用户名: 密码: 验证码:
高速铁路隧道支护与围岩作用关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:我国铁路隧道建设取得了举世瞩目的成就,进入“十一五”期间,一个以客运专线为重点的铁路网建设已经全面展开,隧道修建数量有了突飞猛进的增长。未来10年我国要修建的铁路隧道,其总长度将超过我国已建成的铁路隧道长度总和。在此期间,隧道建设规模与隧道设计理论不完善之间的矛盾日益突出,以经验设计为主的隧道设计方法面临着巨大的挑战,隧道设计中存在的诸多困惑已经严重制约了隧道建设的科学化、精细化、规范化。针对这一系列问题,论文对隧道结构体系变形控制、围岩结构界面形态、支护围岩作用关系等进行了系统深入研究,取得了以下主要研究成果:
     (1)针对隧道工程特点,建立起包括“围岩-注浆圈-初期支护-二次衬砌”在内的隧道结构体系理论模型。以变形控制为核心,对隧道结构体系中围岩变形的时空特点以及支护体系中各个子构件的变形特点和力学特性进行系统研究,在此基础上提出复合衬砌结构安全性评价方法。
     (2)采用理论分析,建立隧道围岩结构界面分区模型。基于弹塑性理论,在大量计算分析的基础上提出隧道围岩结构界面的5种分区模式并给出相应的判断方法;在围岩结构界面分区的基础上,针对Ⅱ区和Ⅲ区进行研究,通过数值分析,针对局部化现象提出剪切滑移是这两种分区模式下的主要破坏形态;通过理论分析,给出楔形滑移体位态的计算方法,并给出三维情况下滑裂面的可能形态。
     (3)采用数值模拟,分析得到围岩结构界面细观扩展过程。通过PFC模拟隧道开挖后围岩裂隙的细观扩展过程,为了更方便的采用PFC进行分析,通过灰关联分析建立围岩宏观力学参数与PFC细观参数之间的关联序列,进而判断颗粒细观参数改变对宏观力学参数的影响程度和影响规律,并建立细观参数和宏观参数对应关系的神经元网络进而实现对宏观力学参数的标定。
     (4)采用室内模型试验,得到围岩渐进破坏的特点和规律。主持研发、设计了隧道开挖模拟试验系统,该系统由试验台架、接触监测系统、非接触监测系统三部分组成,分别采用粘性相似材料和砂性相似材料对隧道开挖后围岩的破坏特点进行相似试验研究,提出粘性材料围岩具有先楔形破坏后松动塌落的二次破坏特点,对砂性材料围岩的破坏机理和渐进破坏规律进行了分析。
     (5)针对我国高速铁路隧道的具体情况,从变形控制的角度出发得到支护、围岩的变形特性。考虑Ⅳ、Ⅴ级围岩典型力学参数组合,给出静水压力和非静水压力下围岩特性曲线,得到喷射混凝土、格栅钢架、型钢钢架的支护特性曲线,采用ANSYS分析得到格栅混凝土和型钢混凝土的变形特性和破坏规律,采用FLAC3D分析得到锚杆控制围岩变形的效果。
     (6)依托多座高速铁路隧道工程,采用现场监测得到二衬的受力特点。指出二衬最不利受力状态是在其拆模时,而且二衬所受的荷载实际上是初期支护传递过来的围岩形变压力,与规范上采用松散体高度计算得到的松动压力是不同的;根据监测数据分析,不同围岩级别条件下,实测荷载作用下二衬安全系数均能够满足安全性要求,并且均大于规范荷载作用下的安全系数;由于二衬在初支稳定后施作,不同围岩级别条件下,初支、二衬间的接触压力的大小大致相仿。
ABSTRACT:Railway tunnel construction has achieved great achievements in our country. During the 11th Five-Year Plan period (2006-2010), railway network construction which focuses on PDL (Passenger Dedicated Lines) is in a comprehensive way, and the number of railway tunnels has been growing rapidly. In the next 10 years, the length of railway tunnel to be built is more than the total length of railway tunnel that are completed. Meanwhile, the contradiction between tunnel construction scale and tunnel construction technology is becoming increasingly conspicuous. The confusion exists in tunnel design has seriously constrained the scientification, precision and standardization in tunnel construction. In response to this series of contradictions, systematic studies are made on tunnel deformation control, surrounding rock failure modes, rock-support interaction in this paper and yield the following key findings:
     (1) Analysis of the mechanical characteristics of tunnel structure system:The concept of the tunnel structure system is put forward, and the interaction between surrounding rock and tunnel support is deeply studied. According to the principle of tunnel deformation control, the deformation features of each sub components in this system are studied. Based on these analyses, theoretical model of the tunnel structure system which includes "surrounding rock-grouting circle-preliminary lining-secondary lining" and safety evaluation method for tunnel structure system are set up.
