单气室固体氧化物燃料电池组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单气室固体氧化物燃料电池(SC-SOFC)作为一种新结构的燃料电池,仅有一个气室,使用燃料-氧气混合气体运行,而无需将氧气与燃料隔离开来。SC-SOFC是利用阳极和阴极对工作气体的选择催化性的差异产生电压来工作的。近些年,单气室固体氧化物燃料电池发展十分迅速,而且由于其无需密封等优点,SC-SOFC在电池组方面的研究已逐渐成为燃料电池研究的一个新热点。
     本文首先对单气室气氛下的电极性能及电极性能的优化等方面进行了研究。在对使用Sm0.2Ce0.8(NO3)x溶液浸渍LSM阴极与未浸渍阴极的阻抗对比发现单气室气氛下,通过浸渍方法可以有效降低阴极电阻,从而提升电池的性能。在对两电极与四电极测试方法的对比中可看到四电极法测试可以有效扣除引线电阻的影响,从而准确地测试出电池性能。对于阴极来说,其在不同温度下随着不同的气体成分的变化规律并不完全相同,而且在750℃时,出现了低频半圆决定的部分在成为反应速率的控制步骤的现象。在对电解质支撑型的对称阳极电池的测试发现,由于阳极层较薄而导致温度效应不明显,而且气体扩散电阻也不显著。
     通过对不同流速下电池组性能的比较,流速为400 sccm时电池堆性能达到了较高水平,因此,将此流速值作为基本流速参数使用。对阳极对阴极型结构进行了研究,面对狭窄气道的电极很容易受到影响,从而会导致该电极阻抗变大,进而影响到电池的开路电压及输出功率。
     对于电池组性能的研究,首先从两电池电池组入手。对于两电池电池组,较好的CH4/O2气体比例是1~1.5,但由于较小比例时出现了一些浓差极化,再加上对燃料利用率的考虑,最优比例应在1.5左右。而电池组在设定炉温为700℃性能最好,且气体比例为1时,功率达到371 mW,相应的最大质量比功率密度达到了552 mW/g。与两电池电池组不同,三电池电池组的最优气体比例出现在1:1时,而且电池组的性能是随着温度的增加在提高,在800℃时,最大功率输出为282 mW,其最大质量比功率密度达到了282 mW/g。而在对七电池串联的电池组的初步研究中发现,通过简单串联可有效得到想要的开路电压值,但此多电池电池组也暴露出流场设计的一些问题,暗示着在多电池电池组系统中,流场的优化设计将是一个十分关键的问题。
     另外,在对各电池组之间的对比中,也发现了一些相同或是相似的规律,比如:OCV随气体比例的变化等。通过对电池组间的一些纵向对比,可以帮助推断出任意规模电池组系统可能存在的一些规律和问题,有利于电池组系统的实用化。
Single-chamber solid oxide fuel cell (SC-SOFC) is a novel type fuel cell with only one gas compartment where the oxidant and fuel are not separated. SC-SOFC relies on the selectivity of anode and cathode electrocatalysts to separate the electrochemical oxidation of fuel and reduction of oxidant. Recent years, with rapid development of SC-SOFCs research, the research in SC-SOFC stack is of great interest because of no sealing between anode and cathode.
     The properties of electrodes under single-chamber conditions and the optimization of electrodes properties were researched. By comparing the impedance spectra of cathode which was impregnated by the solution of Sm0.2Ce0.8(NO3)x with that of the non-impregnated cathode, it shows the ion impregnation technique can great reduce the cathode polarization resistance and will improve the performance of fuel cell. The result tested by four-probe method can eliminate the resistance of Ag wire efficiently; it is more precise than that tested by two-probe method. At different temperatures the tendency of the properties of cathode vary with various CH4/O2 ratio is different. At 750℃, the semicircle at lower frequency probably behaves as the rate-determining process of the electrode. For the anode symmetrical cell, the overheating of cell is not obvious because the anode is very thin. The gas diffusion resistance is also not obvious.
     The effects of mixed gas flow rate were studied. At a flow rate of 400 sccm, the performance of the stack has reached a higher level, which was used in the following measurements. According to the anode-facing-cathode configuration, the electrodes facing the narrow gas path are easy to be influenced. So the resistance of them will increase and the performance of cell will be influenced too.
     According to stack, the stack using two single cells was studied firstly. The power outputs of the stack from 1:1 to 1.5:1 are better than that from 1.75 to 2. However, I-V curves show the concentration polarization at higher current densities at CH4/O2 ratios of 1 and 1.25. Moreover, the fuel utilization of the stack at a CH4/O2 ratio of 1.5 is higher than the others. So the optimal methane-to-oxygen ratio is around 1.5 in order to achieve good performance. At 700℃and CH4/O2=1, the power output of stack is 371 mW and the maximum mass specific power is as high as 552 mW/g. According to the stack using three single cells, the optimal methane-to-oxygen ratio of is around 1. The performance of the stack increase obviously with the increase of temperature. At 800℃and CH4/O2=1, the power output of stack is 282 mW and the maximum mass specific power is as high as 282 mW/g. After the primary study for the stack using seven single cells, it shows that the any OCV of stack can be obtained by several series-wound single fuel cells. Also, the design of flow geometry is very important for the stack using several series-wound single fuel cells.
