用户名: 密码: 验证码:
中温固体氧化物燃料电池掺杂CeO_2基电解质的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种高效、清洁的能源转换装置。该领域的研究趋向是追求操作温度中温化,以克服传统高温SOFC(操作温度约1000℃左右)的种种技术和材料问题,并进一步提高性能和降低制造成本。实现中温化主要有两条途径:一是寻找在中温时具有高的氧离子电导率的新型电解质,主要集中在具有立方萤石结构的掺杂CeO_2材料上:另一种是将电解质薄膜化。迄今,大量文献报道了关于掺杂CeO_2基电解质的研究,然而就其理论解释仍然存在很多不足之处。本论文立足于掺杂CeO_2基电解质的研究,试图从电解质的掺杂离子浓度、制备方法、化学组成、氧空位浓度和形貌等多角度考察影响电解质电导性能的因素。主要工作成果归纳如下:
     1、掺杂离子浓度对CeO_2基电解质电导性能的影响
     采用溶胶-凝胶法合成Ce_(1-x)Sm_xO__(2-δ)(x=0,0.1,0.2)系列固体电解质。通过XRD、Raman、SEM和交流阻抗技术系统研究掺杂离子浓度对电解质导电性能的影响。研究结果表明,Ce_(0.9)Sm_(0.1)O_(2-δ)和Ce_(0.8)Sm_(0.2)O_(2-δ)电解质的相对密度和晶粒大小都十分接近。较多Sm~(3+)的掺入能促使样品形成更多的氧空位,更有利于O~(2-)的传递,从而使得Ce_(0.8)Sm_(0.2)O_(2-δ)的电导性能高于Ce_(0.9)Sm_(0.1)O_(2-δ)样品。
     2、不同热处理方法对CeO_2基电解质电导性能的影响
     采用两种不同热处理的柠檬酸溶胶-凝胶法制备Ce_(0.8)Sm_(0.2)O_(2-δ)电解质。结果显示在N_2热处理制备样品的过程中,由于碳包裹在前躯体的周围阻碍了粒子的增长,因而通过这种热处理方法能制备出粒子大小在10 nm以内的样品。同时这些超细纳米粒子在烧结初期能形成较大的成核晶粒,最后形成高致密度和较大晶粒的电解质。研究结果表明即使在相同氧空位浓度条件下,通过N_2热处理制备的电解质由于其高致密度和大晶粒使得其电导性能得到了极大的提高。
     3、双掺杂对CeO_2基电解质电导性能的影响
     采用柠檬酸溶胶-凝胶法制备Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ)、Ce_(0.8)Sm_(0.2)O_(2-δ)和Ce_(0.8)Sm_(0.2)O_(2-δ)电解质。运用XRD、SEM、原位Raman和交流阻抗技术来考察双掺杂对电解质导电性能的影响。SEM结果显示Ce_(0.8)Sm_(0.2)O_(2-δ)和Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ)电解质的晶粒大于Ce_(0.8)Sm_(0.2)O_(2-δ)的晶粒。原位Raman结果表明,双掺杂样品Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ)的氧空位浓度最高,Ce_(0.8)Sm_(0.2)O_(2-δ)的氧空位浓度其次,Ce_(0.8)Sm_(0.2)O_(2-δ)的最少。样品的电导性能不仅与形貌有关而且也与氧空位浓度有着密切的关系。Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ)电解质由于具有大晶粒和高氧空位浓度从而表现出较好的电导性能。
     4、助烧结剂对CeO_2基电解质的性能影响
     采用溶胶-凝胶法制备了掺杂Co_3O_4的Ce_(0.8)Sm_(0.2)O_(2-δ)粉末,考察了少量Co_3O_4掺杂对电解质烧结性能和电导性能的影响。结果发现,通过少量Co_3O_4掺杂的电解质,其烧结活性明显提高,同时在1200℃就可烧结致密,比未掺杂的Ce_(0.8)Sm_(0.2)O_(2-δ)电解质烧结温度降低300℃左右。同时Ce_(0.8)Sm_(0.1)Co_(0.1)O_(2-δ)的电导性能也得到了明显的提高。
Solid oxide fuel cell (SOFC) is a highly efficient and clean energy conversion device. The research interest is to lower the operating temperature to intermediate range, in order to overcome the problem of technique and materials for the traditional high temperature SOFC (operated at about 1000℃), and further improve the performance and reduce the manufacturing cost. There are two main methods to realize the intermediate temperature SOFC. The first one is to develop some new electrolyte materials with high oxygen ionic conductivity at intermediate temperature, the potential candidates are doped ceria. The second one is to reduce the thickness of electrolyte membrance. So far, large amount of papers reported the research of doped ceria, but detailed investigation is still necessary. The current study investigated the influence of content of doped ion, synthesis, chemical composition, content of oxygen vacancies and morphology on the electrical conductivity of the doped ceria electrolytes. The main contents are as follows:
     1. Effect of the content of doped ion on the electrical properties of CeO_2
