海上钻井平台钻屑处理与远距离输送技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻屑属于石油钻井污染中的固体废物污染,是废弃钻井完井液固液分离后产生的对石油钻井无用的固相。钻屑中含有大量的有机物和有毒重金属,是一种对海洋环境有害的固体废物。钻屑的直接排放,严重污染了海洋环境,必须做无害化处理。海洋钻井环境局限于狭小的钻井平台,现场没有足够大的排污池处理钻屑,海洋石油钻井业发展初期都是直接排入海洋。随着人们的环保意识日益增强,各海洋钻井公司为适应海洋环境保护法律法规的要求,采用船输钻屑的方法运送钻屑,但这种方法成本较高,且易受海洋天气的限制,为减少海上钻井废弃物运输费用,国内外各大石油公司纷纷研究和开发钻屑处理和输送的新技术。
     本文主要针对钻屑的输送问题进行研究。根据钻屑远距离输送的实际要求,设计出一种输送钻屑的方案,即将钻井废弃液首先在钻井平台进行固液分离,然后将分离得到的钻屑输送到陆地做进一步无害化处理。主要研究内容如下:
     (1)在分析废弃钻井液及钻屑流变特性的基础上,根据对废弃钻井液固液分离程度的不同,设计出膏状钻屑和颗粒状钻屑的输送方案,通过对比方案,确定以干燥的颗粒状钻屑输送方案为研究对象,研究过程中对比了负压气力输送和正压气力输送的结构特点和输送情况,最终选择连续性的正压气力输送方案;
     (2)研究了正压气力输送系统的工作原理和工作流程,以系统中的关键零部件供料器和下料阀为对象研究了其结构特点,分析了它们在系统工作中可能存在的问题,并针对问题对其进行了结构优化;
     (3)根据输送的具体要求,计算了气力输送系统中的关键参数,并根据参数的计算结果对系统中的烘干系统和压缩气源装置做了选型;
     (4)利用流体仿真软件对设计的正压输送系统进行了数值模拟,研究结果表明正压气力输送系统模拟过程中所建立的模型和采用的算法具有较高的准确性和预测能力。
Drill cuttings belongs to the solid waste pollution, which is the useless solid phase of the waste drilling fluid after solid-liquid separation. Drilling cuttings are harmful solid waste product during drilling operation, for there’re a lot of organic matters and toxic heavy metal ions in them. The discharge of drilling cuttings created serious marine environmental pollutions, so they must be harmlessly treated. Unlike the land-based drill operation, the offshore drilling’s drill place is limited to the drilling platform, and there aren’t large enough places to handle the drill cuttings in sewage pool. So people always discharged the drill cuttings and drill waste into the ocean directly. As the awareness of people’s environmental protection growing, in order to meet the requirements of environmental protection laws and regulations, oil companies transport the drill cuttings by boat, but this method cost much and was limited by the weather. In order to reduce the cost of offshore drilling waste transportation, many foreign oil companies start to do some researches of the new technologies about local processing of drilling waste.
     This paper studied on the treatment of drilling cuttings during the offshore drilling. According to the demand of the four-hundred transportation distance and the area limitation of the drilling platform, proposed a solution that treated the drilling cuttings on the platform firstly, and then transported the cuttings to land for further treatment. The main contents are as follows:
     Firstly, two different programs was put forward based on the level of solid-liquid separation of drilling waste, which were paste cuttings transport and granular cuttings transport. Then, analyzed the structural and transportation features of the two different conveying systems, one was the negative pressure pneumatic conveying system, the other was the positive pressure pneumatic conveying system. At last, decided the continuous positive pressure pneumatic conveying as the research program according the work requirements.
     Secondly, the system principle and work flow of positive pressure pneumatic conveying system was analyzed, and the problems existing in the pneumatic conveying process was studied on. This paper optimized the feeder and replaced the ball valve by the latest dome valve, which is a good solution to the valve wear.
     Thirdly, the important parameters in the pneumatic conveying system was calculated according to the requirements of transportation, such as the conveying distance and the conveying capacity, then select the air compressor and the dryer.
     Lastly, the conveying system simulated with the fluid simulation software, and the simulation results showed that this simulation model had high accuracy and good predictive ability.
