上海城市水源地蓝藻暴发的影响因素及控制管理体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着经济快速发展、人口迅速膨胀的过程,自然水体中所受纳的污染物总量逐年增加,特别是在城市化进程较快的长江中下游地区,浅水湖泊几乎全部富营养化。长江中下游地区分布的湖泊往往是其分布地区主要的饮用水源之一,近年来富营养化所引起的蓝藻暴发事件在这些水源地的发生频率和规模不断上升,威胁到饮用水供应安全,导致附近水厂被迫关停,严重影响了附近居民的生活和工业企业的发展。上海地处太湖流域下游和长江河口地区,从1985年起承担饮用水供应的淀山湖开始了蓝藻暴发的历程,而长江口地区新建的水库性水源地在蓝藻易发季节亦在局部地区出现大面积蓝藻聚集,如何控制蓝藻暴发成为上海城市饮用水源地亟待解决的安全问题。论文以黄浦江上游水源地和长江口水源地典型代表为研究对象,综合运用环境科学、环境工程、生态学以及管理学的理论和手段,在对水源地水环境、生态环境以及社会经济发展充分调研的基础上,结合室内模拟实验与野外生态调查的结果,从不同的角度分析上海城市饮用水源地蓝藻暴发的问题:对于已经出现蓝藻暴发的开放型水源地,按照“成因分析-评估-修复与应急响应”的思路,探索基于蓝藻暴发的水源地控制管理对策;对于存在潜在暴发风险的水库型水源地,采用“野外调查-模拟-预警和防控结合”的研究路线,探索水源地预警预控管理体系的建立,在对暴发因素研究的基础上形成上海地区城市水源地控制蓝藻暴发的控制管理体系。论文的主要研究成果可以概括为以下几个方面:
     1.主要水源地水质不断下降是上海市水源地重心转移的内在推动力。21世纪初上海饮用水源地正在经历三个主要变化:供水规模将由上世纪末的9.51×106m3/d逐步扩大至1.72×107m3/d;饮用水取水重心逐步从黄浦江转移至的长江口;城市主要的供水模式将由开放型水源地供水向水库型水源地供水模式过渡。对水源地水质分析的结果显示,水质变化的共性问题表现为氮、磷营养盐持续升高,水质不断下降,分散型内河取水口的水质劣于集中式水源地取水口,黄浦江上游水源地的水质劣于长江口水库水质,由此可见长江口水资源的开发最重要的作用是提升了上海优质饮用水的供给量。然而,水资源供给量的提高并不意味着上海市饮用水源地的矛盾得以解决,陈行水库在夏季高温天气中局部会出现蓝藻暴发,这种现象的出现意味着在未来相当长的阶段内,预防及控制蓝藻暴发都将成为上海市饮用水源地管理的重点。
     2.淀山湖蓝藻暴发是营养盐总量增加、生态系统退化以及特殊的水文、气象条件共同作用的结果。淀山湖目前氮、磷营养盐的净输入量分别由1985年的220.2 t/a、6.0 t/a上升至2009年的3026.5 t/a、39.3 t/a,造成净输入量增加的主要原因包括:上游来水的水量及营养盐浓度均大幅度增加,湖体自身的净化作用已经无法承受,尽管出湖区域的水质较好,仍有大量的营养盐滞留在水体里;淀山湖底泥较薄,湖泊生态系统较为脆弱,高等水生植物大面积的消失几乎瓦解了整个生态系统的基础,与此同时鱼类和底栖生物的生物量由于人为干扰强度过大而下降,在淀山湖营养盐条件充足的环境下,缺少竞争压力的浮游植物逐年成为影响生态系统演替的主要因素,其中蓝藻凭借特殊的生理机能逐渐成为浮游植物的优势种群。
     营养盐负荷增加仅仅是蓝藻暴发的充分条件之一,淀山湖蓝藻暴发的时间及地点不固定,在一定程度上意味着其他环境条件才是诱发蓝藻暴发的关键因素。通过对2007-2009年蓝藻暴发事件的分析,特别是对暴发时间、暴发区域(MODIS数据分析)以及暴发期内水文、气象因素的分析,可以归纳、总结出淀山湖蓝藻暴发的影响因素:上海地区夏季温度普遍较高,蓝藻的增殖速率加快,能够在短时间内达到较大的生物量;黄浦江涨潮的顶托作用以及太浦河下泄量增加带来的壅水作用,延长了淀山湖水力停留期,为蓝藻增殖提供了稳定的水文条件;蓝藻特有的浮力调节机制使其能够在低气压环境中上浮至水体表面,继而在低风速条件下聚集,最终形成暴发。
     蓝藻暴发是对水体营养盐过剩的一种自然反馈机制,不仅存在于淀山湖,长江中下游地区富营养化严重的浅水湖泊里已经成为常见现象,这种自然现象本身能够减少水体中营养盐的含量,但由于淀山湖面积较大,蓝藻不易收集捕捞,逐渐形成了困扰饮用水源地取水的主要因素,控制蓝藻暴发的根本性措施就是恢复湖泊原来的生态系统、增加生物多样性、延长营养盐循环的过程等。
     3.青草沙水库全面暴发蓝藻的可能性较低,但局部滞水区仍存在暴发的可能。长江口整体水质较好,陆源污染物排放的影响较小,但氮、磷浓度偏高的问题仍比较突出,已经逼近超标的临界值。在青草沙水库修建期内,长江原水氮、磷浓度下降,并且无机态的氮、磷比例较少,结合生态调查的结果,可以认为于水力停留期增加有利于浮游植物的增长,消耗部分营养盐,另一部分则可能沉积进入库区底部的泥沙中。
     青草沙库区内高等植物分布面积较广但种类单一,随着人为干扰的增强,有可能出现生物量下降的现象。浮游植物的总量及种类均低于淀山湖,并且随水温变化而增加在8月份达到生长高峰,在群落结构上已经完全转化为淡水水库型,以绿藻为主。水库的蓝藻种类与淀山湖不同,以颤藻属、鱼腥藻属等固氮型为主,生物量同样呈现随温度升高而增加的趋势,8月份水温升至顶点时在部分区域成为生物量最高的种类。蓝藻主要分布在水深较浅的库首及青草沙两侧,8月份在取水口附近测到较高的生物量,并且由于水库比热容较大导致水温下降速度较缓,蓝藻高生物量的状态可以维持到10月份,未来可能对水库供水产生不利因素。
     由于青草沙原水中营养盐浓度较低,蓝藻的倍增时间被拉长至20 d左右,甚至低于绿藻门的倍增时间,从根本限制了蓝藻生物量在短时间内大量增殖的可能。水温达到24℃时蓝藻生长最好,因此野外生物增加可以从5、6月份即开始,而光照对于蓝藻的影响并不明显,仅当水文条件被改变时,特别是水流速度加快时,蓝藻的生长受限制开始下降,10d左右在营养盐供给不够的前提下有可能分解、沉降甚至死亡,因此对于水库这种半自然水体而言,水力调度有可能成为水库蓝藻暴发最有效的控制措施。
     青草沙水库由于处在较低的营养盐水平,现有低营养状态下,以及氮磷限制、水力条件变化、水流速度增加、停留期缩短等影响,青草沙水库最长21天的连续停留时间内暴发蓝藻的可能性比较小,并且咸潮入侵的时间多发生在水温较低的阶段,延长停留期对于藻类生长而言无促进影响。但同时也需要注意,库区面积较大、水文条件也存在较大的差异,再加上底泥释放营养盐的影响,在部分滞水区以现在的营养盐状况,若遇到小范围内水力停留时间较长的状况,仍有可能形成大量浮游植物的累积。
     4.基于蓝藻暴发的上海城市水源地管理应充分考虑水源地类型、营养盐现状、水文特点以及历史暴发情况等,建立目标相同但控制措施有区别的管理体系。淀山湖蓝藻暴发概率高,管理体系应包含暴发后应急响应与控藻措施等两部分:基于时间特征指数的蓝藻暴发评估体系为淀山湖蓝藻暴发的预测提供了快速判断的准则,在此基础上采用拦藻、纳藻以及生物除藻的一系列应急控藻措施,来能够保障饮用水源地供水安全。但这些应急措施从根本上无法解决营养盐浓度过高的核心问题,因而需要采用改造湖滨带、恢复湖泊生态系统的长期控制对策,根据淀山湖湖区特性建立从近岸带到湖中心、从先锋种到建群种逐步恢复湖泊生态系统。