     A series of Ce_(1-x)Sm_xO__(2-δ) (x= 0, 0.1 and 0.2) solid electrolytes were prepared by a citrate sol-gel method. Influence of content, density, grain size and concentration of oxygen vacancies on their electrical properties were investigated by X-ray diffraction (XRD), Raman spectroscopy, SEM and AC impedance spectroscopy. The XRD results confirmed the formation of Ce_(1-x)Sm_xO__(2-δ) solid solution with uniform particle sizes. The Raman spectroscopic results show that a higher substitution of Sm into the ceria lattice could enhance the formation of oxygen vacancies. Under the same doped ion, grain size and density, the improvement of oxygen vacancies was beneficial to the migration of O~(2-), which resulted in a higher electrical conductivity obtained on the Ce_(1-x)Sm_xO__(2-δ) compared to that of the Ce_(0.9)Sm_(0.1)O_(2-δ).
     2. Effect of thermal treatment conditions on the electrical properties of CeO_2
     Ce_(0.8)Sm_(0.2)O_(2-δ) electrolytes were prepared by sol-gel methods with different thermal treatment conditions. It was found the particle size of the powders thermally treated in N_2 could be controlled less than 10 nm, due to the fact that carbons that enwrapped the precursors could inhibit their crystallization. At the same time, the nano-sized precursors could form larger nuclei at the initial stage of sintering, resulting in the formation of electrolyte with higher density and larger grain size. At the same consent of oxygen vacancies, the enhancement of electrical properties for the electrolyte was correlated to its microstructure obtained by the N_2 thermal treatment.
     3. Effect of co-doped on the electrical properties of CeO_2
     Ce_(0.8)Sm_(0.2)O_(2-δ),Ce_(0.8)Sm_(0.2)O_(2-δ) and Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ) samples were prepared by a citrate sol-gel method. Effects of microstructures and oxygen vacancies of the samples on their electrical properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), in situ Raman spectroscopy and AC impedance spectroscopy. SEM results indicated that larger grains were formed on the Ce_(0.8)Sm_(0.2)O_(2-δ) and Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ) electrolytes compared to that on the Ce_(0.8)Sm_(0.2)O_(2-δ). In situ Raman spectra suggested that the concentration of oxygen vacancies of the Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ) sample was the highest while that of Ce_(0.8)Sm_(0.2)O_(2-δ) was the lowest. It was found that the difference in the electrical conductivity for these electrolytes was closely related to the microstructure and oxygen vacancies of the samples. The highest electrical conductivity obtained on the Ce_(0.8)Sm_(0.1)Nd_(0.1)O_(2-δ) sample was ascribed to its larger grain size and higher concentration of oxygen vacancies.
     4. Effect of sintering promoters on the electrical properties of CeO_2
     Ce_(0.8)Sm_(0.2)O_(2-δ) powder with Co_3O_4 was synthesized by a sol-gel method, and theeffect of Co_3O_4 addition on the sintering and conductivity properties was investigated. The results indicated that after being doped with small quantities of Co_3O_4, the sintering ability increased and densification was reached at 1200℃which was about 300℃lower than that of the Ce_(0.8)Sm_(0.2)O_(2-δ). In the meantime, the electrical conducitivity of Ce_(0.8)Sm_(0.1)Co_(0.1)O_(2-δ) was improved compared with the Ce_(0.8)Sm_(0.2)O_(2-δ).
