微生物燃料电池同步脱氮产电性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对环境污染和能源短缺的双重压力,传统高能耗的废水处理技术已难以满足可持续发展的要求。微生物燃料电池(Microbial fuel cell, MFC)以微生物为催化剂将废水中污染物蕴含的化学能直接转化为电能,可实现同步治污产电。但迄今为止,MFC研究主要集中在有机废水方面。在氮素污染凸现的今天,研发兼具脱氮产电功能的MFC对废水处理具有重大的现实意义。
     本文创建阳极反硝化微生物燃料电池(Anodic denitrification MFC, AD-MFC)和厌氧氨氧化微生物燃料电池(Anaerobic ammonium oxidation MFC, ANAMMOX-MFC),系统而深入地研究了AD-MFC和ANAMMOX-MFC的脱氮产电性能、影响因素和工作机理,主要结果如下:
     1)创建了AD-MFC,探明了其同步反硝化产电性能。
     以反硝化菌富集培养物为生物催化剂,成功创建AD-MFC,实现了同步反硝化产电。AD-MFC具有良好的脱氮产电性能。在批式试验中,初始硝氮浓度和COD浓度分别为100.22±0.62mg/L和500.40±1.67mg/L, AD-MFC的最大容积反硝化速率、最大电压和最大功率密度分别达到0.31±0.01kgN/m3·d、602.80±5.42mV和908.42±0.07mW/m3。AD-MFC的产电过程呈现阶段性变化。由于阳极液中主导反应(反硝化、甲醇降解、内源呼吸和细胞水解发酵)依次演替,阳极电极电势不断变化,导致电压曲线呈现“降低-升高-再降低”的三阶段过程特性,未见国内外相关文献报道。AD-MFC蕴藏指示功能。硝氮消耗、COD消耗与电压损耗的Pearson相关系数分别达到0.9964和0.9917,电压变化与反硝化基质浓度变化呈显著线性相关,电信号可指示反硝化进程。
     2)考察了基质浓度对AD-MFC脱氮产电性能的影响,揭示了AD-MFC污染物降解和产电动力学规律。
     AD-MFC脱氮产电性能与基质浓度密切相关。在低浓度范围,提高基质浓度可提高微生物活性,强化AD-MFC脱氮产电能力,但在高基质浓度范围,基质产生自抑制,削弱AD-MFC脱氮产电能力。AD-MFC基质降解和产电动力学过程符合Han-Levenspiel模型。以该模型拟合得到的NO3-N降解、COD降解、输出电压、功率密度的最大值(rmax)、半饱和常数(Ks)和完全抑制浓度(Sm)分别为1.27kg N/m3·d.351.63mg/L和4301.25mg/L;5.14kgCOD/m3·d.1950.21mg/L和20050.69mg/L;1030.53mV.203.25mg/L和4950.36mg/L;1386.39mW/m3、293.47mg/L和4649.03mg/L。NO3--N半饱和常数(Ks)大于200mg NO3--N/L,完全抑制浓度(Sm)大于4000mg NO3--N/L,表明AD-MFC对高基质浓度具有较强的耐受性。AD-MFC适用于高浓度硝酸盐有机废水的除污和产电。初始NO3-N浓度和COD浓度分别为1999.95±2.86mg/L和10058±1.26mg/L时,最大反硝化速率、最大电压和最大功率密度分别达1.26±0.01kg N/m3·d、1016.75±4.74mV和1314.41±24.60mW/m3.其容积脱氮速率处于国内外文献报道的较高水平。
     3)分析了AD-MFC物质转化特性、微生物功能空间分布、电子传递机制和功能菌群组成,揭示了AD-MFC工作机理。
     AD-MFC产电过程与反硝化相耦合。单独以甲醇或硝酸盐作为基质时,两者不能被有效降解,AD-MFC产电能力也有限;只有当两者共存时,AD-MFC才能发挥脱氮产电效能。阳极上的生物膜和阳极液中的悬浮污泥均具有脱氮产电功能,其功能空间小于AD-MFC的总体功能空间,AD-MFC反硝化脱氮过程由电极生物膜和悬浮污泥协作完成。电极生物膜和悬浮污泥的反硝化功能空间分别为41.90%和67.98%,产电功能空间分别为52.26%和69.03%,悬浮污泥在AD-MFC功能空间中占据优势。电极生物膜和悬浮污泥具有不同的电子传递机制。电极生物膜主要依靠直接接触的方式进行电子传递;而悬浮污泥在不同反应阶段可产生多种中介体,主要依靠中介体为媒介进行电子传递。AD-MFC中功能菌群组成差异较大。接种污泥含有大量的球菌、杆菌和丝状菌,而电极生物膜主要为丝状菌和杆菌,悬浮污泥主要为球菌和丝状菌。菌群结构随产电过程发生演替,悬浮污泥和电极生物膜中微生物种类较接种污泥明显减少。AD-MFC中的优势菌群归属于γ-变形菌纲、p-变形菌纲、拟杆菌纲和Ignavibacteria纲,功能菌群主要为反硝化菌。
     4)创建了ANAMMOX-MFC,探明了其同步厌氧氨氧化产电性能。
     以ANAMMOX菌富集培养物作为生物催化剂,成功创建ANAMMOX-MFC,实现了同步厌氧氨氧化产电。ANAMMOX-MFC具有良好的脱氮产龟性能。在连续试验中,进水NH4+-N和N02--N浓度分别从25mg/L和33mg/L逐渐提升至250mg/L和330mg/L时,NH4+-N、 NO2--N和TN去除率分别保持在90%、90%和80%以上,容积脱氮速率最大可达3.01±0.27kg N/m3·d,最大电压和最大功率密度可达225.48±10.71mV和1308.23±40.38mW/m3,是目前文献报道的最高MFC脱氮负荷。ANAMMOX-MFC阳极极化显著,阳极电荷传递电阻约占ANAMMOX-MFC总电阻的60%,是限制ANAMMOX-MFC产电的瓶颈因素。ANAMMOX-MFC也蕴含指示功能。在一定范围内(25mg/L~250mg/L),输出电压随进水NH4+-N浓度线性变化,可以指示NH4+-N浓度,这种指示功能主要来自于不同NH4+-N浓度所致的氨氧化速率变化。
     5)考察了温度、pH和中介体对ANAMMOX-MFC脱氮产电性能的影响,优化了ANAMMOX-MFC的操作条件。
     温度可显著影响ANAMMOX-MFC的脱氮产电性能。ANAMMOX-MFC脱氮产电的最适温度约为30℃;高于或低于此温度时,容积脱氮速率和输出电压同步降低;温度变化引起生物反应变化是导致ANAMOX-MFC产电性能变化的主要原因。pH也可影响ANAMMOX-MFC的脱氮产电性能。ANAMMOX-MFC脱氮产电的最适pH为7~8;pH影响ANAMMOX-MFC容积脱氮速率和输出电压的同步性较低;pH所致的生物反应变化和阳极电极电势变化共同引发了ANAMMOX-MFC产电性能变化。中介体可强化ANAMMOX-MFC产电性能。低浓度(<0.01mmol/L)的中性红、2-羟基-1,4-萘醌和吩噻嗪等对应电子传递链前端、分子量较小、结构简单的中介体,可有效降低阳极电荷转移电阻,显著强化ANAMMOX-MFC产电性能;而灿烂甲酚蓝和血红素等对应电子传递链后端、分子量较大、结构相对复杂的中介体,对ANAMMOX-MFC产电性能的强化作用较弱;中介体浓度过高(0.01~0.02mmol/L)会抑制生物反应,致使ANAMMOX-MFC产电能力不升反降。
     6)研究了ANAMMOX-MFC的物质转化特性、功能菌群组成、微生物功能空间分布和电子传递机制,揭示了ANAMMOX-MFC工作机理。
     ANAMMOX-MFC产电过程与ANAMMOX反应相耦合。单独以氨或亚硝酸盐作为基质时,ANAMMOX菌富集培养物发生水解,脱氮产电过程无法维持;氨氧化与亚硝酸盐还原相耦合,只有当氨和亚硝酸盐共同作为产电基质时,ANAMMOX-MFC才能持续发挥脱氮产电功能。阳极上的生物膜和阳极液中的悬浮污泥均具有同步厌氧氨氧化产电功能,ANAMMOX-MFC脱氮产电过程也由电极生物膜和悬浮污泥协同完成。ANAMMOX-MFC中电极生物膜和悬浮污泥分别在不同的功能空间中占据优势,电极生物膜和悬浮污泥的厌氧氨氧化功能空间分别为30.14%和53.43%,产电功能空间分别为59.52%和47.87%。电极生物膜和悬浮污泥具有不同的电子传递机制。电极生物膜主要依靠直接接触方式进行电子传递;而悬浮污泥主要依靠中介体为媒介进行电子传递,基质中的NO2-N组分可作为潜在的中介体,悬浮污泥自身也可产生中介体。ANAMMOX-MFC中的功能菌群组成存在一定差异。电极生物膜上的ANAMMOX菌厌氧氨氧化体更大,铁颗粒数量较多,血红素c含量较高,胞外多聚物(Extracellular polymeric substances,EPS)含量较少,有助于增强胞外电子传递能力。悬浮污泥中的微生物种类与接种污泥类似,而电极生物膜中的微生物种类与接种污泥差异较大。ANAMMOX-MFC中的优势菌群归属于p-变形菌纲、γ-变形菌纲、酸杆菌纲、Ignavibacteria纲和浮霉状菌门,功能菌群是由ANAMMOX菌、反硝化细菌和其他多种细菌组成的共生体系。
Under the dual pressures of environmental pollution and energy shortage, it is obvious that conventional energy-intensive wastewater treatment processes do not meet the requirements of sustainable development any longer. Microbial fuel cell (MFC) is an emerging technology that directly converts chemical energy stored in wastewater to electricity, purifying wastewater and generating electricity simultaneously, which is considered as an attractive option for sustainable wastewater treatment. So far, however, most of the MFC research has been focused on organic wastewater treatment. Since nitrogen pollution is becoming a serious environmental problem, it is significant to develop MFC that can simultaneously remove nitrogen and recovery electricity from wastewater.
     In this research, the anodic denitrification MFC (AD-MFC) and the anaerobic ammonium oxidation MFC (ANAMMOX-MFC) were developed and their performances, operational parameters and working mechanisms were studied to achieve high-efficient nitrogen removal and electricity generation. The main results are as follows:
     1) The AD-MFC was constructed and its performances of simultaneous denitrification and electricity production were investigated.
     It was proved that the AD-MFC could be successfully started up with denitrifying bacterial enrichment culture as inoculum. The AD-MFC had good performances of nitrogen removal and electricity generation. In batch mode, when the initial nitrate and COD concentrations were100.22±0.62mg/L and500.40±1.67mg/L, the maximum denitrification rate, the maximum output voltage and the maximum power density were0.31±0.01kg N/m3·d,602.80±5.42mV and908.42±0.07mW/m3, respectively. The voltage curves of the AD-MFC showed three-phase characteristics of descend phase, ascend phase and redescend phase, which could be attributed to the succession of denitrification, methanol degradation, endogenous respiration and cell hydrolysate fermentation as dominant reactions in the anolyte. This phenomenon has never been reported before in literatures. The AD-MFC also had sensor function. The Pearson correlation coefficients between the voltage loss and the consumed nitrate and the consumed COD were0.9964and0.9917, respectively, which suggested that the voltage variation was closely related to the change of substrate concentration and the voltage could indicate the denitrification course.
     2) The influence of substrate concentration on the performance of the AD-MFC was explored, and kinetic characteristics of substrates degradation and electricity generation in the AD-MFC were revealed.