     青草沙水库生态系统和水质状况均比较好,蓝藻暴发概率较低,但这种半自然的水源地在不利水文气象条件下亦存在暴发的可能性。水库基于蓝藻暴发控制的管理体系应包括预警及防控技术相结合的策略,制定完备的蓝藻暴发预警方案,采用巩固水生植被、源头削减负荷、增加生态系统多样性等预控技术合理的调控,减小水库型水源地蓝藻暴发的概率。
With a rapid increase rate of economic development and population expansion, the sum of pollutants in the water increased every year, especially in the downstream region of Yangtze River, which suffered a rapid urbanization process recently, the eutrophication occurred in every shallow lakes in that region. These lakes were the main drinking water source for the local residents, and due to the increase of the frequency and scale of Cyanobacteria blooming, the water supply was in danger, the water plant nearby was off-set. Shanghai is located in both the lower regions of Taihu Lake basin and the Yangtze River estuary region, and the first time of Cyanobacteria blooming occurred in Shanghai was 1985 in Lake Dianshan. Recently, Cyanobacteria blooming also appeared in the new reservoir in Yangtze River estuary region, so it became a urgent problem for the safety of the drinking water source in Shanghai. This thesis chose the water sources as the objects in upper stream region of Huangpu River and in Yangtze River estuary region, and used the theory and measurement of the environmental science, environmental engineer, ecology and management to analysis the Cyanobacteria blooming in Shanghai in many aspects, based on the results of the simulation experiments and the ecological survey. For the lakes, the research focused on the cause and evaluation of Cyanobacteria blooming, and set up a management system including the ecology restoration and response system fo rthe blooming. For the reservoir, the research method changed to ecological survey and stimulation, and the forces of management changed to early warning and control for the blooming. All the results showed below:
     The core of the water source in Shanghai had changed due to the deterioration of water quality. In 2010s, there were three main changes:the sum of water supply was gradually expanding to 1.72×107 m3/d from the level of 9.51×106 m3/d in the end of last century, and the new core of water source was Yangtze River estuary region, and the mode of water supply changed from the open resource to the reservoir. The analysis results showed that the main problem of water quality in different water source was the increasing concentration of nitrogen and phosphorus. The quality in minor rivers was more inferior to that of Lake Dianshan and Huangpu River, but the quality in Yangtze River estuary region was superior. In that case, the water quality of Shanghai would be improved by the water from Yangtze River estuary region, but it didn't mean all the problems were solved. Occasional cyanobacteria blooming in Chenhang Reservoir in summer showed that the prevention and control of alga would last for a long time.