     The same or similar trends are obtained by comparing the result of the stack, such as the increase of OCV was observed as the CH4/O2 ratio increased. It is advantageous for commercial portable power generation in the future.
引文
1衣宝廉.燃料电池—原理·技术·应用.化学工业出版社,2003: 6~9
    2李瑛,王林山.燃料电池.冶金工业出版社, 2000: 2~5
    3 N. Minh. Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993, 76 (3): 563~564 575~580
    4韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.科学出版社, 2004: 7~15 18~24 126~129 227~233
    5 S.C. Singhal. Advances in Solid Oxide Fuel Cell Technology. Solid State Ionics. 2000 (135): 305~313
    6 S. Jung, C. Lu, H. He, K. Ahn, R.J. Gorte, J.M. Vohs. Influence of Composition and Cu Impregnation Method on the Performance of Cu/CeO2/YSZ SOFC Anodes. J. Power Sources. 2006 (154): 42~50
    7 O. Costa-Nunes, R.J. Gorte, J.M. Vohs. Comparison of the Performance of Cu-CeO2-YSZ and Ni-YSZ Composite SOFC Anodes with H2, CO, and Syngas. J. Power Sources. 2005 (14): 241~249
    8魏波,吕喆,黄喜强,刘志国,艾刚,苏文辉.单气室固体氧化物燃料电池的研究及新进展.电源技术. 2006(30): 243~246
    9陈胜洲,董新法,林维明.单气室固体氧化物燃料电池的研究进展.电源技术. 2003 (27):134~136
    10艾刚,吕喆,魏波,黄喜强,陈孔发,苏文辉.阳极支撑型单气室固体氧化物燃料电池的性能.催化学报. 2006 (27): 885~889
    11 T.W. Naporn, X. Jacques-Bédard, F. Morin, and M. Meunier. Operating Conditions of a Single-Chamber SOFC. J. Electrochem. Soc. 2004 (151): A2088~A2094
    12 X. Jacques-Bédard, T.W. Napporn, R. Roberge, and M. Meunier. Performance and Aging of an Anode-Supported SOFC Operated in Single-Chamber Conditions. J. Power Sources. 2006 (153): 108~113
    13 Z.P. Shao, J. Mederos, W.C. Chueh, S.M. Haile. High Power-Density Single-Chamber Fuel Cells Operated on Methane. J. Power Sources. 2006 (162): 589~596
    14 T. Hibino, K. Ushiki, T. Sato, Y. Kuwahara. A Novel Cell Design for SimplifyingSOFC System. Solid State Ionics. 1995 (81): 1~3
    15 T. Hibino, K. Ushiki, Y. Kuwahara. New Concept for Simplifying SOFC System. Solid State Ionics. 1996 (91): 69~74
    16 T. Suzuki, P. Jasinski, H.U. Anderson, and F. Dogan. Single Chamber Electrolyte Supported SOFC Module. Electrochem. Solid State Lett. 2004 (7): A391~A393
    17 Z.P. Shao, S.M, Haile, J. Ahn, P.D. Ronney, Z.L. Zhan, and S.A. Barnett. A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack with High Power Density. Nature. 2005 (435): 795~798
    18 T. Hibino, A. Hashimoto, M. Suzuki, M. Yano, S. Yoshida, and M. Sano. A Solid Oxide Fuel Cell with a Novel Geometry That Eliminates the Need for Preparing a Thin Electrolyte Film. J. Electrochem. Soc. 2002 (149): A195~ A200
    19 T. Hibino, H. Tsunekawa, S. Tanimoto, and M. Sano. Improvement of a Single-Chamber Solid-Oxide Fuel Cell and Evaluation of New Cell Designs. J. Electrochem. Soc. 2000 (147): A1338~1343
    20 T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, and M. Sano. A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures. Science. 2000 (288): 2031~2033
    21 T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, and M. Sano. Single-Chamber Solid Oxide Fuel Cell at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures. J. Electrochem. Soc. 2000 (147): A2888~2892
    22 T. Suzuki, P. Jasinski, H.U. Anderson, and F. Dogan. Role of Composite Cathodes in Single Chamber SOFC. J. Electrochem. Soc. 2004 (151): A1678~A1682
    23 T.W. Naporn, F. Morin, and M. Meunier. Evaluation of the Actual Working Temperature of a Single-Chamber SOFC. Electrochem. Solid State Lett. 2004 (7): A60~A62
    24 Z.P. Shao, C. Kwak, and S.M, Haile. Anode-Supported Thin-Film Fuel Cells Operated in a Single Chamber Configuration 2T-I-12. Solid State Ionics. 2004 (175): 39~46