     (2) Theoretical analysis on surrounding rock failure modes:Based on elastic-plastic theory,5 failure zone modes of surrounding rock as well as the definition of each mode are given. It reveals that the V-shaped shearing wedge block is the major failure mode for zoneⅡand III. According to theoretical analysis, the analytical method for shearing wedge block is given and the possible failure modes in three-dimensional state are also proposed.
     (3) Micro-mechanism analysis using PFC:PFC is adopted to simulate the failure process of tunnel surrounding rock that involves the initiation, growth and accumulation of micro-cracks. So as to use PFC in a better way, gray correlation analysis is introduced to establish the relationship between macro mechanical parameters of rock and micro parameters used in PFC. Neural network is also utilized to achieve the calibration of macro mechanical parameters for surrounding rock.
     (4) Laboratory study on tunnel excavation:Barite powder, quartz sand and vaseline are selected as the components of similar material based on investigation and research. A large number of laboratory tests are made to study the mechanical properties and strength properties of similar material that affected by similar ratio. The relationship between similar material and geotechnical material is finally established according to similar ratio. Tunnel excavation laboratory simulation system is designed under the instruction of author. The system consists of test platform, contact monitoring system and non-contact monitoring system. Cohesive similar material and sandiness similar material are used to simulate different kinds of surrounding rock, connected with these two materials two kinds of failure modes are achieved. Damage mechanism and progressive failure characteristics of these two failure modes are also elaborated.
     (5) Study on the interaction between preliminary lining and surrounding rock: According to the specific situation of PDL tunnel in China, ground response curve is studied under different mechanical parameters of surrounding rock and different stress state. Support characteristic curves of shotcrete, grid steel frame and section steel frame are analyzed in a theoretical way. The deformation characteristics and failure regularity of grid steel concrete and section steel concrete are studied using ANSYS software. FLAC3D software is also used to analyze the ability of rockbolt in deformation control of surrounding rock
     (6) Study on the interaction between preliminary lining and secondary lining:4 typical PDL tunnels are selected to monitor the contact pressure between preliminary lining and secondary lining. Combined with on-site monitoring, time-space regulations on contact force are studied. It reveals that the most unfavorable stress state for secondary lining is in the moment when the tunnel lining trolley removes. The stress acts on secondary lining is actually deformation pressure which is totally different from loose pressure prescribed in China Tunnel Standard. The safety factor of secondary lining under measured load is higher than that under standard pressure and it satisfies safety requirements. The measured contact force is roughly in a same level under different geological conditions, so it is possible to reduce the thickness of secondary lining as well as reinforcement.
引文
[1]Hoek E, Brown E T. Underground excavations in rock[M]. Institution of Mining and Metallurgy, 1980.
    [2]Bieniawski Z T. Rock mechanics design in mining and tunneling[M]. AA Balkema,1984.
    [3]Bieniawski Z T. Engineering rock mass classifications:a complete manual for engineers and geologists in mining, civil, and petroleum engineering[M]. Wiley-Interscience,1989.
    [4]Barton N, Grimstad E. Rock mass conditions dictate choice between NMT and NATM[C]. Elsevier, 1995.
    [5]Muller L. Removing Misconceptions on the New Austrian Tunnelling Method[J]. Tunnels Tunnelling.1978,10:29-32.
    [6]Lunardi P. Design and construction of tunnels:analysis of controlled deformation in rocks and soils (ADECO-RS)[M]. Springer Verlag,2008.
    [7]李世辉.隧道支护设计新论——典型类比分析方法应用和理论[M].北京:科学出版社,1999.
    [8]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995.
    [9]Palmstrom A, Stille H. Ground behaviour and rock engineering tools for underground excavations[J]. Tunnelling and Underground Space Technology.2007,22(4):363-376.