     It was discovered that both of nitrogen removal and electricity generation performances were closely related to the substrate concentration. Nitrogen removal rate and power generation could be promoted with increasing substrate concentration in a certain range (50-2000mg NO3--N/L), but they would be inhibited at high substrate concentrations (over2000mg NO3--N/L). Han-Levenspiel model could well describe the kinetic characteristics of the AD-MFC. Based on Han-Levenspiel model, the maximal value (rmax), the half-saturation coefficient (Ks) and the critical inhibitory concentration (Sm) for nitrate degradation, COD degradation, output voltage and power density were1.27kg N/m3·d,351.63mg/L and4301.25mg/L;5.14kg COD/m3·d,1950.21mg/L and20050.69mg/L:1030.53mV,203.25mg/L and4950.36mg/L;1386.39mW/m3,293.47mg/L and4649.03mg/L, respectively. According to the kinetic model, the half-saturation coefficient and the critical inhibitory concentration for nitrate were more than200mg/L and4300mg/L, respectively. The results demonstrated that AD-MFC was tolerant to high strength nitrate-containing wastewater. When the initial nitrate and COD concentrations were1999.95±2.86mg/L and10058±1.26mg/L, the maximum denitrification rate, the maximum output voltage and the maximum power density could be as high as1.26±0.01kgN/m3·d,1016.75±4.74mV and1314.41±24.60mW/m3, respectively. The volumetric nitrogen removal rate was much higher than that reported in literatures.
     3) The substance transformation, microbial functional space, electron transfer pathway and functional microbial community were studied to reveal the working mechanism of the AD-MFC.
     It was found that electricity genaration was coupled to denitrification in the AD-MFC. Methanol or nitrate could not be effectively degraded as sole substrate, and electricity production capacity was very low. Only when methanol and nitrate coexist, could the AD-MFC achieve simultaneous denitrification and electricity production. Both the biofilm on the anode and the suspended sludge in the anolyte had the ability for denitrification and electricity production. The functional space of the anode biofilm and the suspended sludge was smaller than the total functional space of the AD-MFC, which suggested the anode biofilm and the suspended sludge both contributed to denitrification and electricity production. The suspended sludge was predominant in the functional space of the AD-MFC, and the functional spaces of the anode biofilm and the suspended sludge for denitrification and for electricity production were41.90%and67.98%,52.26%and69.03%, respectively. The electron transfer pathways of the anode biofilm and the suspended sludge were different. The electron transfer of anode biofilm was mainly realized by the direct contact to the electrode, while the suspended sludge relied on endogenous mediators for electron transfer. There was a great difference between the functional microbial populations. The seed sludge involved large amounts of cocci, bacilli and filamentous bacteria, while the anode biofilm mainly involved bacilli and filamentous bacteria, and the suspended sludge mainly involved cocci and bacilli. It was found that succession of bacterial communities occurred along with power generaion process, and the population diversity in the anode biofilm and the suspended sludge was significantly fewer than that in the seed sludge. The predominant bacterial populations in the AD-MFC belonged to y-proteobacteria,(3-proteobacteria, Bacteroides and Ignavibacteria, and the functional bacteria were mainly denitrifying bacteria.
     4) The ANAMMOX-MFC was constructed and its performances of simultaneous anaerobic ammonium oxidation and electricity production were investigated.
     It was proved that the ANAMMOX-MFC could be successfully started up with ANAMMOX bacterial enrichment culture as inoculum. The ANAMMOX-MFC also had good performances of nitrogen removal and electricity generation. Under continuous operation, when the initial ammonia and nitrite concentrations increased from25mg/L and33mg/L to250mg/L and330mg/L, the removal efficiencies of the total nitrogen, ammonia and nitrite were always above90%,90%and80%, respectively. Meanwhile, the maximum nitrogen removal rate, the maximum output voltage and the maximum power density were3.01±0.27kg N/m3·d,225.48±10.71mV and1308.23±40.38mW/m3, respectively. The volumetric nitrogen removal rate was the highest reported value so far. It was found that the polarization resistance of the anode was significant, accounting for60%of the total ANAMMOX-MFC internal resistance, which was the bottleneck for electricity production in the ANAMMOX-MFC. The ANAMMOX-MFC also had sensor function. The output voltage changed linearly with the variation of ammonia concentration in a certain range (25mg/L-250mg/L), which might mainly caused by the changed ammonia oxidation rate.
     5) The influences of temperature, pH and exogenous mediators on the performance of the ANAMMOX-MFC were explored, and the critical operational parameters for the ANAMMOX-MFC were optimized.
     It was discovered that temperature could significantly affect the performances of both nitrogen removal and electricity generation in the ANAMMOX-MFC, and the optimum temperature was about30℃. When the temperature was above or below30℃, the nitrogen removal rate and output voltage would decrease at the same time. The change of biological reaction responding to the changed temperature was the primary cause of the varied power output. The pH could also significantly affect the performances of both nitrogen removal and electricity generation in the ANAMMOX-MFC and the optimum pH was about7-8, but the changed degrees of nitrogen removal rate and output voltage were not so consistent compared with the temperature influence. The changes of biological reaction and anode potential responding to the changed pH was the common causes of the varied power output. The addition of exogenous mediators could enhance the electricity generation in the ANAMMOX-MFC. In the range of low concentrations (<0.01mmol/L), exogenous mediators such as neutral red,2-Hydroxy-1,4-naphthoquinone and phenothiazine which corresponding to the front of the electron transport chain, with small molecular weight and simple molecular structure would effectively reduce the anode charge transfer resistance and enhance power production in the ANAMMOX-MFC. While exogenous mediators such as brilliant cresyl blue and heme which corresponding to the end of electron transport chain, with large molecular weight and complex molecular structure, the enhancement effect of power production was not so obvious. However, when the concentrations of exogenous mediators were too high (0.01-0.02mmol/L), the biological reaction would be inhibited and the output voltage in the ANAMMOX-MFC would fell rather than rose.
     6) The substance transformation, microbial functional space, electron transfer pathway and functional microbial community were also studied to reveal the working mechanism of the ANAMMOX-MFC.
     It was proved that electricity genaration was coupled to ANAMMOX in the ANAMMOX-MFC. When ammonia or nitrite was as the sole substrate, ANAMMOX enrichment culture would hydrolyzed and the nitrogen removal and electricity production processes could not be sustained. The ammonia oxidation was coupled to the nitrite reduction, only when ammonia and nitrite coexist, could ANAMMOX-MFC sustain simultaneous anaerobic ammonium oxidation and electricity production. Both the biofilm on the anode and the suspended sludge in the anolyte had the ability for ANAMMOX and electricity production, and they both contributed to ANAMMOX and electricity production processes. The anode biofilm and the suspended sludge dominated different functional spaces of the ANAMMOX-MFC, and the functional spaces of the anode biofilm and the suspended sludge for ANAMMOX and for electricity production were30.14%and53.43%,59.52%and47.87%, respectively. The electron transfer pathways of the anode biofilm and the suspended sludge were also different in the ANAMMOX-MFC. The electron transfer of anode biofilm was mainly realized by the direct contact to the electrode, while the suspended sludge relied on endogenous mediators or nitrite as the potential mediator for electron transfer. There was certain difference between the functional microbial populations in the ANAMMOX-MFC. The ANAMMOX bacteria on the anode had larger anammoxosome, more iron particles, more heme c and less extracellular polymeric substances (EPS), which would facilitate the extracellular electron transfer. It was found that the microbial species in the suspended sludge were similar to that in the seed sludge, but the microbial species in the anode biofilm was significantly different from that in the seed sludge. The predominant bacterial populations in the ANAMMOX-MFC belonged to β-proteobacteria, y-proteobacteria, Acidobacteria, Ignavibacteria and Planctomycetes, and the functional microbial communities were consisted of ANAMMOX bacteria, denitrifying bacteria and a variety of other bacteria.
引文
Abma W, Schultz C, Mulder J, Van der Star W, Strous M, Tokutomi T, Van Loosdrecht M. Full-scale granular sludge Anammox process [J]. Water Science & Technology, 2007,55(8-9):27-33.
    Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K. The anode potential regulates bacterial activity in microbial fuel cells [J]. Applied Microbiology and Biotechnology,2008,78(3):409-418.
    Aelterman P, Rabaey K, Pham H T, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J]. Environmental Science & Technology,2006,40(10):3388-3394.
    Ahn J H, Kwan T, Chandran K. Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters:microbial ecology through nitrous oxide production [J]. Environmental Science & Technology,2011,45(7): 2734-2740.
    Ahn Y, Zhang F, Logan B E. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes [J]. Journal of Power Sources,2014,247:655-659.
    Ali M, Chai L Y, Tang C J, Zheng P, Min X B, Yang Z H, Xiong L, Song Y X. The Increasing Interest of ANAMMOX Research in China:Bacteria, Process Development, and Application [J]. BioMed Research International,2013:1-21.
    Anesti V, McDonald I R, Ramaswamy M, Wade W G, Kelly D P, Wood A P. Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth [J]. Environmental Microbiology,2005,7(8):1227-1238.
    Anjali G, Sabumon P. Unprecedented development of anammox in presence of organic carbon using seed biomass from a tannery Common Effluent Treatment Plant (CETP) [J]. Bioresource Technology,2014,153:30-38.
    Anthonisen A, Loehr R, Prakasam T, Srinath E. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal of the Water Pollution Control Federation,1976,835-852.
    APHA. Standard Methods for the Examination of Water and Wastewater,20th edn [M]. American Public Health Association,1998.
    Arends J, Verstraete W.100 years of microbial electricity production:three concepts for the future [J]. Microbial Biotechnology,2012,5(3):333-346.
    Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene [J]. Biosensors and Bioelectronics,2010,25(7):1796-1802.
    Bae H, Chung Y C, Jung J Y. Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process [J]. Water Science & Technology,2010,61(11)::2723-2732.
    Bard A J, Faulkner L R. Electrochemical methods:fundamentals and applications,2nd edn [M]. New York:Wiley,2000.
    Barsoukov E, Macdonald J R. Impedance spectroscopy theory, experiment, and applications,2nd edn [M]. Hoboken:Wiley-Interscience,2005.
    Beck D A, Hendrickson E L, Vorobev A, Wang T, Lim S, Kalyuzhnaya M G, Lidstrom M E, Hackett M, Chistoserdova L. An integrated proteomics/transcriptomics approach points to oxygen as the main electron sink for methanol metabolism in Methylotenera mobilis [J]. Journal of Bacteriology,2011,193(18):4758-4765.
    Beecroft N J, Zhao F, Varcoe J R, Slade R C, Thumser A E, Avignone-Rossa C. Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose [J]. Applied Microbiology and Biotechnology,2012,93(1):423-437.
    Berry E A, Trumpower B L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra [J]. Analytical Biochemistry,1987,161(1):1-15.
    Biffinger J C, Pietron J, Bretschger O, Nadeau L J, Johnson G R, Williams C C, Nealson K H, Ringeisen B R. The influence of acidity on microbial fuel cells containing Shewanella oneidensis [J]. Biosensors and Bioelectronics,2008,24(4):900-905.
    Bond D R, Holmes D E, Tender L M, Lovley D R. Electrode-reducing microorganisms that harvest energy from marine sediments [J]. Science,2002,295(5554):483-485.
    Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes [J]. Applied and Environmental Microbiology,2003,69(3):1548-1555.
    Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Van Oostveldt P, Verbeken K, Rabaey K, Verstraete W. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell [J]. Microbial Biotechnology,2008a,1(6):487-496.
    Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer [J]. Applied Microbiology and Biotechnology,2008b,77(5):1119-1129.
    Boretska M, Bellenberg S, Moshynets O, Pokholenko I, Sand W. Change of Extracellular Polymeric Substances Composition of Thiobacillus thioparus in Presence of Sulfur and Steel [J]. Journal of Microbial & Biochemical Technology, 2013,5(3):068-073.
    Borole A P, Reguera G, Ringeisen B, Wang Z W, Feng Y, Kim B H. Electroactive biofilms:current status and future research needs [J]. Energy & Environmental Science,2011,4(12):4813-4834.
    Bothe H, Ferguson S, Newton W E. Biology of the nitrogen cycle [M]. Elsevier,2006.
    Boumann H A, Longo M L, Stroeve P, Poolman B, Hopmans E C, Stuart M C, Sinninghe Damst e J S, Schouten S. Biophysical properties of membrane lipids of anammox bacteria:I. Ladderane phospholipids form highly organized fluid membranes [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2009, 1788(7):1444-1451.
    Bournazou M, Hooshiar K, Arellano-Garcia H, Wozny G, Lyberatos G. Model based optimization of the intermittent aeration profile for SBRs under partial nitrification [J]. Water Research,2013,47(10):3399-3410.
    Buitron G, Cervantes-Astorga C. Performance Evaluation of a Low-Cost Microbial Fuel Cell Using Municipal Wastewater [J]. Water, Air,& Soil Pollution,2013, 224(3):1-8.