     Cyanobacteria blooming in Lake Dianshan were a complex consequence of nutrient increase, ecological degradation and environmental factors. The net input of nutrient was increase to 3026.5 tN/a in 2009 from the number of 220.2 in 1985, and the numbers in 2009 and 1985 for phosphorus were 39.3 and 6.0 tP/a. The causes included the net amount of the nutrient increase mainly from the increasing concentration of upper stream, which had overload. Another was the ecological degradation caused by Macrophytes disappear, and the biomass of fish and Benthos decreased. Phytoplankton became the key factor of the lake succession, and the biomass of cyanobacteria blooming became the largest.
     Increased nutrient loading was one reason of blooming, and another were the environmental factors, which effected the unfixed blooming time and region. The variations of blooming time, region (based on the results of MODIS analysis), hydrology and weather revealed some rulers about blooming in Shanghai during the cyanobacteria blooming in 2007-2009:the high temperature in Shanghai induced a large biomass in short time; the backwater effect to Lake Dianshan from Huangpu River and Taipu River extended the hydraulic retention period, and benefited the cyanobacteria proliferation; cyanobacteria floated up to the surface controlled by a special buoyancy regulation mechanism, and gathered in a low pressure, so the blooming formed eventually.
     Cyanobacteria blooming were a natural feedback mechanism to the nutrient overload in water. The blooming occurred in every shallow lake located in the downstream of the Yangtze River region. In this way, nutrients in water were reduced, but the cyanobacteria were not easy to collect due to a large area, so it became a main problem for drinking water supply. a fundamental measure for controlling outbreaks was to rebuilt the eco-system in Lake Dianshan by increasing biodiversity and extending the recycle processes of nutrient.
     The blooming possibilities in Qingcaosha Reservoir were quite low, but it didn't include the stagnant water areas in the reservoir. The water quality in Yangtze River estuary was good, and the impact from land emission was low, but the increasing nutrient concentrations had been close to the respective limit values. The concentration of nutrient in Qingcaosha Reservoir was lower than the origin, and the ratios of inorganic forms was low, which means the consumption of nutrient were mainly from the increasing biomass of phytoplankton, especially for the cyanobacteria, and the less part were Deposition into the sediments.
     The distribution areas of macrophysics were large, but the construction was simple, and the biomass would decline if the human activities enhanced. The total amount and types of phytoplankton were lower than that of Lake Dianshan, but increased with the higher temperature, and the peak value appeared in August. The community construction of phytoplankton had been completely changed as the freshwater reservoir types. The main types of Cyanobacteria were Oscillatoria and Anabaena, increasing with higher temperature. The biomass of Cyanobacteria increased to the largest in some spots in August. Cyanobacteria are mainly distributed in the swallow water like the influent area and both side of Qingcaosha. The specific heat capacity of the reservoir was so high that the temperature in October was still benefit for the reproduction, and it may be an adverse factor in the reservoir.
     The double proliferate time of cyanobacteria was extended to about 20 days, even lower than chlorophyta, due to low nutrient concentrations in the reservoir, and it fundamentally limits the possibility of cyanobacteria blooming in the short period of time. The best temperature for cyanobacteria was 24, so the result of ecological survey showed that the biomass increase of cyanobacteria started from May, and the illumination did no effect on it. However, the changes in hydrology conditions could limit the growth of cyanobacteria, especially in a rapid flow.10 days was the longest time for cyanobacteria in a rapid flow without nutrient supply, and the cells became decomposition, or even death. So for the semi-nature reservoir, hydro scheduling may be the best management for the blooming control.Due to the reasons above, the possibility of cyanobacteria blooming in Qingcaosha Reservoir was low in a longest hydraulic retention period of 21 days, but considering the nutrients from the sediment, the blooming may appeared in some parts of the reservoir when the hydrological conditions changed.
     To control the cyanobacteria blooming in urban water source in Shanghai, the management should consider the types of water sources, nutrient status, hydrological characteristics and history of the blooming, and establish different management system for different water source aimed at the blooming control. The management system for Lake Dianshan includes two parts:emergency response and algal control measurement. The time-based feature evaluation index system was employed to evaluate the blooming in Lake Dianshan, and some control measures to protect drinking water sources. But these emergency measures couldn't solve a fundamental core issue of excessive nutrient concentrations in the lake, so a long-term control measures including Lake Ecosystem Restoration need to adopt in the management system.
     Both the ecosystem and water quality in Qingcaosha Reservoir were in a good condition. Although the probability of the cyanobacteria bloomin was low, it still may appear in under the benefit hydrological or weather conditions in such a semi-nature water source. The management should include both the early warning, prevention and control strategy, in order to establish a stable ecosystem in the reservoir, cut off the source load, increase the diversity, et al., aimed to reduce the probability of the cyanobacteria blooming
引文
1 注:根据陈国光等(陈国光等,2003)、车越等(车越等,2005)、程济生(程济生,1997)资料重新整理、统计
    2 根据根据鄢忠纯等(鄢忠纯等,2009)资料重新统计
    3 根据《上海市主要饮用水水源保护区边界划定和调整专项规划》调研的数据汇总、统计
    34 同上
    35 作者根文中所列文献以及《淀山湖现状与水源保护方案(油印稿)》(华东师范大学环境科学所,1983)、《淀山湖水生生物与环境容量关系的研究(油印稿)》(华东师范大学环境科学所,1985)、《淀山湖富营养化与蓝藻水华发生的生态学机制》等报告的相关内容按时间序列统计、整理。
    44 作者根据陈卫民(2009)、李英杰(2004)、刘伟龙(2007)、苏文华(2004)、由文辉(1994)和赵爱萍(2005)等研究结果,结合淀山湖地区底泥、湖泊特性等自然条件整理、设计。
    46 作者根据Chorus.1. etal(1999)提供的资料整理。
    47 同上
    [1]Allen M M, Stanier R Y. Growth and division of some unicellular blue-green algae[J]. J Gen Microbiol.1968,51(2):199-202.