    [10]Hewett B, Johannesson S. Shield and compressed air tunneling[M]. McGraw-Hill book company, inc.,1922.
    [11]Bnerley G S. The performance during construction of the liner for a large, shallow underground opening in rock[D]. Urbana-Champaign:University of Illinois,1975.
    [12]Oreste P P. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports[J]. Tunnelling and Underground Space Technology.2007,22(2):185-205.
    [13]张厚美,吕国梁.圆形隧道衬砌结构计算模型综述[J].世界隧道.2000(2):1-6.
    [14]Duddeck H, Erdmann J. Structural design models for tunnels[C]. Brighton:Elsevier,1983.
    [15]Schmidt B. Tunnel Lining Design-Do the Theories Work?[C]. Perth:Elsevier,1984.
    [16]Reyes S F, Deere D U. Elastic-plastic analysis of underground openings by the finite element method[C].1966.
    [17]Zienkiewicz O C, Valliappan S, King I P. Stress analysis of rock as a'no tension'material[J]. Geotechnique.1968,18(1):56-66.
    [18]Wittke W. Analysis for underground openings in jointed rock[Z]. McGraw-Hill Book Company, 1977.
    [19]Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique.1975,25(4):671-689.
    [20]张玉军,刘谊平.层状岩体的各向异性——弹塑性三维有限元分析[J].焦作大学学报.2003,17(1):36-41.
    [21]苏国韶,冯夏庭,江权,等.高地应力下大型地下洞室群开挖顺序与支护参数组合优化的智能方法[J].岩石力学与工程学报.2007,26(A01):2800-2808.
    [22]陈方方,李宁,张志强.地下洞室围岩弹塑性仿真反演分析方法[J].西安科技大学学报.2007,27(2):228-231,243页.
    [23]汪易森,李小群.地下洞室群围岩弹塑性有限元分析及施工优化[J].水力发电.2001(6):35-38.
    [24]阮怀宁.地下洞室复杂围岸弹塑性解析解初探[J].河海大学学报:自然科学版.1993,21(5):10-17.
    [25]刘建华.岩体力学行为拉格朗日分析方法研究与工程应用[D].山东大学,2006.
    [26]聂卫平,徐卫亚,周先齐.基于三维弹塑性有限元的洞室稳定性参数敏感性灰关联分析[J].岩石力学与工程学报.2009,28(A02):3885-3893.
    [27]倪绍虎,肖明.层状岩体的破坏特征及其迭代计算方法[J].水利学报.2009(7):798-804.
    [28]胡夏嵩,白国伟,赵法锁.低地应力区地下洞室开挖后围岩应力数值模拟[J].长安大学学报:自然科学版.2005,25(6):57-61.
    [29]周家文,徐卫亚,李明卫,等.岩石应变软化模型在深埋隧洞数值分析中的应用[J].岩石力学与工程学报.2009(6):1116-1127.
    [30]胡夏嵩,赵法锁.低地应力区地下洞室拱顶围岩拉应力有限元数值模拟研究[J].西安科技大学学报.2005,25(1):5-8.
    [31]周世良,胡晓,王江.无限元在岩土工程数值分析中的应用[J].重庆交通学院学报.2004,23(B12):61-64.
    [32]胡本雄,刘东燕.各向异性岩体内地下洞室广义平面问题的边界元分析[J].地下空间.1997.
    17(1):9-19.[33]刘洪洲.华蓥山隧道围岩位移与边界元计算[J].公路隧道.2000(2):7-11.
    [34]魏龙海,王明年.碎石土隧道自稳性的三维离散元分析[J].岩土力学.2008,29(7):1853-1860.
    [35]高磊,寇佳伟,方建卫.离散元数值模拟在公路隧道围岩变形破坏机制研究中的应用[J].襄樊学院学报.2009,30(2):41-46.
    [36]汪成兵,朱合华.隧道塌方机制及其影响因素离散元模拟[J].岩土工程学报.2008,30(3):450-456.
    [37]杨成永,刘维宁.隧道素砼衬砌结构的极限状态[J].北方交通大学学报.1999,23(4):53-55.
    [38]景诗庭,宋玉香.地下结构的概率极限状态设计[J].石家庄铁道学院学报.2000,13(3):13-17.
