电解质支撑型单室固体氧化物燃料电池组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单气室固体氧化物燃料电池(SC-SOFC)是一种新型结构燃料电池,这种电池仅在一个气室中运行,因而不同于传统的、由被致密的电解质隔开的两个气室构成的双气室结构的燃料电池。SC-SOFC的运行原理基于阳极和阴极对燃料和氧气不同的选择催化性,要求阴极对O2的还原催化活性较高,要求阳极对燃料催化活性较高,这种催化差异使两电极之间产生了电动势。SC-SOFC具有如下优点:阴阳极之间无需密封;多孔电解质也可以使用;可以比较容易地实现小规模的电池组设计。本文工作主要包括对影响电解质支撑型SC-SOFC单电池性能的因素进行分析,重点了研究电池的结构类型、温度、气体配比、电极选配等这些关键材料和技术参数对SC-SOFC性能的影响规律,进而对电解质支撑型SC-SOFC电池组进行了设计和初步的实验探索,还专门针对电解质支撑型SC-SOFC电池组的特点,提出了中间带隔离层的单片电池组结构设计。
     本论文的研究结果表明,对于电解质支撑型的SC-SOFC,阳极的厚度严重影响其单电池性能,因为传统的电解质支撑型电池所用的阳极涂层无法使其得到稳定的开路电压输出,阳极必须达到一定的厚度。在成功制备了电解质支撑型SC-SOFC的基础上,比较系统地研究了环境温度、混合气体组分等因素对电池开路电压(OCV)和功率密度的影响。发现阴极/阳极对侧布局的单电池在700°C、CH4/O2比例等于2:1时,电池性能最好,此时电池的OCV值达到1.01V ,接近理论值,对应的最高输出功率密度为151.4 mW/cm2 ,最大放电电流密度为624.6mA/cm2。用按照Sm0.2Ce0.8O1.9(SDC)计量比配制的Sm(NO3)3和Ce(NO3)3混合溶液对电池的阴极进行浸渍后,电池的性能能够得到明显的改善。
     对电解质支撑型SC-SOFC,进行了三种结构电池组的实验。在700℃、CH4/O2比例等于2:1时,A型结构的两电池组和三电池组的OCV值分别为1.66、2.76V,对应最高功率密度分别为61.5mW/cm2、96.82mW/cm2,B型结构的两电池组OCV值1.62V,对应的最高功率密度为9.35mW/cm2。开发出带有中间隔离层的新型三明治结构电解质片,研究了它对不同电极布局的单电池内阻的影响规律,发现隔离层可以有效地提高上下电解质层上电极之间的电阻。通过选择催化性强的电极材料和优化工作条件,电池组的性能会有更近一步的提高。
Single-chamber solid oxide fuel cell (SC-SOFC) is a novel type fuel cell which can operate in only one gas chamber,while conventional fuel cell consist of two gas chambers partitioned by gastight electrolyte. Working principle of SC-SOFC is based on difference of two electrodes’electrocatalytic activity for fuel and air, and anode has a higher electrocatalytic activity for the oxidation of the fuel, whereas cathode has a higher electrocatalytic activity for eduction of oxygen. Thus it results in an electromotive force (EMF) between the two electrodes. SC-SOFC have some advantages over conventional SOFC: Tealing between anode and cathode is unnecessary; porous electrolyte can be used; The design of small scale stacks is easy. This paper mainly includes exploring which factor has an influence on electrolyte supported SC-SOFC performance, and we placed emphsis on researching how cell type, temperature, gas flow ratio as well as electrode choice affect SC-SOFC performance and further designed and explored stacks. in the end we designed an stack structure using electrolyte which has an separated layer among it especiallly for the feature of electrolyte-supported SC-SOFC.
     Research result in this paper showed that thickness of anode for electrolyte supported SC-SOFC affected its performance.Because anode layer for conventional electrolyte supported SC-SOFC can’t make it reach a steady open circuit potentional(OCV), it was necessary to make cell anode more thicker. We systematically discussed how temperature and composition of mixed gas affected cell electrochemical properties , and founded cell Performance was best when ratio of CH4 to O2 is 2 at 700℃,OCV of cell reached 1.01V at 700℃, which approached theory voltage value. Maximum power density of cell reached 151.4 mW/cm2 and maximum discharge current density of cell reached 624.6mA/cm2。After cathode of cell was impregnated by the mixed solution of Sm(NO3)3 and Ce(NO3)3 prepared according to the computation ratio of Sm0.2Ce0.8O1.9(SDC), the properties of cell could be improved obviously.