    Busalmen J P, Esteve-Nunez A, Berna A, Feliu J M. C-Type Cytochromes Wire Electricity-Producing Bacteria to Electrodes [J]. Angewandte Chemie,2008, 120(26):4952-4955.
    Caccavo F, Lonergan D J, Lovley D R, Davis M, Stolz J F, McInerney M J. Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism [J]. Applied and Environmental Microbiology,1994, 60(10):3752-3759.
    Canion A, Kostka J, Gihring T, Huettel M, van Beusekom J, Gao H, Lavik G, Kuypers M. Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50°in latitude [J]. Biogeosciences,2014,11(2):309-320.
    Cao X, Huang X, Liang P, Boon N, Fan M, Zhang L, Zhang X. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction [J]. Energy & Environmental Science,2009a,2(5):498-501.
    Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan B E. A new method for water desalination using microbial desalination cells [J]. Environmental Science & Technology,2009b,43(18):7148-7152.
    Cams K. Bringing energy efficiency to the water and wastewater industry:how do we get there? [J]. Proceedings of the Water Environment Federation,2005(7):7650-7659.
    Chae K J, Choi M J, Lee J W, Kim K Y, Kim I S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells [J]. Bioresource Technology,2009,100(14):3518-3525.
    Chang I, Moon H, Bretschger O, Jang J, Park H, Nealson K H, Kim B H. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells [J]. Journal of Microbiology and Biotechnology,2006,16(2):163-177.
    Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J]. Nature Biotechnology,2003,21(10):1229-1232.
    Chen T, Zheng P, Shen L, Ding S, Mahmood Q. Kinetic characteristics and microbial community of Anammox-EGSB reactor [J]. Journal of Hazardous Materials,2011, 190(1):28-35.
    Chen T T, Zheng P, Shen L D, Tang C J, Ding S. Dispersal and control of anammox granular sludge at high substrate concentrations [J]. Biotechnology and Bioprocess Engineering,2012,17(5):1093-1102.
    Cheng S, Liu H, Logan B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing [J]. Environmental Science & Technology,2006a,40(7):2426-2432.
    Cheng S, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells [J]. Environmental Science & Technology,2006b,40(1):364-369.
    Cheng S, Xing D, Call D F, Logan B E. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environmental Science & Technology,2009,43(10):3953-3958.
    Childers S E, Ciufo S, Lovley D R. Geobacter metallireducens accesses insoluble Fe (Ⅲ) oxide by chemotaxis [J]. Nature,2002,416(6882):767-769.
    Choi S, Chae J. Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC) [J]. Sensors and Actuators A:Physical,2013,195:206-212.
    Clauwaert P, Aelterman P, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W. Minimizing losses in bio-electrochemical systems:the road to applications [J]. Applied Microbiology and Biotechnology,2008,79(6):901-913.
    Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham T H, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environmental Science & Technology,2007,41(9):3354-3360.
    Costa M C M S, Carvalho L, Leal C D, Dias M F, Martins K L, Garcia G B, Mancuelo I D, Hipolito T, Conell E F A M, Okada D. Impact of inocula and operating conditions on the microbial community structure of two anammox reactors [J]. Environmental Technology,2014, ahead-of-print:1-12.
    Dang H, Chen R, Wang L, Guo L, Chen P, Tang Z, Tian F, Li S, Klotz M G. Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China [J]. Applied and Environmental Microbiology, 2010,76(21):7036-7047.
    Davila D, Esquivel J, Sabate N, Mas J. Silicon-based microfabricated microbial fuel cell toxicity sensor [J]. Biosensors and Bioelectronics,2011,26(5):2426-2430.
    Davis J B, Yarbrough H F. Preliminary experiments on a microbial fuel cell [J]. Science, 1962,137(3530):615-616.
    De Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstraete W. Outlook for benefits of sediment microbial fuel cells with two bio-electrodes [J]. Microbial Biotechnology,2008,1(6):446-462.
    Debabov V. Electricity from microorganisms [J]. Microbiology,2008,77(2):123-131.
    Dekker A, Heijne A T, Saakes M, Hamelers H V, Buisman C J. Analysis and improvement of a scaled-up and stacked microbial fuel cell [J]. Environmental Science & Technology,2009,43(23):9038-9042.
    Deng L, Li F, Zhou S, Huang D, Ni J. A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells [J]. Chinese Science Bulletin, 2010a,55(1):99-104.
    Deng Q, Li X, Zuo J, Ling A, Logan B E. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell [J]. Journal of Power Sources, 2010b,195(4):1130-1135.
    Desloover J, De Clippeleir H, Boeckx P, Du Laing G, Colsen J, Verstraete W, Vlaeminck S E. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions [J]. Water Research,2011,45(9):2811-2821.
    Detkova E, Zaichikova M, Kevbrin V. Physiological and biochemical properties of the alkaliphilic anaerobic hydrolytic bacterium Alkaliflexus imshenetskii [J]. Microbiology,2009,78(3):273-279.
    Di Lorenzo M, Scott K, Curtis T P, Head I M. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell [J]. Chemical Engineering Journal,2010,156(1):40-48.
    Ding S, Zheng P, Lu H, Chen J, Mahmood Q, Abbas G. Ecological characteristics of anaerobic ammonia oxidizing bacteria [J]. Applied Microbiology and Biotechnology,2013,97(5):1841-1849.
    Dominguez-Benetton X, Sevda S, Vanbroekhoven K, Pant D. The accurate use of impedance analysis for the study of microbial electrochemical systems [J]. Chemical Society Reviews,2012,41(21):7228-7246.
    Doronina N V, Kaparullina E N, Trotsenko Y A. Methyloversatilis thermotolerans sp. nov., a novel thermotolerant facultative methylotroph isolated from a hot spring [J]. International Journal of Systematic and Evolutionary Microbiology,2014,64(Pt 1): 158-164.
    Dosta J, Fernandez I, Vazquez-Padin J, Mosquera-Corral A, Campos J, Mata-Alvarez J, Mendez R. Short-and long-term effects of temperature on the Anammox process [J]. Journal of Hazardous Materials,2008,154(1):688-693.
    Du Z, Li H, Gu T. A state of the art review on microbial fuel cells:a promising technology for wastewater treatment and bioenergy [J]. Biotechnology Advances, 2007,25(5):464-482.
    Dumas C, Basseguy R, Bergel A. Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes [J]. Electrochimica Acta,2008,53(16):5235-5241.
    Ehrlich H. Are gram-positive bacteria capable of electron transfer across their cell wall without an externally available electron shuttle? [J]. Geobiology,2008,6(3): 220-224.
    EIA. Energy Information and Administration, International Energy Statistics. 12.01.2010 [E]. Available from http://tonto.eia.doe.gov/cfapps/ipdbproject/IED Index3.cfm.
    Etchebehere C, Errazquin M I, Dabert P. Moletta R, Muxi L. Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate [J]. International Journal of Systematic and Evolutionary Microbiology, 2001,51(3):977-983.
    Every H A, Hickner M A, McGrath J E, Zawodzinski Jr T A. An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes [J]. Journal of Membrane Science,2005,250(1):183-188.
    Fan Y, Hu H, Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration [J]. Journal of Power Sources,2007a,171(2):348-354.
    Fan Y, Hu H, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms [J]. Environmental Science & Technology,2007b,41(23):8154-8158.
    Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells [J]. Environmental Science & Technology,2008,42(21):8101-8107.
    Fang F, Zang G-L, Sun M, Yu H-Q. Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach [J]. Applied Energy,2013,110:98-103.
    Feng Y, Kayode O, Harper Jr W F. Using microbial fuel cell output metrics and nonlinear modeling techniques for smart biosensing [J]. Science of the Total Environment,2013,449:223-228.
    Feng Y, Wang X, Logan B E, Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells [J]. Applied Microbiology and Biotechnology,2008,78(5): 873-880.
    Fernandez-Nava Y, Maranon E, Soons J, Castrillon L. Denitrification of high nitrate concentration wastewater using alternative carbon sources [J]. Journal of Hazardous Materials,2010,173(1):682-688.
    Filip J, GEMEINER P, TOMCIK P, TKAC J. MIKROBIALNI BIOPALIVOVE CLANKY-CHARAKTERISTIKA A VYVOJ [J]. Chemicke Listy,2012,106:158-165.
    Foglar L, Briski F, Sipos L, Vukovic M. High nitrate removal from synthetic wastewater with the mixed bacterial culture [J]. Bioresource Technology,2005, 96(8):879-888.
    Foglar L, Briski F. Wastewater denitrification process-the influence of methanol and kinetic analysis [J]. Process Biochemistry,2003,39(1):95-103.
    Francis C A, Beman J M, Kuypers M M. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation [J]. The ISME Journal,2007,1(1):19-27.
    Franks A E, Malvankar N, Nevin K P. Bacterial biofilms:the powerhouse of a microbial fuel cell [J]. Biofuels,2010,1(4):589-604.
    Franks A E, Nevin K. Microbial fuel cells, a current review [J]. Energies,2010,3:899-919.
    Fredrickson J K, Romine M F, Beliaev A S, Auchtung J M, Driscoll M E, Gardner T S, Nealson K H, Osterman A L, Pinchuk G, Reed J L. Towards environmental systems biology of Shewanella [J]. Nature Reviews Microbiology,2008,6(8):592-603.
    Fricke K, Harnisch F, Schroder U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells [J]. Energy & Environmental Science, 2008,1(1):144-147.
    Fuerst J A, Sagulenko E. Beyond the bacterium:planctomycetes challenge our concepts of microbial structure and function [J]. Nature Reviews Microbiology,2011,9(6): 403-413.
    Ganguli R, Dunn B. Kinetics of Anode Reactions for a Yeast-Catalysed Microbial Fuel Cell [J]. Fuel Cells,2009,9(1):44-52.
    Garrett R, Grisham C M. Biochemistry, Cengage Learning,4th edn [M]. Boston: Thomson Brooks/Cole,2008.
    Garrity M G, Bell J A, Lilburn T G. Bergey's manual of systematic bacteriology [M]. New York:Springer,2004.
    Gerber M, Span R. An analysis of available mathematical models for anaerobic digestion of organic substances for production of biogas [C]. Paris:Proc IGRC, 2008.
    Ghasemi M, Daud W R W, Hassan S H, Oh S-E, Ismail M, Rahimnejad M, Jahim J M. Nano-structured carbon as electrode material in microbial fuel cells:a comprehensive review [J]. Journal of Alloys and Compounds,2013,580:245-255.
    Gil G C, Chang I S, Kim B H, Kim M, Jang J K, Park H S, Kim H J. Operational parameters affecting the performannce of a mediator-less microbial fuel cell [J]. Biosensors and Bioelectronics,2003,18(4):327-334.
    Girguis P R, Nielsen M E, Reimers C E. Fundamentals of benthic microbial fuel cells: theory, development and application [J]. Bioelectrochemical Systems:From Extracellular Electron Transfer to Biotechnological Application Edited by Rabaey K, Angenent LT, Schro der U, Keller J IWA Publishing,2010,327-346.
    Glass C, Silverstein J. Denitrification kinetics of high nitrate concentration water:pH effect on inhibition and nitrite accumulation [J]. Water Research,1998,32(3):831-839.
    Gong A S, Bolster C H, Benavides M, Walker S L. Extraction and analysis of extracellular polymeric substances:comparison of methods and extracellular polymeric substance levels in Salmonella pullorum SA 1685 [J]. Environmental Engineering Science,2009,26(10):1523-1532.
    Gonzalez del Campo A, Lobato J, Canizares P, Rodrigo M, Fernandez Morales F. Short-term effects of temperature and COD in a microbial fuel cell [J]. Applied Energy,2013,101:213-217.
    Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J]. Proceedings of the National Academy of Sciences,2006,103(30):11358-11363.
    Gralnick J A, Newman D K. Extracellular respiration [J]. Molecular Microbiology, 2007,65(1):1-11.
    Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration [J]. Environmental Microbiology,2004,6(6):596-604.
    Gregory K B, Lovley D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environmental Science & Technology, 2005,39(22):8943-8947.
    Guo J, Wang S, Huang H, Peng Y, Ge S, Wu C, Sun Z. Efficient and integrated start-up strategy for partial nitrification to nitrite treating low C/N domestic wastewater [J]. Water Science & Technology,2009,60(12):3243-3251.