    [39]赵万强.隧道衬砌结构可靠性设计浅论[J].铁道标准设计.2002(12):41-45.
    [40]杨林德,萧蕤.复合支护的可靠度分析[J].地下空间.2003,23(1):45-47.
    [41]Oreste P. A probabilistic design approach for tunnel supports[J]. Computers and Geotechnics.2005, 32(7):520-534.
    [42]Su Y, Zhang P, Zhao M. Improved response surface method and its application in stability reliability degree analysis of tunnel surrounding rock[J]. Journal of Central South University of Technology.2007,14(6):870-876.
    [43]Fraldi M, Guarracino F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences. 2009,47(2):216-223.
    [44]Yin L, Yang W. Topology optimization to prevent tunnel heaves under different stress biaxialities[J]. International Journal for Numerical and Analytical Methods in Geomechanics.2000,24(9): 783-792.
    [45]彭立敏,施成华,等.隧道钢筋混凝土结构的优化设计模型及应用[J].中国公路学报.2001,14(2):71-74.
    [46]Tonon F, Mammino A, Bernardini A. Multiobjective optimization under uncertainty in tunneling: Application to the design of tunnel support/reinforcement with case histories[J]. Tunnelling and Underground Space Technology.2002,17(1):33-54.
    [47]刘尧军,高桂凤,冯卫星.大跨公路隧道断面优化设计研究[J].辽宁交通科技.2004(2):48-50.
    [48]Volkmann G, Schubert W. Optimization of excavation and support in pipe roof supported tunnel sections[J]. Tunnelling and Underground Space Technology.2006,23(2):120-127.
    [49]Pirez-Romero J, Oteo C S, de la Fuente P. Design and optimisation of the lining of a tunnel in the presence of expansive clay levels[J]. Tunnelling and Underground Space Technology.2007,28(5): 260-268.
    [50]王琪,韩广禄.地铁暗挖隧道衬砌受力的优化设计[J].都市快轨交通.2007,20(4):44-47.
    [51]雷安定,王昕.双连拱隧道的优化设计与施工[J].现代城市轨道交通.2008(3):39-40.
    [52]Holicks M. Probabilistic risk optimization of road tunnels[J]. Structural Safety.2009,17(2): 145-152.
    [53]Zhou C, Wang P, Lei Y, et al. Optimization on cut-hole of mining tunnel excavation [J]. Mining Science and Technology (China).2009,31(4):171-179.
    [54]蔡新,李洪煊,武颖利,等.水下隧道结构优化设计[J].河海大学学报:自然科学版.2009,37(6):665-668.
    [55]Basarir H. Engineering geological studies and tunnel support design at Sulakyurt dam site, Turkey[J]. Engineering Geology.2006,86(4):225-237.
    [56]赵尚毅,郑颖人,宋雅坤,等.地下隧道衬砌结构内力计算方法探讨[J].后勤工程学院学报.2007,23(4):29-33.
    [57]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [58]Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics and Rock Engineering.1974,6(4):189-236.
    [59]Bieniawski Z T. Geomechanics classification of rock masses and its application in tunneling[Z]. Washington DC:1974:2,27-32.
    [60]Cai M, Kaiser P K, Uno H, et al. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences.2004,41(1):3-19.
    [61]Goel R K, Jethwa J L, Paithankar A G. Indian experiences with Q and RMR systems[J]. Tunneling and Underground Space Technology.1995,10(1):97-109.
    [62]Palmstr M A. RMi-a rock mass characterization system for rock engineering purposes[D]. Norway:University of Oslo,1995.
    [63]Palmstrom A, Broch E. Use and misuse of rock mass classification systems with particular reference to the Q-system[J]. Tunnelling and Underground Space Technology.2006,21(6):575-593.
    [64]Sapigni M, La B G, Ghirotti M. Engineering geological characterization and comparison of predicted and measured deformations of a cavern in the Italian Alps[J]. Engineering Geology.2003, 69(1-2):47-62.
    [65]Singh B, Villadkar M N, Samadhiya N K, et al. Rock mass strength parameters mobilised in tunnels[J]. Tunnelling and Underground Space Technology.1997,12(1):47-54.
    [66]何水源.关于岩体分级专家系统的几个问题探讨[J].重庆建筑大学学报.1998,20(4):51-57.