    [2]Azevedo S, Evans W, Carmichael W, et al. First report of microcystins from a brazilian isolate of the cyanobacterium<i>microcystis aeruginosa&It;/I>[J]. Journal of Applied Phycology.1996, 6(3):261-265.
    [3]Burger D F, Hamilton D P, Pilditch C A. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake[J]. Ecological Modelling.2008,211(3-4):411-423.
    [4]Carrick H J, Aldridge F J, Schelske C L. Wind influences phytoplankton biomass and composition in a shallow, productive lake[J]. Limnology and Oceanography.1993,38(6):1179-1192.
    [5]Chen F, Song X, Hu Y, et al. Water quality improvement and phytoplankton response in the drinking water source in meiliang bay of lake taihu, china[J]. Ecological EngineeringLake Taihu Eutrophication:Control Countermeasures and Recycling Exploitation.2009,35(11):1637-1645.
    [6]Chmielewski T J, Radwan S, Sielewicz B. Changes in ecological relationships in a group of eight shallow lakes in the polesie lubelskie region (eastern poland) over forty years[J]. Hydrobiologia.1997, 342-343(0):285-295.
    [7]Chorus I, J B. Toxic cyanobacteria in water[M]. London:E&F Spon,1999.
    [8]Chorus I, Bartram J. Toxic cyanobacteria in water:a guide to their public health consequences, monitoring and managemen[R]. WHO,1999.
    [9]Dodds W K, Bouska W W, Eitzmann J L, et al. Eutrophication of u.s. Freshwaters:analysis of potential economic damages[J].2009,43(1):12-19.
    [10]Domaizon I, Devaux J. Impact of moderate silver carp biomass gradient on zooplankton communities in a eutrophic reservoir. Consequences for the use of silver carp in biomanipulationfJ]. Comptes Rendus de l'Acadevie des Sciences-Series Ⅲ-Sciences de la Vie.1999,322(7):621-628.
    [11]Downing J A, Watson S B, Mccauley E. Predicting cyanobacteria dominance in lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences.2001,58(10):1905-1908.
    [12]Eduardo V S, Da Silva Ferreira A C, Nunes Ludolf Gomes L. Comparative eutrophication development in two brazilian water supply reservoirs with respect to nutrient concentrations and bacteria growth[J]. Desalination 10th IWA International Specialized Conference on Diffuse Pollution and Sustainable Basin Management-18-22 September 2006, Istanbul, Turkey,10th IWA International Specialized Conference on Diffuse Pollution and Sustainable Basin Management.2008,226(1-3):169-174.
    [13]Gal G, Hipsey M R, Parparov A, et al. Implementation of ecological modeling as an effective management and investigation tool:lake kinneret as a case study[J]. Ecological Modelling.2009, 220(13-14):1697-1718.
    [14]Hakanson L. Liming as a method to remedy lakes contaminated by radiostrontium[J]. J Environ Radioact.2003,65(1):47-75.
    [15]Hall D J, Threlkeld S T, Burns C W, et al. The size-efficiency hypothesis and the size structure of zooplankton communities[J].1976.
    [16]Havens K E, James R T, East T L, et al. N:p ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution[J]. Environmental Pollution.2003, 122(3):379-390.
    [17]Holz J C, Hoagland K D, Spawn R L, et al. Phytoplankton community response to reservoir aging, 1968-92[J]. Hydrobiologia.1997,346(1):183-192.
    [18]Howarth R W, Marino R, Cole J J. Nitrogen fixation in freshwater, estuarine, and marine ecosystems.2. Biogeochemical controls[J]. Limnology and Oceanography.1988,33(4):688-701.
    [19]Hudnell H K. The state of u.s. Freshwater harmful algal blooms assessments, policy and legislation[J]. ToxiconHarmful Algal Blooms and Natural Toxins in Fresh and Marine Waters Exposure, occurrence, detection, toxicity, control, management and policy.2010,55(5):1024-1034.
    [20]Hughes E O, Gorham P R, Zehnder A. Toxicity of a unialgal culture of microcystis aeruginosa[J]. Can J Microbiol.1958,4(3):225-236.
    [21]Jancula D, Mars Lek B, Novotn Z, et al. In search of the main properties of phthalocyanines participating in toxicity against cyanobacteria[J]. Chemosphere.2009,77(11):1520-1525.
    [22]Jenkins L. Selecting scenarios for environmental disaster planning[J]. European Journal of Operational Research.2000,121(2):275-286.
    [23]Jeppesen E, S(?)ndergaard M, Mortensen E, et al. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1:cross-analysis of three danish case-studies[J]. Hydrobiologia. 1990,200-201(1):205-218.
    [24]Kirchsteiger C. Absolute and relative ranking approaches for comparing and communicating industrial accidents[J]. Journal of Hazardous Materials.1998,59(1):31-54.
    [25]Kohler J, Hoeg S. Phytoplankton selection in a river-lake system during two decades of changing nutrient supply[J]. Hydrobiologia.2000,424(1):13-24.
    [26]Korponai J, Matyas K, Paulovits G, et al. The effect of different fish communities on the cladoceran plankton assemblages of the kis-balaton reservoir, hungary[J]. Hydrobiologia.1997,360(1): 211-221.
    [27]Korponai J, Paulovits G, Matyas K, et al. Long-term changes of cladoceran community in a shallow hypertrophic reservoir in hungary[J]. Hydrobiologia.2003,504(1):193-201.
    [28]Kouzminov A, Ruck J, Wood S A. New zealand risk management approach for toxic cyanobacteria in drinking water[J]. Australian and New Zealand Journal of Public Health.2007,31(3): 275-281.