     The investigation on SC-SOFC stacks involved three sorts of structure stacks. When the ratio of CH4 to O2 is equal to 2 at 700°C, OCV of A-type stack with two and three single cells was 1.66、2.76V, correspondingly the maximum power density was 61.5、96.82mW/cm2, respectively. In the same condition as above, OCV of B-type stack with two single cells was 1.62V,and the maximum power density was 9.35mW/cm2. We developed an one called sandwich structure electrolyte and researched how it affected inter resistence of single cell when cell electrodes arrangement was different, and we founded separated layer could effectively improve impedance between two electrode which are located on the opposite sides of electrolyte. We could improve properties of cell by seeking electrode material with good selective catalysis and optimizing work conditions.
引文
1 N. Minh. Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993, 76(10): 565~589
    2毛宗强.燃料电池.化学工业出版社, 2005: 1~10
    3隋智通,隋升.燃料电池及其应用.冶金工业出版社,2004: 94~96
    4韩敏芳,彭素萍.固体氧化物燃料电池材料及制备.科学出版社, 2004: 7~11
    5吕振刚,郭瑞松.钙钛矿型中温固体氧化物燃料电池阴极材料.中国陶瓷. 2004, 40: 2
    6 M. L. Perry, T. F. Fuller. A Historical Perspective of Fuel Cell Technology in the 20th Century. Electrochem. Soc. 2002, 149: 59~67
    7王康,邵宗平.单室固体氧化物燃料电池.化学进展. 2007, 19(2): 267~275
    8 M. Yano, A. Tomita. Recent Advances in Single-Chamber Solid Oxide Fuel Cells. Solid State Ionics. 2006, 10: 14~22
    9 T. Hibino, A. Hashimoto. A Solid Oxide Fuel Cell with a Novel Geometry That Eliminates the Need for Preparing a Thin Electrolyte Film. Electrochem. Soc. 2002, 149(2): 195~200
    10 T. Hibino, Y. Kuwahara. Effect of Electrode and Electrolyte Modification on the Performance of One-Chamber Solid Oxide Fuel Cell. Electrochem. Soc. 1999, 146: 2821~2826
    11 K. Asano, H. J. Iwahara. Performance of One-Chamber Solid Oxide Fuel Cell with a Surface-Modified Zirconia Electrolyte. Electrochem. Soc. 1997, 144: 3125~ 3130
    12 T. Ishihara, Y. Yamada. Partial Oxidation of Methane over Fuel Cell Type Reactor for Simultaneous Generation of Synthesis Gas and Electric Power. Chem. Eng. Sci. 1999, 54: 1535~1540
    13 B. E. Buergler, M. E. Siegrist. Single-Chamber Solid Oxide Fuel Cells with Integrated Current-Collectors. Solid State Ionics. 2005, 176: 1717~1722
    14 T. Hibino, S. Wang. Single Chamber Solid Oxide Fuel Cell Constructed from an Yttria-stabilized Zirconia Electrolyte. J. Electrochem. Solid-State Letter. 1999, 2: 317~319
    15 T. Hibino, A. Hashimoto. Improvement of Single-Chamber Solid-Oxide Fuel Cell and Evaluation of New Cell Designs. Electrochem. Soc. 2000, 147(4):1338~1343
    16 T. Hibino, K. Yoshitaka. Effect of Electrode and Electrolyte Modification on the Performance of One-Chamber Solid Oxide Fuel Cell. Electrochem. Soc. 1999, 146(8): 2821~2826
    17 T. Hibino, A. Hashimoto. Single-Chamber Solid Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures. Electrochem.Soc. 2000, 147: 2888~2892
    18 T. Suzuki, P. Jasinski. Role of Composite Cathodes in Single Chamber SOFC. Electrochem. Soc. 2004, 151: 1678~1682
    19 A. Tomita, D. Hirabayashi. Single-Chamber SOFCs with a Ce0.9Gd0.1O1.95 Electrolyte Film for Low-Temperature Operation. Electrochem. Solid-State Lett. 2005, 8: 63~65
    20 Z. P. Shao, C. Kwak. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells. Nature. 2004, 175: 439~450