引文
[1] Damberger T. A.. Fuel cells for hospitals [J]. J. Power Sources, 1998, 71(1-2): 45-50.
    [2] Dufour A. U.. Fuel cells-a new contributor to stationary power [J]. J. Power Sources, 1998, 71(1-2):19-25.
    [3] 孟广耀,刘皖育,彭定坤.新型固体燃料电池-21世纪的绿色能源[J].中国科学院院刊,1998,5:344-347.
    [4] 陈坤饶,沈培康.燃料电池进展(上)[J].电池,1995,24(2):74-78.
    [5] 衣宝廉.燃料电池现状与未来[J].能源杂志,1998,22(5):216-230.
    [6] Bockris J. O. M, Reddy A. K. N.. Modern electrochemistry [M]. New York: Plenum Press, 1970:1530-1550.
    [7] 刘世友,李京萍.燃料电池的开发与展望[J].新能源,1999,6(2):39-41.
    [8] Matsumoto H., Iida Y., Iwahara H.. Current efficiency of electrochemical hydrogen pumping using a high-temperature proton conductor SrCe_(0.95)Yb_(0.05)O_(3-α) [J]. Solid State Ionics, 2000,127(3-4):345-349.
    [9] Scholten M. J., Schoonman J., van Miltenburg J. C., et al.. Synthesis of strontium and barium cerate and their reaction with carbon dioxide [J]. Solid State Ionics, 1993,61(1-3):83-91.
    [10] 韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:17-188.
    [11] Zhang X. G., Ohara S., Maric R., et al.. Ni-SDC cermet anode for medium-temperature solid oxide fuel cells with lanthanum gallate electrolyte [J]. J. Power Sources, 1999, 83(1-2):170-177.
    [12] Ishihara T., Shibayama T., Hiroyasu N., et al.. Nickel-Gd-doped CeO_2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO_3-based perovskite electrolyte [J]. Solid State Ionics, 2000, 132(3-4):209-216.
    [13] 迟克彬,李方伟,李影辉,等.固体氧化物燃料电池研究发展[J].天然气化工,2002,4(27):37-42.
    [14] Choy K., Bai W., Charojrochkul S., et al.. The development of intermediate-temperature solid oxide fuel cells for the next millennium [J]. J. Power Sources, 1998, 71(1-2):361-369.
    [15]Mogensen M., Sammes N. M., Tompsett G. A.. Physical, chemical and electrochemical properties of pure and doped ceria [J]. Solid State Ionics, 2000, 129(1-4):63-94.
    [16]Enrique R. T., Gustavo T., Hector G.O.. Structure and electronic conductivity of reduced Gd-doped CeO_2 [J]. J. Electrochem. Soc., 2006,154(2):A70-A74.
    [17]Arai H., Kunisaki T., Yasuhiro S., et al.. Electrical properties of calcia-doped ceria with oxygen ion conduction [J]. Solid State Ionics, 1986,20(4):241-248.
    [18]Yahiro H., Babo T., Eguchi K, et al.. High-temperature fuel cell with ceria-yttria solid electrolyte [J]. J. Electrochem. Soc, 1988,135(8):2077-2080.
    [19]刘旭俐,马峻峰,刘文化,等.固体氧化物燃料电池材料的研究进展[J].硅酸盐通报,2001,20(1):24-29.
    [20]Butler V., Catlow C. R. A., Fender B. E. F., et al.. Dopant ion radius and ionic conductivity in cerium dioxide [J]. Solid State Ionics, 1983, 8(2):109-113.
    [21]Yahiro H., Eguchi K., Ariai H.. Electrical properties and reducibilites of ceria-rare earth oxide systems and their application to solid oxide fuel cell [J]. Solid State Ionics, 1989, 36(1-2):71-75.
    [22]Eguchi K., Setoguchi T., Inoue T., et al.. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells [J]. Solid State Ionics, 1992, 52(1-3):165-172.
    [23]Yahiro H., Eguchi Y, Eguchi K., et al.. Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure [J]. J. Appl. Electrochem., 1988,18(4):527-531.