    Guven D, Dapena A, Kartal B, Schmid M C, Maas B, van de Pas-Schoonen K, Sozen S, Mendez R, den Camp H J O, Jetten M S. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria [J]. Applied and Environmental Microbiology,2005,71(2):1066-1071.
    Habermann W, Pommer E. Biological fuel cells with sulphide storage capacity [J]. Applied Microbiology and Biotechnology,1991,35(1):128-133.
    Hamelers H V, Ter Heijne A, Sleutels T H, Jeremiasse A W, Strik D P, Buisman C J. New applications and performance of bioelectrochemical systems [J]. Applied Microbiology and Biotechnology,2010,85(6):1673-1685.
    Harnisch F, Schroder U, Scholz F. The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells[J]. Environmental science & technology,2008,42(5):1740-1746.
    Hau H H, Gralnick J A. Ecology and biotechnology of the genus Shewanella [J]. Annual Reviews in Microbiology,2007,61(237-258).
    Hayatsu M, Tago K, Saito M. Various players in the nitrogen cycle:diversity and functions of the microorganisms involved in nitrification and denitrification [J]. Soil Science and Plant Nutrition,2008,54(1):33-45.
    Hays S, Zhang F, Logan B E. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater [J]. Journal of Power Sources,2011,196(20):8293-8300.
    He Z, Angenent L T. Application of bacterial biocathodes in microbial fuel cells [J]. Electroanalysis,2006,18(19-20):2009-2015.
    He Z, Huang Y, Manohar A K, Mansfeld F. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell [J]. Bioelectrochemistry,2008,74(1):78-82.
    He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson K H. Electricity production coupled to ammonium in a microbial fuel cell [J]. Environmental Science & Technology,2009,43(9):3391-3397.
    He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies [J]. Energy & Environmental Science,2009,2(2):215-219.
    He Z, Wagner N, Minteer S D, Angenent L T. An upflow microbial fuel cell with an interior cathode:assessment of the internal resistance by impedance spectroscopy [J]. Environmental Science & Technology,2006,40(17):5212-5217.
    Heidelberg J F, Paulsen I T, Nelson K E, Gaidos E J, Nelson W C, Read T D, Eisen J A, Seshadri R, Ward N, Methe B. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis [J]. Nature Biotechnology,2002,20(11): 1118-1123.
    Heidrich E, Curtis T, Dolfing J. Determination of the internal chemical energy of wastewater [J]. Environmental Science & Technology,2010,45(2):827-832.
    Hernandez M, Newman D. Extracellular electron transfer [J]. Cellular and Molecular Life Sciences CMLS,2001,58(11):1562-1571.
    Hoffert M I. Farewell to fossil fuels? [J]. Science,2010,329(5997):1292-1294.
    Holmes D, Bond D, O'neil R, Reimers C, Tender L, Lovley D. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments [J]. Microbial Ecology,2004,48(2):178-190.
    Hong S W, Kim H J, Choi Y S, Chung T H. Field experiments on bioelectricity production from lake sediment using microbial fuel cell technology [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY,2008,29(11):2189-2194.
    Huang J S, Guo Y, Yang P, Li C M, Gao H, Feng L, Zhang Y. Performance evaluation and bacteria analysis of AFB-MFC enriched with high-strength synthetic wastewater [J]. Water Science & Technology 2014,69(1):9-14.
    Huang L, Cheng S, Rezaei F, Logan B E. Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells [J]. Environmental Technology,2009,30(5):499-504.
    Huang L, Logan B E. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells [J]. Applied Microbiology and Biotechnology,2008,80(4): 655-664.
    Huang L, Regan J M, Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells [J]. Bioresource technology,2011, 102(1):316-323.
    Ieropoulos I, Greenman J, Melhuish C. Improved energy output levels from small-scale microbial fuel cells [J]. Bioelectrochemistry,2010,78(1):44-50.
    Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki K-i. Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria [J]. International Journal of Systematic and Evolutionary Microbiology,2010,60(6):1376-1382.
    Isaka K, Kimura Y, Sumino T, Tsuneda S. Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures [J]. FEMS Microbiology Letters,2008,282(1):32-38.
    Jacobson K S, Drew D M, He Z. Efficient salt removal in a continuously operated up flow microbial desalination cell with an air cathode [J]. Bioresource Technology, 2011,102(1):376-380.
    Jafary T, Ghoreyshi A A, Najafpour G D, Fatemi S, Rahimnejad M. Investigation on performance of microbial fuel cells based on carbon sources and kinetic models [J]. International Journal of Energy Research,2013,37(12):1539-1549.
    Jaroszynski L, Cicek N, Sparling R, Oleszkiewicz J. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed bio film reactor [J]. Chemosphere,2012,88(2):188-195.
    Jetten M S, Niftrik L v, Strous M, Kartal B, Keltjens J T, Op den Camp H J. Biochemistry and molecular biology of anammox bacteria [J]. Critical Reviews in Biochemistry and Molecular Biology,2009,44(2-3):65-84.
    Jetten M S, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process [J]. Current Opinion in Biotechnology,2001,12(3):283-288.
    Jetten M S. The microbial nitrogen cycle [J]. Environmental microbiology,2008, 10(11):2903-2909.
    Jia Y H, Tran H T, Kim D H, Oh S J, Park D H, Zhang R H, Ahn D H. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells [J]. Bioprocess and Biosystems Engineering,2008,31(4):315-321.
    Jiang D, Curtis M, Troop E, Scheible K, McGrath J, Hu B, Suib S, Raymond D, Li B. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment [J]. International Journal of Hydrogen Energy,2011,36(1):876-884.
    Jiang J, Zhao Q, Wei L, Wang K. Extracellular biological organic matters in microbial fuel cell using sewage sludge as fuel [J]. Water Research,2010,44(7):2163-2170.
    Jiang J, Zhao Q, Zhang J, Zhang G, Lee D-J. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell [J]. Bioresource Technology,2009, 100(23):5808-5812.
    Jiang X, Hu J, Petersen E R, Fitzgerald L A, Jackan C S, Lieber A M, Ringeisen B R, Lieber C M, Biffinger J C. Probing single-to multi-cell level charge transport in Geobacter sulfurreducens DL-1 [J]. Nature Communications,2013,4:2751.
    Jin R C, Yang G F, Yu J J, Zheng P. The inhibition of the Anammox process:a review [J]. Chemical Engineering Journal,2012,197:67-79.
    Joss A, Salzgeber D, Eugster J, Konig R, Rottermann K, Burger S, Fabijan P, Leumann S, Mohn J, Siegrist H. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR [J]. Environmental Science & Technology, 2009,43(14):5301-5306.
    Jung S, Mench M M, Regan J M. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH [J]. Environmental Science & Technology,2011,45(20):9069-9074.
    Jung S, Regan J M. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors [J]. Applied Microbiology and Biotechnology,2007,77(2):393-402.
    Kalyuzhnaya M G, De Marco P, Bowerman S, Pacheco C C, Lara J C, Lidstrom M E, Chistoserdova L. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates [J]. International Journal of Systematic and Evolutionary Microbiology,2006,56(11): 2517-2522.
    Kan J, Hsu L, Cheung A C, Pirbazari M, Nealson K H. Current production by bacterial communities in microbial fuel cells enriched from wastewater sludge with different electron donors [J]. Environmental Science & Technology,2010,45(3):1139-1146.
    Karns K, Vogan J M, Qin Q, Hickey S F, Wilson S C, Hammond M C, Herr A E. Microfluidic screening of electrophoretic mobility shifts elucidates riboswitch binding function [J]. Journal of the American Chemical Society,2013,135(8): 3136-3143.
    Kartal B, Maalcke W J, de Almeida N M, Cirpus I, Gloerich J, Geerts W, den Camp H J O, Harhangi H R, Janssen-Megens E M, Francoijs K J. Molecular mechanism of anaerobic ammonium oxidation [J]. Nature,2011,479(7371):127-130.
    Kartal B, Rattray J, van Niftrik L A, van de Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damste J S, Jetten M S. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology,2007,30(1):39-49.
    Kartal B, van Niftrik L, Keltjens J T, Op den Camp H J, Jetten M S. Anammox— Growth Physiology, Cell Biology, and Metabolism [J]. Advances in Microbial Physiology,2012,60:212-251.
    Kartal B, Van Niftrik L, Rattray J, Van De Vossenberg J L, Schmid M C, Sinninghe Damste J, Jetten M S, Strous M. Candidatus'Brocadia fulgida':an autofluorescent anaerobic ammonium oxidizing bacterium [J]. FEMS Microbiology Ecology,2008, 63(1):46-55.
    Kato S, Hashimoto K, Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals [J]. Proceedings of the National Academy of Sciences,2012,109(25):10042-10046.
    Kelly P T, He Z. Nutrients removal and recovery in bioelectrochemical systems:A review [J]. Bioresource technology,2014,153:351-360.
    Khan S T, Horiba Y, Yamamoto M, Hiraishi A. Members of the family Comamonadaceae as primary poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach [J]. Applied and Environmental Microbiology,2002,68(7):3206-3214.
    Kiely P D, Regan J M, Logan B E. The electric picnic:synergistic requirements for exoelectrogenic microbial communities [J]. Current Opinion in Biotechnology, 2011,22(3):378-385.
    Kim B H, Chang I S, Gadd G M. Challenges in microbial fuel cell development and operation [J]. Applied Microbiology and Biotechnology,2007a,76(3):485-494.
    Kim B-H, Kim H-J, Hyun M-S, Park D-H. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens [J]. Journal of Microbiology and Biotechnology,1999,9(2):127-131.
    Kim I S, Choi M J. Microbial fuel cells:recent advances, bacterial communities and application beyond electricity generation [J]. Environmental Engineering Research, 2008,13(2):51-65.
    Kim J R, Dec J, Bruns M A, Logan B E. Removal of odors from swine wastewater by using microbial fuel cells [J]. Applied and Environmental Microbiology,2008, 74(8):2540-2543.
    Kim J R, Jung S H, Regan J M, Logan B E. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells [J]. Bioresource Technology,2007b,98(13):2568-2577.
    Kim JR, Cheng S, Oh SE, Logan BE. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells[J]. Environmental science & technology,2007c,41(3):1004-1009.
    Kim K Y, Chae K J, Choi M J, Ajayi F F, Jang A, Kim C W, Kim I S. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes [J]. Bioresource Technology,2011, 102(5):4144-4149.
    Kim M, Hyun M S, Gadd G M, Kim H J. A novel biomonitoring system using microbial fuel cells [J]. Journal of Environmental Monitoring,2007d,9(12):1323-1328.
    Kimura Z-i, Okabe S. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen [J]. The ISME Journal,2013, 7(8):1472-1482.
    Kindaichi T, Tsushima I, Ogasawara Y, Shimokawa M, Ozaki N, Satoh H, Okabe S. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms [J]. Applied and Environmental Microbiology,2007,73(15): 4931-4939.
    Kindaichi T, Yuri S, Ozaki N, Ohashi A. Ecophysiological role and function of uncultured Chioroflexi in an anammox reactor [J]. Water Science & Technology, 2012,66(12):2556-2561.
    Klemola K, John P, Lindstrom-Seppa P. Evaluating the toxicity of reactive dyes and dyed fabrics with the HacaT cytotoxicity test [J]. AUTEX Research Journal,2007, 7(3):217-223.
    Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria:a model for molecular microbial ecology [J]. Annual Reviews in Microbiology,2001,55(1):485-529.
    Kraft B, Strous M, Tegetmeyer H E. Microbial nitrate respiration-genes, enzymes and environmental distribution [J]. Journal of Biotechnology,2011,155(1):104-117.
    Kuenen J G. Anammox bacteria:from discovery to application [J]. Nature Reviews Microbiology,2008,6(4):320-326.
    Larminie J, Dick A. Fuel cell systems explained [M]. Chichester:John Wiley & Son, 2000.
    Larrosa-Guerrero A, Scott K, Head I, Mateo F, Ginesta A, Godinez C. Effect of temperature on the performance of microbial fuel cells [J]. Fuel,2010,89(12): 3985-3994.
    Lee H S, Parameswaran P, Kato-Marcus A, Torres C I, Rittmann B E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates [J]. Water Research,2008,42(6):1501-1510.
    Lee Y, Martin L, Grasel P, Tawfiq K, Chen G. Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology [J]. Environmental Technology,2013,34(19):2727-2736.