    21 T. Hibino, A. Hashimoto. A Low-Operating-Temperature Solid Oxide Fuel in Hydrocarbon-Air Mixture. Science. 2000, 288: 2031~2033
    22 Eyraud, J. Lenoir, M. Gery. Fuel Cells Utilizing the Electrochemical Properties of Absorbates. Compt Rend. 1961, 252: 1599~1603
    23 Gool. Possible Use of Surface Migration in Fuel Cells and Heterogeneous Catalysis. Phillips Res Repts. 1965, 20: 81~93
    24 G. A. Louis. Solid Electrolyte Electrochemical Cell. US Patent: 4248941, 1981202203
    25 K. Dyer. A Novel Thin-Film Electrochemical Device for Energy Conversion. Nature. 1990, 343: 547~548
    26 T. Hibino, S. Q. Wang. One-Chamber Solid Oxide Fuel Cell Constructed From aYSZ Electrolyte with a Ni Anode and LSM Cathode. Solid State Ionics. 2000, 127: 89~98
    27 T.Hibino, A. Hashimoto. High Performance Anodes for SOFCs Operating in Methane-Air Mixture at Reduced Temperatures. J. Electrochem. Soc. 2002, 149(2): A133~A136
    28 T. Hibino, A. Hashimoto. A Solid Oxide Fuel cell with a Novel Geometry That Eliminates the Need for Preparing a Thin Electrolyte Film. J. Electrochem. Soc. 2002, 149(2): A195~A200
    29 T. Hibino, K. Ushiki. A Novel Cell for Simplifying SOFC System. Solid State Ionics. 1995, 81: 1~3
    30 T. Suzuki, P. Jasinski. Single Chamber Electrolyte Supported SOFC Module. 31 Electrochem. Solid State Lett. 2004, 7(11): A391~A393
    31温廷琏,聂怀文,王绍荣.单室固体氧化物燃料电池的研究.第十二届中国固态离子学学术会议论文集.苏州. 2004: A01
    32 T. Suzuki, P. Jasinski. Performance of a Porous Electrolyte in Single-Chamber SOFCs. J. Electrochem. Soc. 2005, 152 (3): A527-A531
    33 A. K. Demin, F. Y. Gulbis. Zirconia-Based SOFC with Non-Noble Electrodes Fed by Air-Methane Mixture. Solid State Ionics. 2000, 135: 451~456
    34 T. Suzuki, P. Jasinski. Anode Supported Single Chamber Solid Oxide Fuel Cell in CH4-Air Mixture. J. Electrochem. Soc.. 2004, 151: 1473~1476
    35 Z. P. Shao, C. Kwak. Anode-Supported Thin-Film Fuel Cells Operated in a Single Chamber Configuration . Solid State Ionics. 2004, 175: 39~46
    36艾刚,吕喆.阳极支撑型单室固体氧化物燃料电池的性能.催化学报. 2006, 27(10): 885~889
    37 B. Wei, Z. Lü. Enhanced Performance of a Single-Chamber Solid Oxide Fuel Cell with an SDC-Impregnated Cathode. Power Sources. 2007, 167: 58~63
    38 Z. P Shao, M. Sossina. A Thermally Self-Sustained Micro Solid Oxide Fuel Cell Stack with High Power Density. Nature. 2005, 435: 795~798
    39 M. L. Liu, Z. Lü. Anode-Supported Micro-SOFC Stacks Operated under Single Chamber Conditions. J. Electrochem. Soc. 2007, 154(6): 588~592
    40魏波,吕喆,刘明良,黄喜强,朱瑞斌,苏文辉.一种星形结构的单气室固体氧化物燃料电池组.发明专利. CN101162784. 200710144458.4
    41吕喆等.单气室固体氧化物燃料电池组成的电池组.发明专利. CN156436. ZL 200410013620.5
    42 Suzuki, P. Jasinski. Role of the Composite Cathode in Single Chamber SOFC. J. Electrichem. Soc. 2004, 151(10): A1678~A1682
    43 T. Hibino, A. Hashimoto. Single-Chamber Solid Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures. J. Electrochem. Soc. 2000, 147(8): 2888~2892
    44吕喆.固体氧化物燃料电池的理论工艺与相关材料及其应用的研究.哈尔滨工业大学博士后研究工作报告. 2002
    45 X. Jacques-Bédard, T. W. Nappon. Coplanar Electrodea Design for Single-Chamber SOFC. J. Electrochem. Soc. 2007, 154(3): B305~B309
    46 X. Jacques-Bédard, T. W. Nappon, R. Roberge, and M. Meunier. Performance and Aging of an Anode-supported SOFC Operated in Single-Chamber Conditions. J.Power Sources. 2006, 153: 108~133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700