    [24]Reiss I., Mitsuyasu H., Ohtaki M., et al.. Density and ionic conductivity of sintered (CeO_2)_(0.8)(Gd_2O_3)_(0.2) [J]- J- Am. Ceram. Soc., 1981, 64:479-486.
    [25]Huang W., Shuk P., Greenblatt M.. Properties of sol-gel prepared Ce_(1-x)Sm_xO_(2-x/2) solid electrolytes [J]. Solid State Ionics, 1997,100(1-2):23-27.
    [26]Peng R. R., Xia C. R., Fu Q. X., et al.. Sintering and electrical properties of (CeO_2)_(0.8)(Sm_2O_3)_(0.1) powders prepared by glycine-nitrate process [J]. Mater. Lett., 2002, 56(6): 1043-1047.
    [27]Mric R., Seward S., Faquv P. W.. Electrolyte materials for intermediate temperature fuel cells produced via combustion chemical vapor condensation [J]. Electrochem. Solid-State Lett., 2003, 6(5):A91-A95.
    [28]Herle J. V., Horita T., Kawada T., et al.. Oxalate coprecipitation of doped ceria powder for tape casting [J]. Ceram. Int., 1998, 24(3):229-241.
    [29]Dikmen S, Shuk P, Greenblatt M. Hydrothermal synthesis and properties of Ce_(1-x)La_xO_(2-δ) solid solutions [J]. Solid State Ionics, 1999, 126(1-2):89-95.
    [30]Yamashita K., Ramanujachary K. V., Greenblatt M.. Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics [J]. Solid State Ionics, 1995, 81(1-2):53-60.
    [31]Gu Y. R, Li G, Meng G Y., et al.. Sintering and electrical properties of coprecipitation prepared Ce_(0.8)Y_(0.2)O_(1.9) ceramics [J]. Mater. Res. Bull., 2000, 35(1):297-304.
    [32]Mori T., Ikegami T., Yamamura H.. Application of a crystallographic index for improvement of the electrolytic properties of the CeO_2-Sm_2O_3 system [J]. J. Electrochem. Soc, 1999,146(12):4380-4385.
    [33]Maricle D. L., Swarr T. E., Karavolis S.. Enhanced ceria at low-temperature SOFC electrolyte [J]. Solid State Ionics, 1992, 52(1-3):173-182.
    [34]Dudek M., Bogusz W., Zych L., et al.. Electrical and mechanical properties of CeO_2-based electrolytes in the CeO_2-Sm_2O_3-M_2O_3 (M=La, Y) system [J]. Solid State Ionics, 2008, 179(1-6):164-167.
    [35]Kim N., Kim B. H., Lee D.. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte [J]. J. Power Sources, 2000, 90(2): 139-143.
    [36]Kharton V. V., Figueiredo F. M., Mavarro L., et al.. Ceria-based materials for solid oxide fuel cells: Fuel Cells [J]. J. Mater. Sci., 2001, 36(5), 1105-1117.
    [37]Kim S. G., Yoon S. P., Nam S. W., et al.. Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method [J]. J. Power Sources, 2002, 110(1):222-228.
    [38]Mishma Y, Mitsuyasu H., Ohtaki M., et al.. Solid oxide fuel cell with composite electrolyte consisting of samaria-doped ceria and yttristablilizered zirconia [J]. J. Electrochem. Soc., 1998,145(5):1696-1701.
    [39]Bauerle J.. Study solid electrolyte polarization by a complex admittance method [J]. J.Phys. Chem. Solids, 1969, 30(12):2657-2670.
    [40]Minh N. Q.. Ceramic Fuel Cells [J]. J. Am. Ceram. Soc, 1993, 76(3):553-558.
    [41]江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展[J].化学进 展,1997,9(4):387-396.
    [42]Inaba H., Tagawa H.. Ceria-base solid electrolytes [J]. Solid State Ionics, 1996,83(1-2):1-16.
    [43]Peng C., Wang Y., Jiang K., et al.. Study on the structure change and oxygen vacation shift for Ce_(1-x)Sm_xO_(2-y) solid solution [J]. J. Alloys Compd., 2003, 349(1-2):273-278.