    [67]田军.基于模糊神经网络的隧道围岩分级系统[J].湖南交通科技.2007,33(4):104-107.
    [68]史秀志,周健.隧道围岩分级判别的未确知均值聚类模型[J].土木建筑与环境工程.2009,31(2):62-67,84页.
    [69]Schmid H. Statische Probleme des Tunnel-und Druckstollenbaues und ihre gegenseitigen Beziehungen[M]. Berlin:Springer,1926.
    [70]Muir Wood A M. The circular tunnel in elastic ground[J]. Geotechnique.1975,25(1):115-127.
    [71]Einstein H H, Schwartz C W. Simplified analysis for tunnel supports[J]. Journal of the Geotechnical Engineering Division.1979,105(4):499-518.
    [72]Carranza-Torres C, Fairhurst C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology.2000,15(2):187-213.
    [73]Oreste P P. Analysis of structural interaction in tunnels using the covergence-confinement approach[J]. Tunnelling and Underground Space Technology.2003,18(4):347-363.
    [74]Henry Wong D S D D. Convergence-confinement analysis of a bolt-supported tunnel using the homogenization method[J]. Canadian Geotechnical Journal/Revue Canadienne de Geotechnique.2006: 462-483.
    [75]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993:161.
    [76]关宝树.隧道工程设计要点集[M].人民交通出版社,2003:507.
    [77]樊有望,徐光黎,吴张中.基于Mohr-Coulomb准则的排水隧洞围岩稳定性有限元分析[J].岩土工程界.2009(01):62-63.
    [78]高科,李夕兵.等效数值法在围岩稳定性评价中的应用[J].南华大学学报(自然科学版).2009(02):76-78.
    [79]刘高.高地应力区结构性流变围岩稳定性研究[D].成都理工大学;,2002.
    [80]刘高,李新召,梁昌玉.围岩动态演化与块体稳定性分析[J].岩土力学.2009(06):1741-1746.
    [81]孙有为,薄景山,孙超.地下洞室松动圈的研究方法与现状[J].防灾科技学院学报.2009(02):1640-1645.
    [82]谭代明,漆泰岳,莫阳春.考虑时空效应的软弱围岩隧道施工稳定性研究[J].水文地质工程地质.2009(04):1741-1746.
    [83]汤福平,肖明,张雨霆.基于破坏接近度的围岩稳定性研究[J].中国农村水利水电.2009(04):3-5.
    [84]徐干成,乔春生,刘保国,等.富溪双连拱隧道围岩强度及稳定性评价[J].岩土工程学报.2009(02):22-24.
    [85]Attewell P B, Yeates J, Selby A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. Glasgow,1986.
    [86]Carranza-Torres C, Fairhurst C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology.2000,15(2):187-213.
    [87]Farrokh E, Mortazavi A, Shamsi G. Evaluation of ground convergence and squeezing potential in the TBM driven Ghomroud tunnel project[J]. Tunnelling and Underground Space Technology.2006, 21(5):504-510.
    [88]Son M, Cording E J. Ground-liner interaction in rock tunneling[J]. Tunnelling and Underground Space Technology.2007,22(1):1-9.
    [89]Unlu T, Gercek H. Effect of Poisson's ratio on the normalized radial displacements occurring around the face of a circular tunnel[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research.2003,18(5):547-553.
    [90]Jeon J S, Martin C D, Chan D H, et al. Predicting ground conditions ahead of the tunnel face by vector orientation analysis[J]. Tunnelling and Underground Space Technology.2005,20(4):344-355.
    [91]Lunardi P. The Influence of the Rigidity of the of Tunnel Advance Core on the Safety of Tunnel Excavations[J]. TUNNEL-GUTERSLOH-.1998(8):32-44.
    [92]Panet M. Understanding deformations in tunnels[J]. Comprehensive rock engineering principles, practice and projects.1993,1:663-690.
    [93]Corbetta F, Bernaud D, Nguyen-Minh D. Contributiona la methode convergence-confinement par le principe de la similitude[J]. Revue Fran aise de Geotechnique.1991,54:5-11.
    [94]Panet M. Calcul desTunnelspar la Methode Convergence-Confinement[J]. Paris:Presses de 1'Ecole Nationale de Ponts et Chausses.1995.
    [95]Carranza-Torres C, Fairhurst C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunneling and Underground Space Technology.2000,15(2):187-213.