    Lefebvre O, Ha Nguyen T, Al-Mamun A, Chang I, Ng H. T-RFLP reveals high β-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater [J]. Journal of Applied Microbiology,2010,109(3):839-850.
    Li H, Zhang Z, Xu X, Liang J, Xia S. Bioreduction of para-chloronitrobenzene in a hydrogen-based hollow-fiber membrane biofilm reactor:effects of nitrate and sulfate [J]. Biodegradation,2014a,25:205-215.
    Li W, Zheng P, Wang L, Zhang M, Lu H, Xing Y, Zhang J, Wang R, Song J, Ghulam A. Physical characteristics and formation mechanism of denitrifying granular sludge in high-load reactor [J]. Bioresource Technology,2013a,142:683-687.
    Li W, Zheng P, Wu Y L, Zhan E C, Zhang Z H, Wang R, Xing Y J, Abbas G, Zeb B S. Sludge bulking in a high-rate denitrifying automatic circulation (DAC) reactor [J]. Chemical Engineering Journal,2014b,240:387-393.
    Li W W, Sheng G P, Liu X W, Yu H Q. Recent advances in the separators for microbial fuel cells [J]. Bioresource Technology,2011,102(1):244-252.
    Li X R, Du B, Fu H X, Wang R F, Shi J H, Wang Y, Jetten M S, Quan Z X. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community [J]. Systematic and Applied Microbiology,2009,32(4):278-289.
    Li Y, Zhang J, Chen Q, Yang G, Cai S, He J, Zhou S, Li S P. Dokdonella kunshanensis sp. nov., isolated from activated sludge, and emended description of the genus Dokdonella [J]. International Journal of Systematic and Evolutionary Microbiology, 2013b,63(Pt 4):1519-1523.
    Liang P, Huang X, Fan M Z, Cao X X, Wang C. Composition and distribution of internal resistance in three types of microbial fuel cells [J]. Applied Microbiology and Biotechnology,2007,77(3):551-558.
    Lin S K C, Du C, Koutinas A, Wang R, Webb C. Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes [J]. Biochemical Engineering Journal,2008,41(2):128-135.
    Liu H, Cheng S, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration [J]. Environmental Science & Technology,2005a,39(14):5488-5493.
    Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell [J]. Environmental Science & Technology, 2005b,39(2):658-662.
    Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J]. Environmental Science & Technology,2004,38(14):4040-4046.
    Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environmental science & technology,2004,38(7):2281-2285.
    Liu M, Yuan Y, Zhang L X, Zhuang L, Zhou S G, Ni J R. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells [J]. Bioresource Technology,2010a,101(6):1807-1811.
    Liu Y, Du Y, Li C M. Direct Electrochemistry Based Biosensors and Biofuel Cells Enabled with Nanostructured Materials [J]. Electroanalysis,2013,25(4):815-831.
    Liu Y, Harnisch F, Fricke K, Schroder U, Climent V, Feliu J M. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells [J]. Biosensors and Bioelectronics,2010b,25(9): 2167-2171.
    Liu Z, Frigaard N U, Vogl K, Iino T, Ohkuma M, Overmann J, Bryant D A. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi [J]. Frontiers in Microbiology,2012,3(185): 1-15.
    Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water [J]. Nature,2012,488(7411):313-319.
    Logan B E, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells:methodology and technology [J]. Environmental Science & Technology,2006,40(17):5181-5192.
    Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science,2012,337(6095):686-690.
    Logan B E, Regan J M. Electricity-producing bacterial communities in microbial fuel cells [J]. TRENDS in Microbiology,2006,14(12):512-518.
    Logan B E. Exoelectrogenic bacteria that power microbial fuel cells [J]. Nature Reviews Microbiology,2009,7(5):375-381.
    Logan B E. Microbial Fuel Cells[J]. NJ:John Wiley & Sons,2008.
    Logan B E. Scaling up microbial fuel cells and other bioelectrochemical systems [J]. Applied Microbiology and Biotechnology,2010,85(6):1665-1671.
    Logan B, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J]. Environmental Science & Technology,2007,41(9):3341-3346.
    Lovins A B. Farewell to Fossil Fuels:Answering the Energy Challenge, A [J]. Foreign Affairs,2012,91(2):134-136.
    Lovley D R. Bug juice:harvesting electricity with microorganisms [J]. Nature Reviews Microbiology,2006a,4(7):497-508.
    Lovley D R. Electromicrobiology [J]. Annual Review of Microbiology,2012a,66:391-409.
    Lovley D R. Extracellular electron transfer:wires, capacitors, iron lungs, and more [J]. Geobiology,2008,6(3):225-231.
    Lovley D R. Long-range electron transport to Fe (Ⅲ) oxide via pili with metallic-like conductivity [J]. Biochemical Society Transactions,2012b,40(6):1186-1190.
    Lovley D R. Microbial fuel cells:novel microbial physiologies and engineering approaches [J]. Current opinion in biotechnology,2006b,17(3):327-332.
    Lovley D R. The microbe electric:conversion of organic matter to electricity [J]. Current opinion in biotechnology,2008,19(6):564-571.
    Lu M, Li S F Y. Cathode reactions and applications in microbial fuel cells:a review [J]. Critical Reviews in Environmental Science and Technology,2012,42(23):2504-2525.
    Lu N, Zhou S G, Zhuang L, Zhang J T, Ni J R. Electricity generation from starch processing wastewater using microbial fuel cell technology [J]. Biochemical Engineering Journal,2009,43(3):246-251.
    Madigan M T, Martinko J M, Parker J, Brock T D. Brock Biology of Microorganisms, 13 th edn [M]. San Francisco:Pearson/Benjamin Cummings,2010.
    Makino S, Shinohara Y, Ban T, Shimizu W, Takahashi K, Imanishi N, Sugimoto W.4 V class aqueous hybrid electrochemical capacitor with battery-like capacity [J]. RSC Advances,2012,2(32):12144-12147.
    Malvankar N S, Vargas M, Nevin K P, Franks A E, Leang C, Kim B-C, Inoue K, Mester T, Covalla S F, Johnson J P. Tunable metallic-like conductivity in microbial nanowire networks [J]. Nature Nanotechnology,2011,6(9):573-579.
    Manohar A K, Bretschger O, Nealson K H, Mansfeld F. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell [J]. Bioelectrochemistry,2008,72(2):149-154.
    Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proceedings of the National Academy of Sciences,2008,105(10):3968-3973.
    Martienssen M, Schops R. Population dynamics of denitrifying bacteria in a model biocommunity [J]. Water Research,1999,33(3):639-646.
    Mathuriya A S, Sharma V. Electricity generation by Saccharomyces cerevisae and Clostridium acetobutylicum via microbial fuel cell technology:a comparative study [J]. Advances in Biological Research,2010,4(4):217-223.
    McCarty P L, Beck L, Amant P S. Biological denitrification of wastewaters by addition of organic materials [C]. Proceedings of the 24th Industrial Waste Conference. Purdue University,1969:1271-1285.
    Meitl L A, Eggleston C M, Colberg P J, Khare N, Reardon C L, Shi L. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes [J]. Geochimica et Cosmochimica Acta, 2009,73(18):5292-5307.
    Menicucci J, Beyenal H, Marsili E, Veluchamy R A, Demir G, Lewandowski Z. Procedure for determining maximum sustainable power generated by microbial fuel cells [J]. Environmental Science & Technology,2006,40(3):1062-1068.
    Methe B, Nelson K E, Eisen J, Paulsen I, Nelson W, Heidelberg J, Wu D, Wu M, Ward N, Beanan M. Genome of Geobacter sulfurreducens:metal reduction in subsurface environments [J]. Science,2003,302(5652):1967-1969.
    Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil [J]. FEMS Microbiology Ecology,2010,74(3): 669-681.
    Milliken C, May H. Sustained generation of electricity by the spore-forming, Gram- positive, Desulfitobacterium hafniense strain DCB2 [J]. Applied Microbiology and Biotechnology,2007,73(5):1180-1189.
    Min B, Cheng S, Logan B E. Electricity generation using membrane and salt bridge microbial fuel cells [J]. Water Research,2005,39(9):1675-1686.
    Min B, Roman O B, Angelidaki I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance [J]. Biotechnology Letters, 2008,30(7):1213-1218.
    Minteer S D, Atanassov P, Luckarift H R, Johnson G R. New materials for biological fuel cells [J]. Materials Today,2012,15(4):166-173.
    Mohan S V, Mohanakrishna G, Sarma P. Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell [J]. Environmental Science & Technology,2008,42(21):8088-8094.
    Mohan S V, Raghavulu S V, Srikanth S, Sarma P. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate:Influence of substrate loading rate [J]. Current Science,2007,92(12): 1720-1726.
    Monclus H, Sipma J, Ferrero G, Rodriguez-Roda I, Comas J. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal [J]. Bioresource Technology,2010,101(11):3984-3991.
    Mook W T, Aroua M K T, Chakrabarti M H, Noor I M, Irfan M F, Low C T J. A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems [J]. Journal of Industrial and Engineering Chemistry,2013,19(1):1-13.
    Moon H, Chang I S, Kim B H. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell [J]. Bioresource Technology, 2006,97(4):621-627.
    Moon H, Chang I, Jang J, Kim K S, Lee J, Lovitt R W, Kim B H. On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell [J]. Journal of Microbiology and Biotechnology,2005,15(1): 192-196.
    Morris J M, Fallgren P H, Jin S. Enhanced denitrification through microbial and steel fuel-cell generated electron transport [J]. Chemical Engineering Journal,2009, 153(1):37-42.
    Morris J M, Jin S. Influence of NO3 and SO4 on power generation from microbial fuel cells [J]. Chemical Engineering Journal,2009,153(1):127-130.
    Mulder A, Graaf A, Robertson L, Kuenen J. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. FEMS Microbiology Ecology, 1995,16(3):177-184.
    Mulder J, Duin J, Goverde J, Poiesz W, Van Veldhuizen H, Van Kempen R, Roeleveld P. Full-scale experience with the SHARON process through the eyes of the operators [J]. Proceedings of the Water Environment Federation,2006,2006(67): 5256-5270.
    Mustakhimov I, Kalyuzhnaya M G, Lidstrom M E, Chistoserdova L. Insights into denitrification in Methylotenera mobilis from denitrification pathway and methanol metabolism mutants [J]. Journal of Bacteriology,2013,195(10):2207-2211.
    Na L, Shungui Z, Jinren N. Mechanism of Energy Generation of Microbial Fuel Cells [J]. Progress in Chemistry,2008,20(0708):1233-1240.
    Naether A, Foesel B U, Naegele V, Wust P K, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils [J]. Applied and Environmental Microbiology,2012,78(20):7398-7406.
    Nagarajan H, Embree M, Rotaru A-E, Shrestha P M, Feist A M, Palsson B 0, Lovley D R, Zengler K. Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association [J]. Nature Communications,2013,4:1-10.
    Nakamura R, Ishii K, Hashimoto K. Electronic absorption spectra and redox properties of C type cytochromes in living microbes [J]. Angewandte Chemie International Edition,2009,48(9):1606-1608.
    Nam J Y, Kim H W, Lim K H, Shin H S. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell [J]. Bioresource Technology,2010,101(1):S33-S37.
    Namour P, Jaffrezic-Renault N. Sensors for measuring biodegradable and total organic matter in water [J]. TrAC Trends in Analytical Chemistry,2010,29(8):848-857.
    Neumann S, Jetten M, van Niftrik L. The ultrastructure of the compartmentalized anaerobic ammonium-oxidizing bacteria is linked to their energy metabolism [J]. Biochemical Society Transactions,2011,39(6):1805-1810.
    Nevin K P, Richter H, Covalla S, Johnson J, Woodard T, Orloff A, Jia H, Zhang M, Lovley D. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells [J]. Environmental Microbiology,2008,10(10):2505-2514.
    Newman D K, Kolter R. A role for excreted quinones in extracellular electron transfer [J]. Nature,2000,405(6782):94-97.
    Ni B J, Hu B L, Fang F, Xie W M, Kartal B, Liu X W, Sheng G P, Jetten M, Zheng P, Yu H Q. Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor [J]. Applied and Environmental Microbiology,2010,76(8):2652-2656.
    Ni S Q, Zhang J. Anaerobic Ammonium Oxidation:From Laboratory to Full-Scale Application [J]. BioMed research international,2013,2013:1-10.