    [44]Chourashiya M. G., Patil J. Y, Pawar S. H., et al.. Studies on structural, morphological and electrical properties of Ce_(1-x)Gd_xO_(2-(x/2)) [J]. Mater. Chem. Phys.,2008, 109(1):39-44.
    [45]Koichi E.. Ceramic materials containing rare earth oxides for solid oxide fuel cell [J]. J. Alloys Compd., 1997,250(1-2):486-491.
    [46]Wang Y. R., Mori T., Li J. G., et al.. Synthesis, characterization, and electrical conduction of 10 mol % Dy_2O_3-doped CeO_2 ceramics [J]. J. Eur. Ceram. Soc., 2005, 25(6):949-956.
    [47]Dudek M.. Ceramic oxide electrolytes based on CeO_2-preparation, properties and possibility of application to electrochemical devices [J]. J. Eur. Ceram. Soc., 2008,28(5):965-971.
    [48]蒋凯,孟健,何志奇,等.(Ce_(0.8)RE_(0.2))_(1-x)M_xO_(2-δ)固体电解质的溶胶-凝胶合成及其电性质[J].中国科学B辑,1999,29(4):254-258.
    [49]Balazs G. B., Glass R. S.. Ac impedance studies of rare oxide doped ceria [J]. Solid State Ionics, 1995, 76(1-2):155-162.
    [50]McBride J. R., Hass K. C., Poindexter B. D., et al.. Raman and x-ray studies of Ce_(1-x)RE_xO_(2-y), where RE=La, Pr, Nd, Eu, Gd, and Tb [J]. J. Appl. Phys., 1994, 76(4):2435-2441.
    [51]Pu Z. Y, Lu J. Q., Luo M. F., et al.. Study of oxygen vacancies in Ce_(0.9)Pr_(0.1)O_(2-δ) solid solution by in situ XRD and in situ Raman spectroscopy [J]. J. Phys. Chem. C,2007,111(50): 18695-18702.
    [52]李英,谢裕生,陈运法,等.Y_2O_3稳定ZrO_2材料的电导活化能[J].无机材料学报,2002,17(4):811-816.
    [53]Sha X. S., L(?) Z., Huang X. Q., et al.. Influence of the sintering temperature on electrical property of the Ce_(0.8)Sm_(0.1)Y_(0.1)O_(1.9) electrolyte [J]. J. Alloys Compd., 2007, 433(1-2):274-278.
    [54]Irvine J. T. S., Sinclair D. C, West A. R.. Electroceramics: characterization by impedance spectroscopy [J]. Adv. Mater., 1990,2(3):132-138.
    [55]Chen X. J., Khor K. A., Chan S. H., et al.. Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5 wt % silica-doped yttria-stabilized zirconia (YSZ) [J]. Mater. Sci. Eng. A, 2004, 374(1-2):64-71.
    [56]Tuller H. L.. Ionic conduction in nanocrystalline materials [J] Solid State Ionics, 2000,131(1-2):143-157.
    [57]Chen P. L., Chen I. W.. Sintering of fine oxide powders: Ⅱ sintering mechanisms [J]. J. Am. Ceram. Soc., 1997, 80(3):637-645.
    [58]Cheng J. G., Zha S. W., Huang J., et al.. Sintering behavior and electrical conductivity of Ce_(0.9)Gd_(0.1)O_(1.95) powder prepared by the gel-casting process [J]. Mate. Chem. Phys., 2003, 78(3):791-795.
    [59]Huang W., Shuk P., Greenblatt M.. Hydrothermal synthesis and properties of Ce_(1-x)Sm_xO_(2-x/2) and Ce_(1-x)Ca_xO_(2-x) solid solution [J]. Chem. Mater., 1997, 9(10):2240-2245.
    [60]Herle J. V., Horita T., Kawada T., et al.. Sintering behaviour and ionic conductivity of yttria-doped ceria [J]. J. Eur. Ceram. Soc, 1996,16(9):961-973.