    [96]Itasca C G. FLAC3D Fast Lagrangian Analysis of continua in 3 dimensions[DB/CD].2002.
    [97]Salencon J. Contraction quasi-statique d'une cavite a symetrie spherique ou cylindrique dans un milieu elastoplastique[C].1969.
    [98]孙钧,汪炳鑑.地下结构有限元法解析[M].上海:同济大学出版社,1988:440.
    [99]Curran J H, Hammah R E, Inc R, et al. A two-dimensional approach for designing tunnel support in weak rock[C].2003.
    [100]Inc R. Phase2 v6.0 Two-Dimensional Finite Element Slope Stability Analysis[DB/CD].2005.
    [101]Cai M. Influence of stress path on tunnel excavation response-Numerical tool selection and modeling strategy M. Caia,[J]. Tunnelling and Underground Space Technology.2008,23(6):618-628.
    [102]Moller S C, Vermeer P A. On numerical simulation of tunnel installation[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research.2008,23(4):461-475.
    [103]徐干成,白洪才,郑颖人,等.地下工程支护结构[Ml.中国水利水电出版社,2001.
    [104]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学.2002(05):627-631.[105] Pottler R. Time-dependent rock-shotcrete interaction. A numerical shortcut[J]. Computers and Geotechnics.1990,9(3):149-169.
    [106]黄美群.软土隧道支护设计中常见问题探讨[J].岩土工程界.2005(06):71-74.
    [107]尹旅超,朱振宏,李玉珍,等.日本盾构隧道新技术[M].武汉:华中理工大学出版社,1999.
    [108]舒晓东.地下洞室不良地质段常用施工方法综述[J].四川水力发电.2008(02):37-40.
    [109]刘得旭,程杰.隧道及地下工程中的预支护技术综述[J].山西建筑.2007(26):313-314.
    [110]房倩,张顶立,黄明琦.基于连续介质模型的海底隧道渗流问题分析[J].岩石力学与工程学报.2007(S2):3776-3784.
    [111]刘长武,陆士良.水泥注浆加固对工程岩体的作用与影响[J].中国矿业大学学报.2000(05):12-16.
    [112]张成平,张顶立,王梦恕,等.高水压富水区隧道限排衬砌注浆圈合理参数研究[J].岩石力学与工程学报.2007(11):2270-2276.
    [113]张农,侯朝炯,陈庆敏,等.岩石破坏后的注浆固结体的力学性能[J].岩土力学.1998(03):50-53.
    [114]徐之纶.弹性力学简明教程[M].1999.
    [115]陈明祥.弹塑性力学[M].北京:科学出版社,2007.
    [116]Jiang Y, Yoneda H, Tanabashi Y. Theoretical estimation of loosening pressure on tunnels in soft rocks Y. Jiang,, a, H. Yonedab and Y. Tanabashia[J]. Tunnelling and Underground Space Technology. 2001,16(2):99-105.
    [117]Singh B, Goel R. Tunnelling in Weak Rocks[M]. ELSEVIER,2006:512.
    [118]中国百科大辞典编撰委员会.中国百科大辞典[M].中国大百科全书出版社,2000.
    [119]建设部.岩土工程勘察规范(GB50021-2001)[S].2002:2002.
    [120]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[S].北京:科学出版社,1984.
    [121]Kolymbas D. Tunnelling and Tunnel Mechanics[M]. Germany:Springer-Verlag Berlin Heidelberg, 2005.
    [122]Egger P. Design and construction aspects of deep tunnels (with particular emphasis on strain softening rocks)[J]. Tunnelling and Underground Space Technology.2000,15(4):403-408.
    [123]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展.2005(01):91-99.
    [124]江权.高地应力下硬岩弹脆塑性劣化本构模型与大型地下洞室群围岩稳定性分析[D].中国科学院研究生院(武汉岩土力学研究所),2007.
    [125]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [126]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报.1994(01):21-32.
    [127]张农,侯朝炯,杨米加,等.巷道围岩强度弱化规律及其应用[J].中国矿业大学学报.1999(02):35-37.
    [128]Hoek E, Brown E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences.1997,34(8):1165-1186.
    [129]严克强.不对称荷载作用下圆洞围岩塑性区的估算方法[J].岩土工程学报.1980(02):74-79.