    [29]Lehman E M, Mcdonald K E, Lehman J T. Whole lake selective withdrawal experiment to control harmful cyanobacteria in an urban impoundment[J]. Water Research.2009,43(5):1187-1198.
    [30]Lund J W G. The ecology of the freshwater phytoplankton [J]. Biological Reviews.1965,40(2): 231-290.
    [31]Marion L, Clergeau P, Brient L, et al. The importance of avian-contributed nitrogen (n) and phosphorus (p) to lake grand-lieu, france[J]. Hydrobiologia.1994,279-280(1):133-147.
    [32]Mcnaughton S J. Relationships among functional properties of californian grassland[J].1967.
    [33]Moss B, Madgwick J, Phillips G. A guide to the restoration of nutrient-enriched shallow lakes[M]. 1996.
    [34]Niinioja Ritta, Holopainen Anna-Liisa, Lepist Liisa, 等. Public participation in monitoring programmes as a tool for lakeshore monitoring:the example of Lake Pyh鋔鋜vi, Karelia, Eastern Finland[J]. Limnologica-Ecology and Management of Inland WatersLake-shores--Ecology, Quality Assessment, Sustainable Development.2004,34(1-2):154-159.
    [35]Nogueira M G. Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in jurumirim reservoir (paranapanema river), sao paulo, brazil[J]. Hydrobiologia.2001,455(1):1-18.
    [36]Padisak J, Reynolds C S. Selection of phytoplankton associations in lake balaton, hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes[J]. Hydrobiologia.1998,384(1):41-53.
    [37]Paerl H W, Fulton R S, Moisander P H, et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria.[J]. the Scientific World Journal.2001,1:76-113.
    [38]Paerl H W, Hall N S, Calandrino E S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change[J]. Science of The Total Environment.2011, 409(10):1739-1745.
    [39]Parsons T. R.海水分析的化学和生物学方法[M].厦门:厦门大学出版社,1991:181.
    [40]Phillips G, Bramwell A, Pitt J, et al. Practical application of 25 years' research into the management of shallow lakes[J]. Hydrobiologia.1999,395-396(0):61-76.
    [41]Pielou E C. An introduction to mathematical ecology.[J]. An introduction to mathematical ecology. 1969.
    [42]Qin B, Zhu G, Gao G, et al. A drinking water crisis in lake taihu, china:linkage to climatic variability and lake management[J]. Environmental Management.2010,45(1):105-112.
    [43]Schindler D W. Evolution of phosphorus limitation in lakes[J]. Science.1977,195:260-262.
    [44]Sfriso A, Pavoni B, Marcomini A. Nutrient distributions in the surface sediment of the central lagoon of venice[J]. Science of The Total Environment.1995,172(1):21-35.
    [45]Shannone C. A mathematical theory of communication[J]. The Bell Sys Tech J.1948,27:379-423.
    [46]Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton[J]. Science.1983,221:669-671.
    [47]Smith V H, Bierman V J, Jones B L, et al. historical trends in the lake okeechobee ecosystem ⅳ. Nitrogen:phosphorus ratios, cyanobacterial dominance, and nitrogen fixation potential.[Z].1995: Monographische Beitrage,71-88.
    [48]Smith V H, Bennett, J. S. Nitrogen:phosphorus supply ratios and phytoplankton community structure in lakes:nutrient ratios [J].1999,146(1).
    [49]S(?)ndergaard M, Jeppesen E, Jensen J P, et al. Lake restoration in denmark[J]. Lakes & Reservoirs: Research & Management.2000,5:151-159.
    [50]S(?)ndergaard M, Kristensen P, Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed lake arres(?), denmark[J]. Hydrobiologia.1992,228(1):91-99.
    [51]Swierzowski A, Godlewska M, Potorak T. The relationship between the spatial distribution of fish, zooplankton and other environmental parameters in the solina reservoir, poland[J]. Aquatic Living Resources.2000,13(5):373-377.
    [52]Tilman D. Resource competition and community structure[M]. Princeton University Press,1982.
    [53]Ulanowicz R E. Information theory in ecology[J]. Computers & Chemistry.2001,25(4):393-399.
    [54]Vahtera E, Conley D J, Gustafsson B G, et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the baltic sea[J]. AMBIO:A Journal of the Human EnvironmentAMBIO:A Journal of the Human EnvironmentAMBIO:A Journal of the Human Environment.2007,36(2):186-194.
    [55]Varis O. Cyanobacteria dynamics in a restored finnish lake:a long term simulation study[J]. Hydrobiologia.1993,268(3):129-145.
    [56]Vieira J M D S, Azevedo M T D P, Azevedo S M F D, et al. Toxic cyanobacteria and microcystin concentrations in a public water supply reservoir in the brazilian amazonia region[J]. Toxicon.2005, 45(7):901-909.
    [57]Von Sperling E. Mechanisms of eutrophication in tropical lakes[J]. Environmental Pollution.1996, 3:434-439.
    [58]Wang H J, Liang X M, Jiang P H, et al. Tn:tp ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes[J].2008,53(5):10.
    [59]Wilhelm S W, Farnsley S E, Lecleir G R, et al. The relationships between nutrients, cyanobacterial toxins and the microbial community in taihu (lake tai), china[J]. Harmful Algae.2011,10(2):207-215.
    [60]Xie L, Xie P, Li S, et al. The low tn:tp ratio, a cause or a result of microcystis blooms?[J]. Water Research.2003,37(9):2073-2080.
    [61]曹正光.淀山湖的渔业生产与水质保护[J].水产科技情报.1988(2):12-13.