    Niftrik L A, Fuerst J A, Damste J S S, Kuenen J G, Jetten M S, Strous M. The anammoxosome:an intracytoplasmic compartment in anammox bacteria [J]. FEMS Microbiology Letters,2004,233(1):7-13.
    Oh J, Yoon S, Park J. Denitrification in submerged biofilters of concentrated-nitrate wastewater [J]. Water Science and Technology,2001,43(1):217-224.
    Oh S T, Kim J R, Premier G C, Lee T H, Kim C, Sloan W T. Sustainable wastewater treatment:how might microbial fuel cells contribute [J]. Biotechnology Advances, 2010,28(6):871-881.
    Oh S, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells [J]. Environmental science & technology,2004,38(18):4900-4904.
    Oh S E, Logan B E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells [J]. Applied Microbiology and Biotechnology,2006,70(2):162-169.
    Okamoto A, Hashimoto K, Nealson K H, Nakamura R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones [J]. Proceedings of the National Academy of Sciences,2013a,110(19):7856-7861.
    Okamoto H, Kawamura K, Nishiyama T, Fujii T, Furukawa K. Development of a fixed-bed anammox reactor with high treatment potential [J]. Biodegradation,2013b, 24(1):99-110.
    Okpokwasili G, Nweke C. Microbial growth and substrate utilization kinetics [J]. African Journal of Biotechnology,2006,5(4):305-317.
    Oliveira V, Simoes M, Melo L, Pinto A. Overview on the developments of microbial fuel cells [J]. Biochemical Engineering Journal,2013,73:53-64.
    Pant D, Van Bogaert G, Diels L, Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production [J]. Bioresource Technology,2010,101(6):1533-1543.
    Park D H, Zeikus J G. Electricity generation in microbial fuel cells using neutral red as an electronophore [J]. Applied and Environmental Microbiology,2000,66(4): 1292-1297.
    Park D H, Zeikus J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation [J]. Biotechnology and Bioengineering,2003,81(3): 348-355.
    Park H, Rosenthal A, Ramalingam K, Fillos J, Chandran K. Linking community profiles, gene expression and N-removal in anammox bioreactors treating municipal anaerobic digestion reject water [J]. Environmental Science & Technology,2010,44(16):6110-6116.
    Patchett R A, Kelly A F, Kroll R G. Use of a microbial fuel cell for the rapid enumeration of bacteria [J]. Applied Microbiology and Biotechnology,1988,28(1): 26-31.
    Peixoto L, Min B, Martins G, Brito A G, Kroff P, Parpot P, Angelidaki I, Nogueira R. In situ microbial fuel cell-based biosensor for organic carbon [J]. Bioelectrochemistry,2011,81(2):99-103.
    Pham C A, Jung S J, Phung N T, Lee J, Chang I S, Kim B H, Yi H, Chun J. A novel electrochemically active and Fe (Ⅲ-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell [J]. FEMS Microbiology Letters,2003,223(1):129-134.
    Pham H T, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Van Oostveldt P, Verbeken K, Rabaey K, Verstraete W. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell [J]. Microbial Biotechnology,2008,1(6):487-496.
    Pham T H, Aelterman P, Verstraete W. Bioanode performance in bioelectrochemical systems:recent improvements and prospects [J]. Trends in Biotechnology,2009, 27(3):168-178.
    Picioreanu C, Katuri K, Head I, Van Loosdrecht M, Scott K. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion [J]. Water Science & Technology,2008,57(7):965-971.
    Pinar G, Duque E, Haidour A, Oliva J, Sanchez-Barbero L, Calvo V, Ramos J L. Removal of high concentrations of nitrate from industrial wastewaters by bacteria [J]. Applied and Environmental Microbiology,1997,63(5):2071-2073.
    Puig S, Serra M, Coma M, Balaguer M, Colprim J. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs) [J]. Water Science & Technology,2011,64(4):904-909.
    Qiao S, Tian T, Zhou J. Effects of quinoid redox mediators on the activity of anammox biomass [J]. Bioresource technology,2014,152:116-123.
    Qiao Y, Bao S J, Li C M. Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry [J]. Energy & Environmental Science,2010,3(5): 544-553.
    Quan X C, Quan Y P, Tao K. Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell [J]. Chemical Engineering Journal, 2012,210:150-156.
    Rabaey K, Boon N, Hofte M, Verstraete W. Microbial phenazine production enhances electron transfer in biofuel cells [J]. Environmental Science & Technology,2005a, 39(9):3401-3408.
    Rabaey K, Boon N, Siciliano S D, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer [J]. Applied Microbiology and Biotechnology,2004,70(9):5373-5382.
    Rabaey K, Clauwaert P, Aelterman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation [J]. Environmental Science & Technology,2005b, 39(20):8077-8082.
    Rabaey K, Keller J. Microbial fuel cell cathodes:from bottleneck to prime opportunity? [J]. Water Science & Technology,2008,57(5):655-659.
    Rabaey K, Lissens G, Verstraete W. Microbial fuel cells:Performances and perspectives. In Biofuels for Fuel Cells:Biomass Fermentation Towards Usage in Fuel Cells [M]. London:IWA Publishing,2005c.
    Rabaey K, Rodriguez J, Blackall L L, Keller J, Gross P, Batstone D, Verstraete W, Nealson K H. Microbial ecology meets electrochemistry:electricity-driven and driving communities [J]. The ISME Journal,2007,1(1):9-18.
    Rabaey K, Van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham H T, Vermeulen J, Verhaege M. Microbial fuel cells for sulfide removal [J]. Environmental Science & Technology,2006,40(17):5218-5224.
    Rabaey K, Verstraete W. Microbial fuel cells:novel biotechnology for energy generation [J]. Trends in Biotechnology,2005,23(6):291-298.
    Rader G K, Logan B E. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate [J]. International Journal of Hydrogen Energy,2010, 35(17):8848-8854.
    Rattray J E, Geenevasen J A, Van Niftrik L, Rijpstra W I C, Hopmans E C, Strous M, Schouten S, Jetten M S, Sinninghe Damste J S. Carbon isotope-labelling experiments indicate that ladderane lipids of anammox bacteria are synthesized by a previously undescribed, novel pathway [J]. FEMS Microbiology Letters,2009, 292(1):115-122.
    Reed M C, Lieb A, Nijhout H F. The biological significance of substrate inhibition:a mechanism with diverse functions [J]. Bioessays,2010,32(5):422-429.
    Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Extracellular electron transfer via microbial nanowires [J]. Nature,2005,435(7045): 1098-1101.
    Reguera G, Nevin K P, Nicoll J S, Covalla S F, Woodard T L, Lovley D R. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells [J]. Applied and environmental microbiology,2006,72(11):7345-7348.
    Rezaei F, Xing D, Wagner R, Regan J M, Richard T L, Logan B E. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell [J]. Applied and Environmental Microbiology,2009,75(11): 3673-3678.
    Richter H, Nevin K P, Jia H, Lowy D A, Lovley D R, Tender L M. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type Ⅳ pili, and protons in extracellular electron transfer [J]. Energy & Environmental Science,2009,2(5):506-516.
    Rifkin J. The hydrogen economy:The creation of the worldwide energy web and the redistribution of power on earth [M]. New York:Tarcher/Putnam,2003.
    Rikame S S, Mungray A A, Mungray A K. Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell [J]. International Biodeterioration & Biodegradation,2012,75:131-137.
    Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E. Engineering materials and biology to boost performance of microbial fuel cells:a critical review [J]. Energy & Environmental Science,2008,1(4):417-429.
    Ringeisen B R, Henderson E, Wu P K, Pietron J, Ray R, Little B, Biffinger J C, Jones-Meehan J M. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP 10 [J]. Environmental Science & Technology,2006, 40(8):2629-2634.
    Rismani-Yazdi H, Christy A D, Dehority B A, Morrison M, Yu Z, Tuovinen O H. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells [J]. Biotechnology and Bioengineering,2007,97(6):1398-1407.
    Rittmann B E, McCarty P L. Environmental biotechnology [M]. New York:McGraw Hill,2001.
    Rittmann B E. Opportunities for renewable bioenergy using microorganisms [J]. Biotechnology and Bioengineering,2008,100(2):203-212.
    Robinson R W. Life cycles in the methanogenic archaebacterium Methanosarcina mazei [J]. Applied and Environmental Microbiology,1986,52(1):17-27.
    Rosenbaum M, He Z, Angenent L T. Light energy to bioelectricity:photosynthetic microbial fuel cells [J]. Current Opinion in Biotechnology,2010,21(3):259-264.
    Rosenberg E, DeLong E F, Lory S, Stackebrandt E, Thompson F. The Prokaryotes: Prokaryotic Physiology and Biochemistry,4th edn [M]. Berlin Heidelberg: Springer,2013.
    Rotaru A E, Shrestha P M, Liu F, Ueki T, Nevin K, Summers Z M, Lovley D R. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens [J]. Applied and Environmental Microbiology,2012,78(21):7645-7651.
    Rozendal R A, Hamelers H V, Buisman C J. Effects of membrane cation transport on pH and microbial fuel cell performance [J]. Environmental Science & Technology, 2006,40(17):5206-5211.
    Rozendal R A, Hamelers H V, Rabaey K, Keller J, Buisman C J. Towards practical implementation of bioelectrochemical wastewater treatment [J]. Trends in Biotechnology,2008,26(8):450-459.
    Sanford R A, Wagner D D, Wu Q, Chee-Sanford J C, Thomas S H, Cruz-Garcia C, Rodriguez G, Massol-Deya A, Krishnani K K, Ritalahti K M. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils [J]. Proceedings of the National Academy of Sciences,2012,109(48):19709-19714.
    Schalk J, Oustad H, Kuenen J G, Jetten M S. The anaerobic oxidation of hydrazine:a novel reaction in microbial nitrogen metabolism [J]. FEMS Microbiology Letters, 1998,158(1):61-67.
    Schmid M C, Hooper A B, Klotz M G, Woebken D, Lam P, Kuypers M M, Pommerening-Roeser A, Op Den Camp H J, Jetten M S. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria [J]. Environmental Microbiology,2008,10(11):3140-3149.
    Scholz F, Schroder U. Bacterial batteries [J]. Nature Biotechnology,2003,21(10): 1151-1152.
    Schouten S, Strous M, Kuypers M M, Rijpstra W I C, Baas M, Schubert C J, Jetten M S, Damst e J S S. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria [J]. Applied and Environmental Microbiology,2004,70(6):3785-3788.
    Schroder U, NieBen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude [J]. Angewandte Chemie International Edition,2003,42(25):2880-2883.
    Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency [J]. Physical Chemistry Chemical Physics,2007,9(21):2619-2629.
    Schroder U. Discover the possibilities:microbial bioelectrochemical systems and the revival of a 100-year-old discovery [J]. Journal of Solid State Electrochemistry, 2011,15(7-8):1481-1486.
    Scott K, Murano C. A study of a microbial fuel cell battery using manure sludge waste [J]. Journal of Chemical Technology and Biotechnology,2007,82(9):809-817.
    Sekar N, Ramasamy R P. Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization [J].The Journal of Microbial & Biochemical Technology, 2013, S6:004.
    Shapleigh J P. The denitrifying prokaryotes [J]. The Prokaryotes:Volume 2: Ecophysiology and Biochemistry,2006,769-792.
    Sharma V, Kundu P. Biocatalysts in microbial fuel cells [J]. Enzyme and Microbial Technology,2010,47(5):179-188.
    Sharma Y, Li B. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs) [J]. Bioresource Technology,2010,101(6): 1844-1850.
    Shen J, He R, Han W, Sun X, Li J, Wang L. Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR) [J]. Journal of Hazardous Materials,2009,172(2):595-600.
    Shen Y J, Lefebvre O, Tan Z, Ng H Y. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity [J]. Water Science & Technology,2012,65(7):1223-1228.
    Shimamura M, Nishiyama T, Shigetomo H, Toyomoto T, Kawahara Y, Furukawa K, Fujii T. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture [J]. Applied and Environmental Microbiology,2007,73(4):1065-1072.
    Shinnar R, Citro F. A road map to US decarbonization [J]. Science,2006,313(5791): 1243-1244.