    25 A. Tomita, D. Hirabayashi, T. Hibino, M. Nagao, and M. Sano. Single-Chamber SOFCs with a Ce0.9Gd0.1O1.95 Electrolyte Film for Low-Temperature Operation. Electrochem. Solid-State Lett. 2005 (1): A63~A65
    26 T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, and M. Sano. A SolidOxide Fuel Cell Using an Exothermic Reaction as the Heat Source. J. Electrochem. Soc. 2001, 148 (6): A544~A549
    27 I.C. Stefan, C.P. Jacobson, S.J. Visco, and L.C. De Jonghe. Single Chamber Fuel Cells: Flow Geometry, Rate, and Composition Considerations. Electrochem. Solid-State Lett. 2004 (7): A198~A200
    28 T. Suzuki, P. Jasinski, V. Petrovsky, H.U. Anderson, and F. Dogan. Anode Supported Single Chamber Solid Oxide Fuel Cell in CH4-Air Mixture. J. Electrochem. Soc. 2004 (151): A1473~A1476 A1474~ A1475
    29 T. Suzuki, P. Jasinski, V. Petrovsky, H.U. Anderson, and F. Dogan. Performance of a Porous Electrolyte in Single-Chamber SOFCs. J. Electrochem. Soc. 2005 (152): A527~A531
    30 B.E. Buergler, M.E. Siegrist, and L.J. Gauckler. Single Chamber Solid Oxide Fuel Cells with Integrated Current-Collectors. Solid State Ionics. 2005 (176): 1717~1722
    31 I. Riess, P.J. van der Put, and J. Schoonman. Solid Oxide Fuel Cells Operating on Uniform Mixtures of Fuel and Air. Solid State Ionics. 1995 (82): 1~4
    32 P. Jasinski, T. Suzuki, F. Dogan, and H.U. Anderson. Impedance Spectroscopy of Single Chamber SOFC. Solid State Ionics. 2004 (175): 35~38
    33 C.K. Dyer. Fuel Cell for Portable Applications. J. Power Sources. 2002 (106): 31~34
    34 S.P. Jiang, Y.J. Leng, S.H. Chan, K.A. Khor. Development of (La,Sr)MnO3–Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochem. Solid State Lett. 2003 (6): A67~A70
    35 K.F. Chen, Z. Lü, X.J. Chen, N. Ai, X.Q. Huang, B. Wei, J.Y. Hu, and W.H. Su. Characteristics of NiO-YSZ Anode Based on NiO Particles Synthesized by the Precipitation Method. J. Alloy. Comp. 2007, doi:10.1016/j.jallcom.2006.12.130
    36 K.F. Chen, Z. Lü, N. Ai, X.Q. Huang, Y.H. Zhang, X.S. Xin, R.B. Zhu, and W.H. Su. Development of Yttria-Stabilized Zirconia Thin Films via Slurry Spin Coating for Intermediate-to-low Temperature Solid Oxide Fuel Cells. J. Power Sources. 2006 (160): 436~438
    37陈孔发.阳极支撑的氧化锆电解质薄膜制备方法研究.哈尔滨工业大学硕士论文. 2006: 31~38
    38 T. Suzuki, M. Awano, P. Jasinski, V. Petrovsky, H.U. Anderson. Composite (La,Sr)MnO3-YSZ Cathode for SOFC. Solid State Ionics, 2006 (177): 2071~2074
    39 X. Xu, Z. Jiang, X. Fan, C. Xia. LSM-SDC Electrodes Fabricated with an Ion-Impregnating Process for SOFCs with Doped Ceria Electrolytes. Solid State Ionics. 2006 (177): 2113~2117
    40 E. P. Murray, S.A. Barnett. (La, Sr)MnO3-(Ce, Gd)O2-x Composite Cathode for Solid Oxide Fuel Cells. Solid State Ionics. 2001 (143): 265~273
    41 B. Wei, Z. Lü, X.Q. Huang, M.L. Liu, K.F. Chen, W.H. Su. Enhanced Performance of a Single-Chamber Solid Oxide Fuel Cell with an SDC-Impregnated Cathode. J. Power Sources. 2007 (167): 58~63
    42张耀辉.固体氧化物燃料电池两种电解质膜制备方法的研究与应用.哈尔滨工业大学博士论文. 2006: 26~27
    43 B. Morel, R. Roberge, S. Savoie, T.W. Napporn, M. Meunier. Catalytic Activity and Performance of LSM Cathode Materials in Single Chamber SOFC. Applied Catalysis A: General 323, 2007: 181~187
    44 T. Hibino, Y. Kuwahara, and S. Wang. Effect of Electrode and Electrolyte Modification on the Performance of One-Chamber Solid Oxide Fuel Cell. J. Electrochem. Soc. 1999, 146 (8): 2821~2826
    45艾刚.单气室固体氧化物燃料电池性能的研究.哈尔滨工业大学硕士论文. 2006: 54~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700