    [62]车越,杨凯,吴阿娜,等.上海城市水源战略与水源地保护:格局、问题与展望[J].自然资源学报.2005,20(5):651-659.
    [63]车越,杨凯,范群杰,等.黄浦江上游水源地水环境演变规律及其影响因素研究[J].自然资源学报.2005,20(2):163-171.
    [64]陈国光,陈寅,吴今明,等.改善上海市供水水质的近、远期目标和措施[J].中国给水排水.2003,19(7):44-46.
    [65]陈卫民,张清敏,戴树桂.苦草与铜绿微囊藻的相互化感作用[J].中国环境科学.2009,29(2):147-]51.
    [66]陈宇炜,秦伯强.太湖梅梁湾藻类及相关环境因子逐步回归设计和蓝藻水华的初步预测[J].湖泊科学.2001,13(1):63-71.
    [67]陈振楼.拯救长江口——上海的最后“一潭清水”[J].上海人大月刊.2010(3):22-23.
    [68]程济生.上海21世纪的供水水源[J].城市公用事业.1995(5):14-16.
    [69]程济生.黄浦江和长江水源的保护[J].城市公用事业.1997,11(6):19-21.
    [70]程曦,李小平.淀山湖氮磷营养物20年变化及其藻类增长响应[J].湖泊科学.2008,20(4):409-419.
    [71]崔莹,吴莹,张国森,等.盐水入侵下长江口南港水域COD和营养盐分布[J].海洋环境科学.2009,28(5):549-552.
    [72]戴秀丽,娄明华,孙晓斌.太湖饮用水源地蓝藻预警监测质量管理体系的构建[J].现代测量与实验室管理.2008(6):-.
    [73]邓义祥,孟伟,郑丙辉,等.基于响应场的线性规划方法在长江口总量分配计算中的应用[J].环境科学研究.2009,22(9):995-1000.
    [74]董淑阁.用鱼养水生物控制饮用水源蓝藻暴发[J].污染防治技术.2004,17(01):105-106.
    [75]范成新.太湖水体生态环境历史演变[J].湖泊科学.1996,8(4):297-304.
    [76]方如康.淀山湖地区生态环境保护若干问题的探讨[J].生态学报.1988(4):363-367.
    [77]傅晓钦,徐能斌,朱丽波,等.宁波市饮用水源地爆发蓝藻水华时微囊藻毒素的污染分析[J].中国环境监测.2008,24(06):80-83.
    [78]顾金山,陆晓如,顾玉亮.上海青草沙水源地原水工程规划[J].给水排水.2009(1):50-54.
    [79]顾金山.青草沙原水输水工程大规模应用钢顶管技术的决策研究[J].给水排水.2008,34(8):106-110.
    [80]顾亮,张玉超,钱新,等.太湖水域叶绿素a浓度的遥感反演研究[J].环境科学与管理.2007,32(6):25-29.
    [81]顾玉亮,乐勤.长江口陈行水源地盐水入侵分析及预报[J].城市公用事业.2004,18(2):19-20.
    [82]顾玉亮,吴守培,等.北支盐水入侵对长江口水源地影响研究[J].人民长江.2003,34(4):1-3.
    [83]顾玉亮,乐勤,金迪惠.青草沙——上海百年战略水源地[J].上海建设科技.2008(1):66-69.
    [84]顾玉亮,许龙,郑国兴,等.黄浦江上游引水系统改造工程方案设计及优化[J].给水排水.2009(8):48-52.
    [85]桂佳,胡韧,辛艳萍,等.一株来源于水库的浮游蓝丝藻SK3株的生长及产毒特性[J].湖泊科学.2010,22(03):400-404.
    [86]韩博平,韩志国,付翔编著.藻类光合作用机理与模型[M].北京:科学出版社,2003:253.
    [87]黄河,贺骥,范卓玮.城市饮用水水源保护区管理体制初探[J].水利发展研究.2010,2010(05):3-9.
    [88]黄奕龙,王仰麟,谭启宇,等.城市饮用水源地水环境健康风险评价及风险管理[J].地学前缘.2006,13(03):162-167.
    [89]贾瑞华.评价上海水资源问题的儿点认识[J].上海水利.1998(1):45-46.
    [90]姜晟,张咏,蒋建军,等.基于MODIS数据的太湖蓝藻变化与水温关系研究[J].环境科技.2009(6):28-31.
    [91]金相灿.湖泊富营养化研究中的主要科学问题——代“湖泊富营养化研究”专栏序言[J].环境科学学报.2008,28(1):21-23.
    [92]孔繁翔,马荣华,高俊峰,等.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学.2009(3):314-328.
    [93]孔维娟,马荣华,段洪涛,等.太湖秋冬季蓝藻水华MODIS卫星遥感监测[J].遥感信息.2009(4):80-84.
    [94]况琪军,吴振斌,夏宜琤.人工湿地生态系统的除藻研究[J].水生生物学报.2000,24(6):655-658.
    [95]赖伟,李逸平,堵南山.上海淀山湖浮游桡足类群落组成与季节变动研究[J].水生生物学报.1987,11(2):173-183.
    [96]黎明,刘德启,沈颂东,等.国内富营养化湖泊生态修复技术研究进展[J].水土保持研究.2007,14(5):374-376.
    [97]李静会,高伟,张衡,等.除藻剂应急治理玄武湖蓝藻水华实验研究[J].环境污染与防治.2007,29(1):60-62.
    [98]李文朝.浅水湖泊生态系统的多稳态理论及其应用[J].湖泊科学.1997,9(2):97-104.
    [99]李旭文,季耿善,等.太湖藻类的卫星遥感监测[J].湖泊科学.1995,7(1):65-68.