    Shizas I, Bagley D M. Experimental determination of energy content of unknown organics in municipal wastewater streams [J]. Journal of Energy Engineering,2004, 130(2):45-53.
    Shukla A, Suresh P, Berchmans S, Rajendran A. Biological fuel cells and their applications [J]. Current Science,2004,87(4):455-468.
    Siegrist H, Salzgeber D, Eugster J, Joss A. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal [J]. Water Science & Technology,2008,57(3):383-388.
    Silva V, Mendes A, Madeira L, Nunes S. Proton exchange membranes for direct methanol fuel cells:Properties critical study concerning methanol crossover and proton conductivity [J]. Journal of Membrane Science,2006,276(1):126-134.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008,7(11):845-854.
    Sinclair P R, Gorman N, Jacobs J M. Measurement of heme concentration [M]. Current Protocols in Toxicology,8.3.1-8.3.7, John Wiley & Sons, Inc,1999.
    Sinha B, Annachhatre A P. Partial nitrification—operational parameters and microorganisms involved [J]. Reviews in Environmental Science and Bio/Technology,2007,6(4):285-313.
    Sleutels T H, Lodder R, Hamelers H V, Buisman C J. Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport [J]. International Journal of Hydrogen Energy,2009,34(24):9655-9661.
    Snider R M, Strycharz-Glaven S M, Tsoi S D, Erickson J S, Tender L M. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven [J]. Proceedings of the National Academy of Sciences,2012,109(38):15467-15472.
    Solanki K, Subramanian S, Basu S. Microbial fuel cells for azo dye treatment with electricity generation:a review [J]. Bioresource technology,2013,131:564-571.
    Speight J G. Lange's Handbook of Chemistry,16th edn [M]. New York:McGraw-Hill, 2005.
    Stein N E, Hamelers H, van Straten G, Keesman K J. On-line detection of toxic components using a microbial fuel cell-based biosensor [J]. Journal of Process Control,2012,22(9):1755-1761.
    Strous M, Fuerst J A, Kramer E H, Logemann S, Muyzer G, van de Pas-Schoonen K T, Webb R, Kuenen J G, Jetten M S. Missing lithotroph identified as new planctomycete [J]. Nature,1999a,400(6743):446-449.
    Strous M, Heijnen J, Kuenen J, Jetten M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology,1998,50(5):589-596.
    Strous M, Kuenen J G, Jetten M S. Key physiology of anaerobic ammonium oxidation [J]. Applied and Environmental Microbiology,1999b,65(7):3248-3250.
    Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor M W, Horn M, Daims H, Bartol-Mavel D, Wincker P. Deciphering the evolution and metabolism of an anammox bacterium from a community genome [J]. Nature,2006,440(7085):790-794.
    Stucki G, Galli R, Ebersold H-R, Leisinger T. Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2 [J]. Archives of Microbiology,1981,130(5): 366-371.
    Sun M, Mu Z X, Chen Y P, Sheng G P, Liu X W, Chen Y Z, Zhao Y, Wang H L, Yu H Q, Wei L. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell [J]. Environmental Science & Technology,2009,43(9):3372-3377.
    Sun S P, Nacher C P I, Merkey B, Zhou Q, Xia S Q, Yang D H, Sun J H, Smets B F. Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios:a review [J]. Environmental Engineering Science,2010a,27(2): 111-126.
    Sun Y, Wei J, Liang P, Huang X. Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials [J]. Bioresource Technology,2011,102(23):10886-10891.
    Sun Y, Zuo J, Cui L, Deng Q, Dang Y. Diversity of microbes and potential exoelectrogenic bacteria on anode surface in microbial fuel cells [J]. Journal of General and Applied Microbiology,2010b,56(1):19-29.
    Suzuki I, Dular U, Kwok S. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts [J]. Journal of Bacteriology,1974,120(1): 556-558.
    Tang C J, Zheng P, Mahmood Q, Chen J W. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge [J]. Journal of Industrial Microbiology & Biotechnology,2009,36(8):1093-1100.
    Tang C J, Zheng P, Wang C H, Mahmood Q, Zhang J Q, Chen X G, Zhang L, Chen J W. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge [J]. Water Research,2011,45(1):135-144.
    Tartakovsky B, Manuel M F, Neburchilov V, Wang H, Guiot S. Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode [J]. Journal of Power Sources,2008,182(1):291-297.
    Ten L N, Jung H M, Im W T, Oh H W, Yang D C, Yoo S A, Lee S T. Dokdonella ginsengisoli sp. nov., isolated from soil from a ginseng field, and emended description of the genus Dokdonella [J]. International Journal of Systematic and Evolutionary Microbiology,2009,59(8):1947-1952.
    Tsng S X, Tong Z H, Li W W, Wang S G, Sheng G P, Shi X Y, Liu X W, Yu H Q. Electricity generation from mixed volatile fatty acids using microbial fuel cells [J]. Applied Microbiology and Biotechnology,2010,87(6):2365-2372.
    Ter Heijne A, Hamelers H V, Saakes M, Buisman C J. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells [J]. Electrochimica Acta, 2008,53(18):5697-5703.
    Thauer R K, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria [J]. Bacteriological Reviews,1977,41(1):100.
    Thrash J C, Coates J D. Review:direct and indirect electrical stimulation of microbial metabolism [J]. Environmental Science & Technology,2008,42(11):3921-3931.
    Timmers R A, Rothballer M, Strik D P, Engel M, Schulz S, Schloter M, Hartmann A, Hamelers B, Buisman C. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell [J]. Applied Microbiology and Biotechnology,2012,94(2):537-548.
    Toh S, Ashbolt N. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater [J]. Applied Microbiology and Biotechnology, 2002,59(2-3):344-352.
    Torres C I, Marcus A K, Lee H S, Parameswaran P, Krajmalnik-Brown R, Rittmann B E. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria [J]. FEMS Microbiology Reviews,2010,34(1):3-17.
    Torres C I, Marcus A K, Rittmann B E. Kinetics of consumption of fermentation products by anode-respiring bacteria [J]. Applied Microbiology and Biotechnology. 2007,77(3):689-697.
    Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors [J]. Water Research, 2007,41(8):1623-1634.
    Tyagi V K, Lo S L. Sludge:A waste or renewable source for energy and resources recovery? [J]. Renewable and Sustainable Energy Reviews,2013,25:708-728.
    Vajda B, Belafi-bako K, Nemestothy N. The role of methanol in microbial fuel cells [J]. Hungarin Journal of Industrial Chemistry,2011,39(3):387-390.
    Van de Graaf A A, de Bruijn P, Robertson L A, Jetten M S, Kuenen J G. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor [J]. Microbiology,1996,142(8):2187-2196.
    Van de Graaf A A, Mulder A, de Bruijn P, Jetten M, Robertson L A, Kuenen J G. Anaerobic oxidation of ammonium is a biologically mediated process [J]. Applied and Environmental Microbiology,1995,61(4):1246-1251.
    Van der Star W R, Abma W R, Blommers D, Mulder J W, Tokutomi T, Strous M, Picioreanu C, Van Loosdrecht M. Startup of reactors for anoxic ammonium oxidation:experiences from the first full-scale anammox reactor in Rotterdam [J]. Water Research,2007,41(18):4149-4163.
    van der Star W R, Miclea A I, van Dongen U G, Muyzer G, Picioreanu C, van Loosdrecht M. The membrane bioreactor:a novel tool to grow anammox bacteria as free cells [J]. Biotechnology and Bioengineering,2008,101(2):286-294.
    Van der Zee F P, Cervantes F J. Impact and application of electron shuttles on the redox (bio) transformation of contaminants:a review [J]. Biotechnology Advances,2009, 27(3):256-277.
    van Dongen U, Jetten M, Van Loosdrecht M. The SHARON(?)-Anammox(?) process for treatment of ammonium rich wastewater [J]. Water Science and Technology,2001, 44(1):153-160.
    Van Kempen R, Mulder J, Uijterlinde C, Loosdrecht M. Overview:full scale experience of the SHARON(?) process for treatment of rejection water of digested sludge dewatering [J]. Water Science and Technology,2001,44(1):145-152.
    Van Loosdrecht M, Jetten M. Microbiological conversions in nitrogen removal [J]. Water Science and Technology,1998,38(1):1-7.
    van Niftrik L, Geerts W J, van Donselaar E G, Humbel B M, Webb R I, Fuerst J A, Verkleij A J, Jetten M S, Strous M. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:cell plan, glycogen storage, and localization of cytochrome C proteins [J]. Journal of Bacteriology,2008,190(2): 708-717.
    van Niftrik L, Jetten M S. Anaerobic ammonium-oxidizing bacteria:unique microorganisms with exceptional properties [J]. Microbiology and Molecular Biology Reviews,2012,76(3):585-596.
    Van Niftrik L, Van Helden M, Kirchen S, Van Donselaar E G, Harhangi H R, Webb R I, Fuerst J A, Op den Camp H J, Jetten M S, Strous M. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium 'Candidatus Kuenenia stuttgartiensis'[J]. Molecular microbiology,2010,77(3): 701-715.
    Vazquez Padin J. Autotrophic nitrogen removal in granular sequencing batch reactors [M]. Univ Santiago de Compostela,2009.
    Vazquez-Padin J, Fernandez I, Morales N, Campos J, Mosquera-Corral A, Mendez R. Autotrophic nitrogen removal at low temperature [J]. Water Science & Technology, 2011,63(6):1282-1288.
    Velasquez-Orta S B, Head I M, Curtis T P, Scott K, Lloyd J R, von Canstein H. The effect of flavin electron shuttles in microbial fuel cells current production [J]. Applied Microbiology and Biotechnology,2010,85(5):1373-1381.
    (?)elasquez-Orta S B, Yu E, Katuri K P, Head I M, Curtis T P, Scott K. Evaluation of hydrolysis and fermentation rates in microbial fuel cells [J]. Applied Microbiology and Biotechnology,2011,90(2):789-798.
    Vilar-Sanz A, Puig S, Garcia-Lledo A, Trias R, Balaguer M D, Colprim J, Baneras L. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a Microbial Fuel Cell [J]. Plos One,2013,8(5):e63460.
    Virdis B, Rabaey K, Rozendal R A, Yuan Z, Keller J. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells [J]. Water Research,2010, 44(9):2970-2980.
    Virdis B, Rabaey K, Yuan Z, Keller J. Microbial fuel cells for simultaneous carbon and nitrogen removal [J]. Water Research,2008,42(12):3013-3024.
    Von Canstein H, Ogawa J, Shimizu S, Lloyd J R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer [J]. Applied and environmental microbiology,2008,74(3):615-623.
    Waller M G, Trabold T A. Review of Microbial Fuel Cells for Wastewater Treatment: Large-Scale Applications, Future Needs and Current Research Gaps [C].Proceedings of the ASME 2013 11th International Conference on Fuel Cell Science,2013.
    Wang B, Han J I. A single chamber stackable microbial fuel cell with air cathode [J]. Biotechnology Letters,2009,31(3):387-393.
    Wang H, Jiang S C, Wang Y, Xiao B. Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater [J]. Bioresource Technology,2013,138:109-116.
    Wang L, Zheng P, Chen T, Chen J, Xing Y, Ji Q, Zhang M, Zhang J. Performance of autotrophic nitrogen removal in the granular sludge bed reactor [J]. Bioresource Technology,2012,123:78-85.
    Wang X, Feng Y, Lee H. Electricity production from beer brewery wastewater using single chamber microbial fuel cell [J]. Water Science & Technology,2008,57(7): 1117-1121.
    Watanabe K, Mane field M, Lee M, Kouzuma A. Electron shuttles in biotechnology [J]. Current Opinion in Biotechnology,2009,20(6):633-641.
    Weber C F, King G M. The phylogenetic distribution and ecological role of carbon monoxide oxidation in the genus Burkholderia [J]. FEMS Microbiology Ecology, 2012,79(1):167-175.
    Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells [J]. Bioresource Technology,2011,102(20):9335-9344.
    Wei Y J, Li K A Tong S Y. A linear regression method for the study of the Coomassie brilliant blue protein assay [J]. Talanta,1997,44(5):923-930.
    Wotawa-Bergen A, Chadwick D, Richter K, Tender L, Reimers C, Gong Y. Operational testing of sediment microbial fuel cells in San Diego Bay [C]. Proceedings of the OCEANS 2010, IEEE,2010:1-6.