引文
Artur J. Jaworski a, Tomasz Dyakowski. Investigations of flow instabilities within the dense pneumatic conveying system. Powder Technology, 2002,125: 279~291
    C. Herbreteau, R. Bouard. Experimental study of parameters which influence the energy minimum in horizontal gas–solid conveying. Powder Technology, 2000, 112: 213~220
    Gary dietzen, Lafayette. Method and apparatus for handling and disposal of oil and gas well drill cuttings. US patent No.:6179071 B1.
    Gunnar sirevag, Nokkveien. Method for treating drill cuttings during oil and gas drilling. US patent No.:5405223.
    H. Akilli, E.K. Levy, B. Sahin. Gas–solid flow behavior in a horizontal pipe after a 90°vertical-to-horizontal elbow. Powder Technology, 2001, 116: 43~52
    James Andrews, Robert lee, Robert Murphy. Shale shakers and drilling fluid systems. Gulf publishing company.
    Jeffery Reddoch. Method and apparatus for collecting, defluidizing and disposing of oil gas well drill cuttings. Us patent No.:6170580B1
    Jing-yu Xu,Ying-xiangWu, Hua Li. Study of drag reduction by gas injection for power-law fluid flow inhorizontal stratified and slug flow regimes. Chemical Engineering Journal, 2009, 147: 235~244
    Jing-yu Xu,Jun Guo. Study of drag reduction by gas injection for power-law fluid flow inhorizontal stratified and slug flow regimes. Chemical Engineering Journal,2009, 147: 235~244
    John c. reis. Environmental control in petroleum englineering. Gulf publishing company. John Kelly, jr. Arlington. Method and apparatus for disposing of drill cuttings at an offshore location, Us patent No.:4439069.
    Lirio quinero, Jose limia. Treatments for drill cuttings. US patent No.:6602181 B2.
    Michael billeaud, Ron Morrls. Drill cuttings dryer reduces waste, increases fluid recovery. Drilling and completion, 2007, 67: 80~82
    R.J. Wilkens, D.K. Thomas. Multiphase drag reduction: Effect of eliminating slugs. International Journal of Multiphase Flow, 2007, 33: 134~146
    R.L.J. Fernandes,B.M. Jutte,M.G. Rodriguez. Drag reduction in horizontal annular two-phase flow. International Journal of Multiphase Flow, 2004, 30: 1051~1069
    Thomas Greehan, Mike Pincock. Drill cuttings re-injection in challenging environments. Russia report: Sakhalin island, 2005, 65: 50~51
    Wenhao Pu, Changsui Zhao, Yuanquan Xiong. Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure. Chemical Engineering Science,2005, 65: 2500~2512
    安文忠,张滨海,陈建兵.低毒油基钻井液技术.石油钻探技术, 2003,31(6): 33~35 蔡红玲,陈克强.气泡减阻数值模拟.交通科技, 2008, 4: 112~114
