活动规律[J].有色矿冶,1998(1):15-19.
    [92]颜荣贵,曹阳,方建勤,等.地下矿山开采地质灾害控制的创新研究[J].2004,56(5):23-26.
    [93]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002:219-228.
    [94]伍佑伦,王剑.程潮铁矿深部开采中围岩破坏规律的数值分析[C]//第七届全国采矿学术论文集.长沙:长沙矿山研究院,2006:295-298.
    [95] Blake W. Design considerations for seismic monitoring systems[J].In: N C Gay, E H Wainwright, eds. Rockbursts and Seismicity in Mines. Rotterdam: balkema, 1984.
    [96] Kijko A, Sciocatti M. Optimal spatial distribution of seismic station in mines[J].Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1995, 32(6):607-615.
    [97] K. Vlaeminck, S. Van Hoecke, F. De Turck, et al. Design and implementation of an application server load balancing architecture supporting the end-to-end provisioning of value-added services[C]//Networks 2004-11th International Telecommunications Network Strategy and Planning Symposium, 2004:345-350.
    [98] Dong Tang, Dileep Kumar, Sreeram Duvur, et al. Availability measurement and modeling for an application server[C]//Proceeding of the International Conference on Dependable System and Networks, 2004:669-678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700