    Wrighton K, Thrash J, Melnyk R, Bigi J, Byrne-Bailey K, Remis J, Schichnes D, Auer M, Chang C, Coates J. Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell [J]. Applied and Environmental Microbiology,2011,77(21):7633-7639.
    Wu M L, van Teeseling M C, Willems M J, van Donselaar E G, Klingl A, Rachel R, Geerts W J, Jetten M S, Strous M, van Niftrik L. Ultrastructure of the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera," a novel polygon-shaped bacterium [J]. Journal of Bacteriology,2012,194(2):284-291.
    Wu W, Yang L, Wang J. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor [J]. Environmental Science and Pollution Research,2013,20(1):333-339.
    Wuchter C, Abbas B, Coolen M J, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl G J, Middelburg J J. Archaeal nitrification in the ocean [J]. Proceedings of the National Academy of Sciences,2006,103(33):12317-12322.
    Xia X, Cao X X, Liang P, Huang X, Yang S P, Zhao G G. Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells [J]. Applied Microbiology and Biotechnology,2010,87(1):383-390.
    Xiao Y, Zeng G, Yang Z, Liu Y S, Ma Y, Yang L, Wang R, Xu Z Y. Coexistence of nitrifiers, denitrifiers and Anammox bacteria in a sequencing batch biofilm reactor as revealed by PCR-DGGE [J]. Journal of Applied Microbiology,2009,106(2): 496-505.
    Xie S, Liang P, Chen Y, Xia X, Huang X. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system [J]. Bioresource Technology,2011,102(1):348-354.
    Xie Z, Chen H, Zheng P, Zhang J, Cai J, Abbas G. Influence and mechanism of dissolved oxygen on the performance of Ammonia-Oxidation Microbial Fuel Cell [J]. International Journal of Hydrogen Energy,2013,38(25):10607-10615.
    Xing D, Zuo Y, Cheng S, Regan J M, Logan B E. Electricity generation by Rhodopseudomonas palustris DX-1 [J]. Environmental Science & Technology, 2008,42(11):4146-4151.
    Yan H, Regan J M. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas [J]. Biotechnology and Bioengineering,2013, 110(3):785-791.
    Yan H, Saito T, Regan J M. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode [J]. Water Research,2012,46(7): 2215-2224.
    Yang Y, Xu M, Guo J, Sun G. Bacterial extracellular electron transfer in bioelectrochemical systems [J]. Process Biochemistry,2012,47(12):1707-1714.
    Ye R W, Thomas S M. Microbial nitrogen cycles:physiology, genomics and applications [J]. Current Opinion in Microbiology,2001,4(3):307-312.
    Yi T, Harper W F. The Effect of nitrate and sulfate on mediator-less microbial fuel cells with high internal resistance [J]. Water Environment Research,2009,81(11):2320-2328.
    Yong Y C, Yu Y Y, Li C M, Zhong J J, Song H. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells [J]. Biosensors and Bioelectronics,2011,30(1):87-92.
    Yoon J H, Kang S J, Oh T K. Dokdonella koreensis gen. nov., sp. nov., isolated from soil [J]. International Journal of Systematic and Evolutionary Microbiology,2006, 56(1):145-150.
    You S J, Wang J Y, Ren N Q, Wang X H, Zhang J N. Sustainable conversion of glucose into hydrogen peroxide in a solid polymer electrolyte microbial fuel cell [J]. ChemSusChem,2010,3(3):334-338.
    You S, Zhao Q, Jiang J, Zhang J. Treatment of DomesticWastewater with Simultaneous Electricity Generation in Microbial Fuel Cell under Continuous Operation [J]. Chemical and Biochemical Engineering Quarterly,2006a,20(4):407-412.
    You S, Zhao Q, Zhang J, Jiang J, Zhao S. A microbial fuel cell using permanganate as the cathodic electron acceptor [J]. Journal of Power Sources,2006b,162(2):1409-1415.
    You S J, Ren N Q, Zhao Q L, Kiely P D, Wang J Y, Yang F L, Fu L, Peng L. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification [J]. Biosensors and Bioelectronics,2009,24(12):3698-3701.
    Yu G, Xie X, Pan L, Bao Z, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors [J]. Nano Energy,2013,2(2):213-234.
    Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction [J]. Biotechnology and Bioengineering,2005,89(6):670-679.
    Zhang F, Cheng S, Pant D, Bogaert G V, Logan B E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell [J]. Electrochemistry Communications,2009a,11(11):2177-2179.
    Zhang F, Jacobson K S, Torres P, He Z. Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell [J]. Energy & Environmental Science,2010,3(9):1347-1352.
    Zhang G, Zhao Q, Jiao Y, Wang K, Lee D-J, Ren N. Efficient electricity generation from sewage sludge usingbiocathode microbial fuel cell [J]. Water research,2012, 46(1):43-52.
    Zhang L, Hu X M, Jiang B H, Huang Y G. Study on Active Recovery of Anaerobic Ammonia Oxidation and Start-Up of ASBR Reactor [J]. Advanced Materials Research,2013,726:2291-2294.
    Zhang L, Zheng P, Tang C J, Jin R C. Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters [J]. Journal of Zhejiang University SCIENCE B,2008, 9(5):416-426.
    Zhang T, Zhang L, Su W, Gao P, Li D, He X, Zhang Y. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells [J]. Bioresource Technology,2011,102(14):7099-7102.
    Zhang Y, Angelidaki I. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater:Focusing on impact of anodic biofilm on sensor applicability [J]. Biotechnology and Bioengineering,2011,108(10):2339-2347.
    Zhang Y, Min B, Huang L, Angelidaki I. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells [J]. Applied and Environmental Microbiology,2009b,75(11):3389-3395.
    Zhao F, Slade R C, Varcoe J R. Techniques for the study and development of microbial fuel cells:an electrochemical perspective [J]. Chemical Society Reviews,2009, 38(7):1926-1939.
    Zhi Y, Liu H, Yao L. The effect of suspended sludge on electricity generation in microbial fuel cells [C].Proceedings of the Bioinformatics and Biomedical Engineering, IEEE,2008:2923-2927.
    Zhilina T N, Appel R, Probian C, Brossa E L, Harder J, Widdel F, Zavarzin G A. Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake [J]. Archives of Microbiology,2004,182(2-3):244-253.
    Zhou M, Chi M, Luo J, He H, Jin T. An overview of electrode materials in microbial fuel cells [J]. Journal of Power Sources,2011,196(10):4427-4435.
    Zinder S, Sowers K, Ferry J. Notes:Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium [J]. International Journal of Systematic Bacteriology,1985,35(4):522-523.
    Zumft W G. Cell biology and molecular basis of denitrification [J]. Microbiology and Molecular Biology Reviews,1997,61(4):533-616.
    蔡碧婧.反硝化脱氮补充碳源选择与研究[D].上海:同济大学,2008.
    曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257.
    曾涛涛,李冬,邱文新,曾辉平,刘涛,张杰.低温厌氧氨氧化生物滤池群落结构分析[J].哈尔滨工业大学学报.2012,44(6):6-10.
    陈建伟.高效短程硝化和厌氧氨氧化工艺研究[D].杭州:浙江大学,2011.
    陈姗姗,张翠萍,刘广立,张仁铎,李明臣,全向.纯菌株与混合菌株在MFC中降解喹啉及产电性能的研究[J].环境科学,2010,31(9):2148-2154.
    陈婷婷.厌氧氨氧化工艺运行性能及微生物特性研究[D].杭州:浙江大学,2013.
    陈艳卿.中国废水排放氨氮控制标准评述[J].环境科学与管理,2011,36(3):21-83.
    陈一平,范成英,郑坚,何开泽,陈跃初,赵树杰.生丝微菌属的一个新亚种[J].微生物学报,1992,32(3):161-166.
    高廷耀,顾国维,周琪.水污染控制工程(第三版)[M].北京:高等教育出版社,2007.
    洪义国,郭俊,孙国萍.产电微生物及微生物燃料电池最新研究进展[J].微生物学报,2007,47(1):173-177.
    黄丽萍,成少安.微生物燃料电池生物质能利用现状与展望[J].生物工程学报,2010,26(7):942-949.
    李滨,赵志瑞,马斌,张树军,刘新春,王晓辉,白志辉.克隆文库方法分析厌氧氨氧化反应器中细菌群落结构[J].环境科学与技术,2012,35(12):159-164.
    李金涛,张少辉.反硝化微生物燃料电池的基础研究[J].中国环境科学,2012,04):617-622.
    李燕军.固态发酵纤维素酶的研究[D].北京:中国科学院过程工程研究所,2013.
    李颖,孙永明,孔晓英,李连华,袁振宏,杨秀山.微生物燃料电池中产电微生物的研究进展[J].微生物学通报,2009,36(9):1404-1409.
    梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成和测量[J].环境科学学报,2007,28(8):1894-1898.
    梁鹏,张玲,黄霞,范明志,曹效鑫.双筒型微生物燃料电池生物阴极反硝化研究[J].环境科学,2010,31(8):1932-1936.
    陆慧锋,丁爽,郑平.厌氧氨氧化菌的中心代谢研究进展[J].微生物学报,2011,51(8):1014-1022.
    马晨,周顺桂,庄莉,武春媛.微生物胞外呼吸电子传递机制研究进展[J].生态学报,2011,31(7):2008-2018.
    毛跃建.废水处理系统中重要功能类群Thauera属种群结构与功能的研究[D].上海:上海交通大学,2009.
    沈伯雄,胡国丽,李冬倩.我国维生素C生产过程甲醇挥发损失的估算[J].环境科学研究,2012,25(12):1387-1392.
    陶天申,杨瑞馥,东秀珠.原核生物系统学[M].北京:化学工业出版社,2007.
    汪彩华.高效脱氮菌种保藏技术的研究[D].杭州:浙江大学,2010.
    王慧勇,梁鹏,黄霞,王晓昌.微生物燃料电池中产电微生物电子传递研究进展[J].环境保护科学,2010,31(8):1932-1936.
    王银华,马悦欣,刘长发,朱学惠,朱莹.厌氧氨氧化反应器载体生物膜细菌多样性的研究[J].大连理工大学学报,2011,26(6):500-506.
    谢晴,王彬,冷庚,杨嘉伟,但德忠.基于混菌产电微生物燃料电池的最新研究进展[J].中国给水排水,2010,26(2):9-14.
    谢作甫,郑平,张吉强,蔡靖.产电微生物及其生理生化特性[J].科技通报,2013,29(3):32-39.
    邢雅娟.膜生物反应器中污泥特性及微生物群落结构演替的研究[D].哈尔滨:东北农业大学,2011.
    许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    于波,刘明义,张文强,张平,徐景明.单体固体氧化物电解池极化损失分析及阴极微结构优化[J].物理化学学报,2011,27(2):395-402.
    袁森.新型磺化聚酰亚胺质子交换膜及新型聚苯并咪唑阴离子交换膜的制备和性能研究[D].上海交通大学,2011.
    袁怡,黄勇,邓慧萍,盛学敏,潘杨,李祥.C/N比对反硝化过程中亚硝酸盐积累的影响分析[J].环境科学,2013,34(4):1416-1420.
    张吉强,郑平,张萌,厉魏,陈慧,蔡琛,谢作甫.AD-MFC中甲醇与硝酸盐的偶合过程与作用机制[J].化工学报.2013,64(9):3404-3411.
    张蕾.厌氧氨氧化性能的研究[D].杭州:浙江大学,2009.
    张燕梅,方军,严格,庄永泽.碱性直接甲醇燃料电池含氟阴离子交换膜的制备及性能研究[J].电化学,2011,17(1):73-79.
    张自杰.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2000.
    赵正权,徐冬,张浩,孙正滨,杨慧慧,周远.中国污水处理电耗分析和节能途径[J].节能减排,2010,28(22):43-47.
    郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006.
    郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):193-198.
    郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    中华人民共和国环境保护部.“十二五”主要污染物总量减排核算细则[E]. http://www.zhb.gov.cn/gkml/hbb/bwj/201206/W020121012519874173523.pdf 2011.
    中华人民共和国环境保护部.2012年中国环境状况公报[E]. http://www.mep.gov.cn/gkml/hbb/qt/201306/W020130606578292022739.pdf. 2013.
    周德庆.微生物学教程[M].北京:高等教育出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700