    陈涛郁.按两相流动对污水管道输送阻力的理论研究.昆明理工大学学报, 2007, 32(3):68~71
    顾正盟,郭烈锦.水平管内栓塞流气输送的动理学模拟.工程热物理学报, 2006,27(1):75~78
    胡春波,姜培正,胡志伟.圆管内宾汉流体湍流流场的数值模拟, 1997, 31(6): 95~100
    胡春波,尚莲英,蔡体敏.宾汉流体湍流流动的理论研究.西北工业大学学报, 1998, 16(4):589~593
    贾全,王华.湿式喷射混凝土施工技术应用.甘肃铁道(应用技术), 2004,增刊2: 60~63
    江先雄.美国海上CleanCut闭式钻屑清楚系.石油机械, 2002, 30(11): 59~60
    亢力强,曾卓雄,姜培正.宾汉流体与颗粒间的密相两相湍流研究.西安交通大学学报, 2002,36(7): 693~696
    李乐中.钻井废物管理.国外油田工程, 2003, 19(6): 40~41
    李文华.空气助送泥技术的研究与应用.中国水运, 2002, 2: 16~17
    李诗久,周晓君.气力输送理论与应用.北京:机械工业出版社, 1992
    李荫堂,李志勇,黄卓.中浓度气力输送弯管压力降数值模拟研究.硫磷设计与粉体工程, 2006, 6: 21~25
    梁志勇,张乐文,王献孚.微气泡减阻理论分析及构想.武汉造船, 1999, 4: 6~9
    刘济宁,骆宏骞,金劲松.钻井泵用于高粘稠油输送.石油机械, 2006, 34(9): 138~139
    柳亚芳.在五大洲处理50万吨油基钻屑的经验.译自IADC/SPE 99027
    蒲文灏,赵长遂,熊源泉,等.水平管加压密相煤粉气力输送数值模拟.化工学报, 2008, 59(10): 2601~2607
    上海市机电设计院.气力输送装置.北京:机械工业出版社, 1981
    谭幼媛.高浓度浆体输送特性的研究.矿业研究与开发, 1995, 15(2): 9~13
    汤勃,孔建益,饶润生.管道输送加气助送技术研究.湖北工业大学学报, 2008, 23(3): 81~83
    王家楣,姜曼松,郑晓伟,等.不同喷气形式下船舶微气泡减阻水池实验研究.华中科技大学学报(自然科学版), 2004, 32(12): 78~80
    王军义.有效处理钻井废弃物可减少建井总费用.国外油田工程, 2006, 22(9): 24~27
    王蓉沙.钻井废弃物处理技术.石油工业出版社
    王世夏.含沙高速水流掺气特性和掺气抗磨作用.河海大学学报, 1994.4: 21~24
    吴晓.栓流密相气力输送特性的试验研究.硫磷设计与粉体工程, 2009, 1: 13~18
    乌效鸣,胡郁乐,贺冰新,等.钻井液与岩土工程浆液.北京,中国地质大学出版社, 2002
    肖锡发,王世均.高浓度水煤浆管道输送滑移.钢铁, 1994, 29(4): 68~71
    肖锡发,王世均.高浓度水煤浆管道输送搅拌减阻研究.冶金能源, 1992, 11(3): 10~15
    夏德宏,汪浩,王世均,等.高粘度流体的低阻力管道输送原理.钢铁, 1996,31(11): 58~61
    夏德宏,周军,邬婕,等.卡森流体管流动减阻机理及减阻率计算.北京科技大学学报, 2002, 24(24): 452~454
    谢灼利,张政.气力输送的数值模拟研究.北京化工大学学报, 2001, 28(1): 22~27
    谢灼利,黎明,张政.水平管气力输送的数值模拟研究.高校化学工程学报,2006,20(3):331~337
    熊焱军,郭晓镭,龚欣,等.水平管煤粉密相气力输送堵塞临界状态.化工学报, 2009, 60(6):1421~1426
    颜威合,刘春霞,刘新国.气送转子式混凝土湿喷机的改进.中州煤炭, 2008, 5: 96~97
    于承朋.钻井废弃物处理的计算机模型.译自美国SPE 95289
    宇富平.螺旋轴流式多相泵高速变速下输送性能的研究.石油机械, 2004, 32: 3~6
    余洲生.气力输送及其应用.北京:人民交通出版社, 1989
    张建成.废弃钻井液的处理技术.工程技术化工之友, 2007, 07: 10~11
    张轲轲,杨大力,周靖.双套管浓相气力输送的数值模拟.电力建设, 2008,29(11):64~66
    章龙江,陈静惠.宾汉流体在圆管中流动形态的转变.大庆石油学院学报, 1990, 14(3): 13~18
    张明.湿喷稠流输送混凝土的可泵性分析.探矿工程, 2005: 321~324
    张兴荣.非均质流高浓度管流阻力特性研究.水动力学研究与进展, 1992, 7(4): 387~395
    张兴荣.气液两相流边界层阻力特性研究.浆体管道输送国际多相流学术会议论文集, 1988.10
    张元辉,张益智.油田固体废物的污染防治和综合利用实用技术.中国环境科学学会学术年会优秀论文集(2008): 840~842
    赵龙录,杨玉华,贾承恩.铁矿尾矿干法排放工艺及设备.金属矿山, 2009, 12: 148~150
    赵忠举,徐同台,卢淑芹. 2004年国外钻井液技术的新进展. 2005, 22(15): 60~67
    周乃如,朱凤德.气力输送原理与设计计算.郑州:河南科学技术出版社, 1981
    朱汉华,范世东,钟骏杰,等.挖泥船管道输泥带加气助送阻力特性试验研究.船海工程, 2008, 37(2): 120~122
    朱继发,范德顺.密闭式钻屑脱液离心机在钻井液处理中的应用.石油机械, 2005, 33(9): 83~85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700