    [61]Xie G. Q., Luo M. F., He M., et al.. An improved method for preparation of Ce_(0.8)Pr_(0.2)O_Y solid solutions with nanoparticles smaller than 10 nm [J]. J. Nano. Res., 2007, 9(3):471-478.
    [62]Zhou Y. C., Rahaman M. N.. Effect of redox reaction on the sintering behavior of cerium oxide [J]. Acta Mater., 1997,45(9):3635-3639.
    [63]Weber W. H., Hass K. C., McBride J. R.. Raman study of CeO_2: second-order scattering, lattice dynamics, and particle-size effects [J]. Phys. Rev. B, 1993, 48:178-185.
    [64]Li J. G., Ikegami T., Mori T.. Low temperature processing of dense samarium-doped CeO_2 ceramics: sintering and grain growth behaviors [J]. Acta Mater., 2004, 52(8):2221-2228.
    [65]Shi L. J., Ruan M. L., Yen T. S.. Crystallite growth in yttria-doped superfine zirconia powders and their compacts: a comparison between Y-TZP and YSZ. [J]. Ceram. Int., 1996, 22(2): 137-142.
    [66]Han M. F., Tang X. L., Yin H. Y, et al.. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs [J]. J. Power Source, 2007,165(2):757-763.
    [67]Wang DY, Park DS, Griffith J, et al.. Oxygen-ion conductivity and defect interactions in yttria-doped ceria.Solid State Ionics 1981;2:95-105
    [68]Etsell T. H., Flengas S. N.. Electrical properties of solid oxide electrolytes [J]. Chem. Rev., 1970, 70(3):339-376.
    [69]Bellon O., Sammes N. M., Staniforth J. Mechanical properties and electrochemical characterization of extruded doped cerium oxide for use as an electrolyte for solid oxide fuel cells [J]. J. Power Sources, 1998, 75(1):116-121.
    [70]Jung G. B., Huang T. J.. Sintering temperature, microstructure and resistivity of polycrystalline Sm_(0.2)Ce_(0.8)O_(1.9) as SOFC's electrolyte [J]. J. Mater. Sci., 2003, 38(11):2461-2468.
    [71]Huang W., Shuk P., Greenblatt M.. Hydrothermal synthesis and properties of terbium- or praseodymium-doped Ce_(1-x)Sm_xO_(2-x/2) solid solutions [J]. Solid State Ionics, 1998,113-115(l-2):305-310.
    [72]Shannon R. D.. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides [J]. Acta Cryst, 1976, A32:751-767.
    [73]Upadhyaya D. D., Bhat R., Ramanathan S., et al.. Solute effect on grain growth in ceria ceramics [J]. J. Eur. Ceram. Soc., 1994,14(4):337-341.
    [74]Yamamura H., Takeda S., Kakinuma K.. Relationship between oxide-ion conductivity and dielectric relaxation in Sm-doped CeO_2 [J]. Solid State Ionics, 2007, 178(13-14):889-893.
    [75]David A. A., Sergei I. S., Natalia V. S., et al.. Optimization of ionic conductivity in doped ceria [J]. PNAS, 2006,103(10):3518-3521.
    [76]Kleinlogel C., Gauckler L. J.. Sintering and properties of nanosized ceria solid solutions [J]. Solid State Ionics, 2000,135(1-4):567-573.
    [77]Zhang X. G., Petit C. D., Yick S., et al.. A study on sintering adis for Sm_(0.2)Ce_(0.8)O_(1.9) electrolyte [J]. J. Power Sources, 2006, 162(1):480-485.
    [78]Yoshida H., Miura K., Fujita J I., et al.. Effect of gallia addition on the sintering behavior of samaria-doped ceria [J]. J. Am. Ceram. Soc., 1999, 82(1):219-221.
    [79]Hadjiev V. G., Uiev M. N., Vergilov I.V.. The Raman spectra of Co_3O_4 [J]. J. Phys. C: Solid State Phys., 1988, 21(7):L199-L201.
    [80]闫瑞强,高思蓉,刘杏芹,等.助烧结剂Co_3O_4对SDC粉体烧结性能的改性研究[J].中国科学技术大学学报,32(增刊):295-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700