    [130]魏符.对“不对称荷载作用下圆洞围岩塑性区的估算方法”的讨论意见[J].岩土工程学报.1982(01):116-118.
    [131]魏悦广.两向不等压作用下圆形巷道弹塑性分析摄动解[J].岩土工程学报.1990(04):11-20.
    [132]徐干成等编著.地下工程支护结构[M].2002.
    [133]李国琛,耶纳著M.塑性大应变微结构力学[M].科学出版社,1998:311.
    [134]Varas F, Alonso E, Alejano L R, et al. Study of bifurcation in the problem of unloading a circular excavation in a strain-softening material F. Varasa,, E. Alonsob,, L.R. Alejanob,, and G. Fdez.-ManCna,[J]. Tunnelling and Underground Space Technology.2005,20(4):311-322.
    [135]王忠昶.岩石类材料损伤局部化失稳及锚固的力学机制研究[D].大连理工大学;,2007.
    [136]Cundall P A. Numerical experiments on localization in frictional materials[J]. Archive of Applied Mechanics.1989,59(2):148-159.
    [137]Cundall P A, Strack O. Discrete numerical model for granular assemblies[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1979,16(4):47-65.
    [138]Itasca C G. PFC2D Particle Flow Code in Two Dimensions[DB/CD].2002.
    [139]Fakhimi A, Carvalho F, Ishida T, et al. Simulation of failure around a circular opening in rock[J]. International Journal of Rock Mechanics and Mining Sciences.2002,39(4):507-515.
    [140]Funatsu T, Hoshino T, Sawae H, et al. Numerical analysis to better understand the mechanism of the effects of ground supports and reinforcements on the stability of tunnels using the distinct element method[J]. Tunnelling and Underground Space Technology.2008,23(5):561-573.
    [141]罗勇,龚晓南,连峰.三维离散颗粒单元模拟无黏性土的工程力学性质[J].岩土工程学报.2008,30(2).
    [142]汪成兵,朱合华.隧道塌方机制及其影响因素离散元模拟[J].岩土工程学报.2008,30(3).
    [143]王连庆,高谦,王建国,等.自然崩落采矿法的颗粒流数值模拟[J].北京科技大学学报.2007,29(6).
    [144]周健,池永.颗粒流方法及PFC2D程序[J].岩土力学.2000,21(3):271-274.
    [145]周健,池毓蔚.砂土双轴试验的颗粒流模拟[J].岩土工程学报.2000,22(6):701-704.
    [146]朱焕春.PFC及其在矿山崩落开采研究中的应用[J].岩石力学与工程学报.2006(09):1927-1931.
    [147]唐晓松,郑颖人,叶海林.涉水岸坡稳定性影响参数的敏感性分析[J].后勤工程学院学报.2008(02):22-26.
    [148]苗胜军,张云,吴豪伟,等.巷道注浆加固围岩稳定参数敏感性分析[J].现代隧道技术.2008(01):16-20.
    [149]张少宏.黄土边坡稳定计算中参数的敏感性分析[J].水利与建筑工程学报.2003(03):40-42.
    [150]王亚军,张我华,吴昌瑜,等.三维各向异性随机渗流场参数敏感性分析[J].水利与建筑工程学报.2009(01):48-52.
    [151]刘思峰,堂耀国,方志耕.灰色系统理论及其应用(第三版)[M].北京:科学出版社,2004.
    [152]张清,宋家蓉.利用神经元网络预测岩石或岩石工程的力学性态[J].岩石力学与工程学报.1992(01):35-43.
    [153]王兴霞,李建林,邓华锋,等.BP神经网络在岩土工程中的应用[J].灾害与防治工程.2004(02):61-65.
    [154]陈维杰,高占凤.BP网络在岩土工程中的应用[J].石家庄铁路职业技术学院学报.2005(04):72-75.
    [155]王志亮,李筱艳,殷宗泽.遗传算法和改进的BP网络杂交法在岩土工程中应用[J].地下空间.2001(03):178-182.
    [156]黄永恒,曹平,汪亦显.基于BP神经网络的岩土工程预测模型研究[J].科技导报.2009(06):61-64.
    [157]Potyondy D, Autio J. Bonded-particle simulations of the in-situ failure test at Olkiluoto[J]. ROCK MECHANICS IN THE NATIONAL INTEREST, VOLS 1 AND 2.2001:1553-1560.