    [100]李英杰,许秋瑾,金相灿,等.湖泊水生植被恢复物种选择及群落配置分析[J].环境污染治理技术与设备.2004,5(8):23-26.
    [101]廖振良,徐祖信.上海崇明三岛供水模式的探讨[J].中国给水排水.2007(24):16-19.
    [102]林涛,崔福义,刘冬梅,等.水源治理中鱼类的摄食选择性对其生物操纵作用的影响[J].哈尔滨工业大学学报.2006,38(1):35-37.
    [103]林卫青,卢士强,陈义中.应用生态动力学模型评价上海淀山湖富营养化控制方案[J].上海环境科学.2010,29(1):1-10.
    [104]刘建康.解读东湖蓝藻水华的来龙去脉[J].世纪行.2003,17(10):12-13.
    [105]刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜[J].长江流域资源与环境.1999,8(3):312-319.
    [106]刘建康.东湖生态学研究.二[M].北京:科学出版社,1995:491.
    [107]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学.2003,22(3):193-198.
    [108]刘伟龙,胡维平,谷孝鸿.太湖马来眼子菜(Potamogeton malaianus)生物量变化及影响因素[J].生态学报.2007,28(8):3324-3333.
    [109]刘贞秋,蒙仁宪.巢湖浮游蓝藻的初步研究[J].海洋湖沼通报.1989(2):35-41.
    [110]鲁韦坤,谢国清,余凌翔,等.MODIS遥感监测滇池蓝藻水华分布[J].气象科技.2009,37(5):618-620.
    [111]陆开宏,姚礼一,周少勤,等.杭州西湖引流冲污前后浮游藻类变化及防治富营养化效果评价[J].应用生态学报.1992(3):266-272.
    [112]陆开宏,晏维金,苏尚安.富营养化水体治理与修复的环境生态工程——利用明矾浆和鱼类控制桥墩水库蓝藻水华[J].环境科学学报.2002,22(06):732-737.
    [113]梅长青,王心源,彭鹏.应用MODIS数据监测巢湖蓝藻水华的研究[J].遥感技术与应用.2008,23(3):328-332.
    [114]秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J].地球科学进展.2007,22(9):896-906.
    [115]秦伯强.太湖生态与环境若干问题的研究进展及其展望[J].湖泊科学.2009(4):445-455.
    [116]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学.2002,14(3):193-202.
    [117]秦伯强.湖泊生态恢复的基本原理与实现[J].生态学报.2007,27(11):4848-4858.
    [118]秦们强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学.2002,14(3):193-202.
    [119]邱东茹,吴振斌,刘保元,等.武汉东湖水生植被的恢复试验研究[J].湖泊科学.1997,9(2):168-174.
    [120]阮仁良,王云.淀山湖水环境质量评价及污染防治研究[J].湖泊科学.1993,5(2):153-158.
    [121]沙慧敏,李小恕,杨文波,等.MODIS卫星遥感监测太湖蓝藻的初步研究[J].海洋湖沼通报.2009(3):9-16.
    [122]上海水产学院.淀山湖渔业资源的初步调查报告[R].中国:上海水产学院学报,1960.
    [123]沈焕庭,顾玉亮,等.东线南水北调工程对长江口咸水入侵影响及对策[J].长江流域资源与环境.2002,11(2):150-154.
    [124]沈韫芬.原生动物学[M].北京:科学出版社,1999:656.
    [125]宋永昌.淀山湖富营养化及其防治研究[M].上海:华东师范大学出版社,1992:192.
    [126]苏文华,张光飞,张云孙,等.5种沉水植物的光合特征[J].水生生物学报.2004,28(4):391-395.
    [127]孙扬才,陈雪初,孔海南,等.长江口边滩水库藻类增殖潜力的研究[J].中国给水排水.2007(17):99-102.
    [128]陶学为.上海市第二水源(长江口引水)取水点地址探讨[J].海洋与海岸带开发.1991,8(3):67-72.
    [129]铁志毅.城市饮用水水源污染管理对策[J].福建工程学院学报.2006,4(02):183-185.
    [130]屠建波,王保栋.长江口及其邻近海域富营养化状况评价[J].海洋科学进展.2006,24(4):532-538.
    [131]汪松年,阮仁良.上海市水资源普查报告[M].上海:上海科学技术出版社,2001.
    [132]王朝晖,林秋奇,胡韧,等.广东省水库的蓝藻污染状况与水质评价[J].热带亚热带植物学报.2004,12(02):117-123.
    [133]王国峰,乐勤.长江口北支盐水入侵对陈行水库取水口的影响[J].城市公用事业.2003,17(4):21-22.
    [134]王国祥,成小英,濮培民.湖泊藻型富营养化控制——技术、理论及应用[J].湖泊科学.2002,14(03):273-282.
    [135]王国祥,成小英,濮培民.湖泊藻型富营养化控制——技术、理论及应用[J].湖泊科学.2002,14(3):273-282.
    [136]王丽卿,程婧蕾,郑小燕,等.淀山湖轮虫多样性及生物量时空变化[J].水产学报.2008,32(6):906-914.
    [137]吴和岩,郑力行,苏瑾,等.饮用水源水中微囊藻毒素与蓝藻相关性研究[J].环境与职业医学.2005,22(02):130-132.
    [138]夏健,钱培东,朱玮.2007年太湖蓝藻水华提前暴发气象成因探讨[J].气象科学.2009,29(4):531-535.
    [139]谢欢.基于遥感的水质监测与时空分析[D].上海:同济大学,2006.
    [140]辛艳萍,韩博平,雷腊梅,等.两座抽水型水库蓝藻种群与微囊藻毒素的比较分析[J].热带亚热带植物学报.2010,18(03):224-230.