    [158]李贺,许江,尹光志.岩石断裂力学[M].重庆大学出版社,1988.
    [159]Bobet A. The initiation of secondary cracks in compression Antonio Bobet[J]. Engineering Fracture Mechanics.2000,66(2):187-219.
    [160]郭少华.岩石类材料压缩断裂的实验与理论研究[D].中南大学,2003.
    [161]张梅英,袁建新,李廷芥,等.单轴压缩过程中岩石变形破坏机理[J].岩石力学与工程学报.1998(01):1-8.
    [162]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [163]朱汉华,孙红月,杨建辉.公路隧道围岩稳定与支护技术[J].2007.
    [164]蒋树屏,刘洪洲,鲜学福.大跨度扁坦隧道动态施工的相似模拟与数值分析研究[J].岩石力学与工程学报.2000(05):567-572.
    [165]黄伦海,刘伟,刘新荣.单洞四车道公路隧道开挖的模型试验[J].地下空间.2004,24(04):465-469.
    [166]曾亚武,赵震英.地下洞室模型试验研究[J].岩石力学与工程学报.2001(S1):1745-1749.
    [167]来弘鹏,谢永利,杨晓华.公路隧道衬砌断面型式模型试验研究[J].岩土工程学报.2006,28(6):740-744.
    [168]Meguid M A, Saada O, Nunes M A, et al. Physical modeling of tunnels in soft ground:A review[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research.2008, 23(2):185-198.
    [169]Adachi T, Kimura M, Kishida K. Experimental study on the distribution of earth pressure and surface settlement through three-dimensional trapdoor tests[J]. Tunnelling and Underground Space Technology.2003,18(2-3):171-183.
    [170]Park S H, Adachi T. Laboratory model tests and FE analyses on tunneling in the unconsolidated ground with inclined layers[J]. Tunnelling and Underground Space Technology.2002,17(2):181-193.
    [171]李仲奎,卢达溶,中山元,等.三维模型试验新技术及其在大型地下洞群研究中的应用[J].岩石力学与工程学报.2003,22(9):1430-1436.
    [172]王汉鹏,李术才,张强勇,等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报.2006,25(9):1842-1847.
    [173]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [174]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994.
    [175]韩伯鲤,陈霞龄,宋一乐,等.岩体相似材料的研究[J].武汉水利电力大学学报.1997(02):7-10.
    [176]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报.2004(01):48-51.
    [177]张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报.2004(18):3157-3161.
    [178]黄戡,卿凇,张可能,等.水泥石膏相似材料的实验性研究[J].水泥技术.2003(05):24-26.
    [179]徐文胜,许迎年,王元汉,等.岩爆模拟材料的筛选试验研究[J].岩石力学与工程学报.2000(S1):873-877.
    [180]潘一山,章梦涛,王来贵,等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报.1997(04):49-56.
    [181]高家美,刘慎裕,王秀华,等.有裂隙的井巷围岩和混凝土喷层应力分布的光弹性模拟实验[J].河南理工大学学报(自然科学版).1984(01):35-44.
    [182]曹树刚.采场围岩复合拱力学结构探讨[J].重庆大学学报(自然科学版).1989(01):72-78.
    [183]郭文兵,李楠,王有凯.软岩巷道围岩应力分布规律光弹性模拟实验研究[J].煤炭学报.2002(06):596-600.
    [184]郭文兵,刘明举,李化敏,等.多煤层开采采场围岩内部应力光弹力学模拟研究[J].煤炭学报.2001(01):8-12.
    [185]吴玉庚,牟会宠,龚秋明.峨口铁矿高陡边坡稳定性三维模型试验研究[J].工程地质学报.1998(04):81-87.
    [186]朱焕春,谢漠文.确定相似材料配比的正交试验途径[J].武汉水利电力学院学报.1990,23(004):103-109.
    [187]苑诗松,丁元,周纪萝.回归分析及其试验设计[M].上海:华东师范大学出版社,1985.
    [188]中华人民共和国行业标准编写组.铁路隧道设计规范TB10003-2005[S].北京,2005.
    [189]王建宇.隧道工程的技术进步[M].北京:中国铁道出版社,2004.
    [190]建设部.混凝土结构设计规范[S].北京,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700