    [141]徐萌,曾燕,李亚春,等.2005年江苏省湖泊MODIS卫星遥感监测[J].江苏农业学报.2007,23(3):258-260.
    [142]徐祖信,黄沈发,鄢忠纯.上海市非点源污染负荷研究[J].上海环境科学.2003(z1):112-116.
    [143]许经纶.回顾上海的水源[J].上海水务.2003(1):46-47.
    [144]许秋瑾,秦伯强,陈伟民,等.太湖藻类生长模型研究[J].湖泊科学.2001,13(2):149-157.
    [145]鄢忠纯,廖水文,王敏.上海市饮用水水源地与原水供水分析[J].环境科学与技术.2009,32(B06):272-274.
    [146]鄢忠纯,王敏,廖水文.上海市饮用水水源地与原水供水关系分析[J].上海环境科学.2009,28(4):171-173.
    [147]杨坚波,林玉娣.无锡太湖水域蓝藻污染与治理经济效益分析[J].中国初级卫生保健.2004,18(1):73-74.
    [148]杨铭威,石亚东,孙志,等.太湖蓝藻爆发引发无锡供水危机的思考[J].水利经济.2009, 27(03):36-38.
    [149]杨松芹,张慧珍,巴月,等.水体富营养化状况的人工神经网络预测模型的建立[J].卫生研究.2008,37(5):543-545.
    [150]杨秀娟.城市饮用水水源地综合管理探讨[J].科技情报开发与经济.2009,19(31):99-101.
    [151]杨漪帆,朱永青,林卫青.淀山湖蓝藻水华及其控制因子的模型研究[J].环境污染与防治.2009,31(6):58-63.
    [152]杨正勇,朱晓莉,梁文静,等.水产养殖业总氮污染及其环境成本研究——一个淀山湖水源保护区的实证研究[J].生态经济.2007(10):83-86.
    [153]尹华,昌镜伟,章光新,等.新立城水库水体富营养化成因及治理对策[J].东北师大学报:自然科学版.2010(1):152-156.
    [154]由文辉.淀山湖的浮游植物及其能量生产[J].海洋湖沼通报.1995(1):47-53.
    [155]由文辉,尤力群.淀山湖软体动物群落的研究[J].华东师范大学学报:自然科学版.1998(1):103-109.
    [156]由文辉.淀山湖水生维管束植物群落研究[J].湖泊科学.1994,6(4):317-324.
    [157]由文辉.淀山湖水生态系统的物质循环[J].中国环境科学.1997,17(4):6-9.
    [158]由文辉.淀山湖水生维管束植物群落研究[J].湖泊科学.1994,6(4):317-324.
    [159]俞家禄,陈明惠,林坤二,等.武汉东湖蓝藻水华毒性的研究Ⅰ.淡水蓝藻毒性的检测[J].水生生物学报.1987,11(3):212-218.
    [160]张鼎国,杨再福.淀山湖生态环境的演变与对策[J].水利渔业.2006(1):61-63.
    [161]张觉民,何志辉.内陆水域渔业自然资源调查手册[M].北京:农业出版社,1990:461.
    [162]张羽,张勇,杨凯.基于时间特征指数的水源地突发性污染事件应急评估方法研究[J].安全与环境学报.2005,5(5):82-85.
    [163]张羽.城市水源地突发性水污染事件风险评价体系及方法的实证研究[D].华东师范大学,2006.
    [164]张哲海.玄武湖蓝藻水华应急治理成效分析[J].污染防治技术.2006,19(05):56-59.
    [165]张志红,赵金明,蒋颂辉,等.淀山湖夏秋季微囊藻毒素-LR和类毒素-A分布状况及其影响因素[J].卫生研究.2003,32(4).
    [166]赵爱萍,刘福影,吴波,等.上海淀山湖的浮游植物[J].上海师范大学学报(自然科学版).2005,34(4):70-76.
    [167]赵汉取,韦肖杭,姚伟忠,等.蓝藻爆发后南太湖水域浮游生物及富营养化[J].浙汀海洋学院学报:自然科学版.2009(1):-
    [168]赵宏林,陈东辉,张丽萍.饮用水源保护区划分体系研究[J].上海环境科学.2008,27(4):167-169.
    [169]赵华林.加强饮用水水源环境保护[J].环境保护.2007(01B):18-21.
    [170]浙江省舟山海洋生态环境监测站.长江口及毗邻海域碧海环境状况调查分析报告:海域分报告[R].舟山:浙江省舟山海洋生态环境监测站,2006.
    [171]郑小燕,王丽卿,盖建军,等.淀山湖浮游动物的群落结构及动态[J].动物学杂志.2009,44(5):78-85.
    [172]中国科学出版社.饮用水水源保护区划分技术规范[R].中国:中国科学出版社,2007.
    [173]周立国,冯学智,王春红,等.太湖蓝藻水华的MODIS卫星监测[J].湖泊科学.2008,20(2):203-207.
    [174]周丽旋,彭晓春.城市集中式地表水源地管理体制分析[J].环境与可持续发展.2009,2009(04):20-21.
    [175]朱惠刚,王红兵,宋伟民.上海淀山湖、黄浦江水系浮游藻类及藻类毒素的动态研究[J].环境与健康杂志.1995,12(5):196-199.
    [176]朱晓莉,杨正勇.上海淀山湖水源保护区渔民转产转业影响因素的实证分析[J].农业技术经济.2008(3):106-112.
    [177]诸大建,顾玉亮,金迪惠,等.上海大都市需要有长治久安的水源地建设[J].中国人口资源与环境.2004,14(6):126-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700