用户名: 密码: 验证码:
高压玻璃钢管成型工艺及失效预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压玻璃钢管具有比强度高、比刚度高、耐高压、耐腐蚀、使用寿命长且易实现机械化、自动化等一系列优点,在石油、化工和海洋等领域得到越来越广泛的应用,其优异的力学性能和独特的内固化成型工艺一直受到极大的关注,如何实现高压玻璃钢管管体缠绕、固化和力学性能分析一体化是目前急待解决的问题。本文基于这一要求,完成了以下几方面的研究工作:
     首先,针对高压玻璃钢管体内加热式固化成型的特点,建立了高压玻璃钢管固化过程的二维有限元模型,采用了变性方法来构建导热系数矩阵,开发了有限元代码对高压玻璃钢管的固化过程进行了数值模拟,揭示了沿管体厚度方向的温度和固化度变化规律以及纤维体积比对固化温度产生的影响。数值模拟结果表明:该有限元模型能真实地反应高压玻璃钢管体的固化过程,为科学地制定固化工艺提供理论依据。
     其次,用微分几何理论推导出高压玻璃钢管体缠绕成型的非测地线缠绕轨迹、包角方程及绕丝头运动方程,用有限元分析软件ANSYS中的APDL参数化设计语言编制的程序可进行缠绕过程的动态仿真数值模拟,得到的数据可直接用于两轴数控缠绕机进行缠绕。在计算过程中,比较了经典的微分几何方法和工程中常用的平面假设理论得到的芯模中心转角的差异,结果表明:按微分几何得到的线型与测地线接近,能更好地发挥纤维的力学性能,该方法可大大提高高压玻璃钢管体的结构效率。
     第三,进行了三个部分的试验研究工作,(1)对4种不同纤维体积含量的单向板进行了纵向拉伸和压缩强度、纵向拉伸模量、横向拉伸和压缩强度、横向拉伸模量、泊松比、面内剪切强度和剪切模量等力学性能参数的测试,根据试验结果求取了各力学参数的回归方程;(2)对2种工作压力分别为8.6MPa和15.5MPa的高压玻璃钢管体进行了失效压力测试试验;(3)对高压玻璃钢管体的纤维体积含量进行了整体测试和分层测试,为高压玻璃钢管失效强度的数值预测及分析提供了充分的试验参考依据。
     最后,针对高压玻璃钢管体材料的力学性能分布不均匀的特点,根据蔡-吴(Tsai-wu)失效准则,采用常规失效分析方法和逐步失效分析方法,借助于通用有限元软件ANSYS的APDL参数化设计语言,编程模拟2种不同压力等级的管体层合板在加载过程中的失效强度并将预测结果同试验结果进行对比,结果表明:(1)高压玻璃钢管体的逐渐失效过程是由管体外层向内层逐层进行的,内层的富树脂层相当于弹性体,可产生比较大的变形量,能承受更大的内压力;(2)常规失效分析,由于只考虑了管体最内层失效的压力,忽视了其它各层失效后的剩余刚度,其预测值均低于实测失效压力的平均值,8.6MPa管体和15.5MPa管体预测误差分别为为5.5%和6.5%,偏于保守。(3)逐渐失效分析则充分考虑了各层板失效后的剩余刚度,其预测值高于实测失效压力的平均值,8.6MPa管体和15.5MPa管体预测误差分别为2.9%和2.0%,更为合理。(4)高压玻璃钢管体层板的最终失效不是由纤维断裂导致的,而是由于树脂基体的失效引起的,这一点充分说明了高压玻璃钢管的内固化工艺在管体内表面形成的富树脂层大大提高管体的承载能力。
     本项目的研究,不仅为高压玻璃钢管管体的缠绕、固化和力学性能的设计和分析提供理论依据和试验基础,同时也为其它玻璃纤维/环氧复合材料制品的设计和制造提供宝贵的资料,具有很大的实用参考价值。
High pressure FRP pipe has many advantages, such as high specific strength and stiffness, high pressure resistance, long service life and can be produced in mechanical and automatic way. It has been widely used in oil field, chemical industry and ocean field. It has been paid more and more attention for its excellent mechanical performance and special internal curing process. An urgent problem is how to integrate the winding, curing and mechanical performance analysis of high pressure FRP pipe. For this reason, the following research work has been done:
     First, the2D finite element model has been made for the internal curing process of high pressure FRP pipe. The heat conduction coefficient matrix has been set with variance method. The finite element code has been developed to simulate the curing process of high FRP pipe. The temperature and curing degree variation along the pipe wall and the effect of fiber volume ratio on the temperature is revealed. The result shows that the finite element model can describe the curing process of high pressure FRP pipe and can be used as the theoretical basis of the curing process.
     Secondly, the differential geometry is used to derive the non-geodesic trajectory, envelope equation and feeding-eye equation. The APDL parametric design language is used to simulate dynamically the winding process. The data can be used in the two-axis numerical control filament winding machine. The calculation result derived from the plane assumption and differential geometry is compared. The result show that the result from the differential geometry is close to that of geodesic theory and it can make the fiber mechanics best. The structure efficiency of the high pressure FRP pipe is greatly improved.
     Thirdly, three kinds of test has been done.(1) The longitudinal tensile and compressive strength, longitudinal tensile modulus, transverse tensile and compressive strength, transverse tensile modulus, poisson ratio, in-plane shear strength and modulus is tested for four kinds of laminas of different fiber volume ratio. The regression equation of the mechanical performance is given.(2) The failure pressure is tested for8.8MPa and15.5MPa pipe body.(3) The fiber volume ratio for the whole and each layer is tested for the theoretical analysis and strength prediction of high pressure FRP pipe.
     Finally, for the uneven distribution of mechanical performance of high FRP pipe, with the Tsai-wu failure criteria, the traditional failure analysis and progressive analysis and APDL parametric language of ANSYS software, the failure strength is simulated for2kinds of pipe bodies and is compared with the tested strength. The result shows that (1) The progressive failure process of the high pressure FRP pipe is from external layer to internal layer. The internal resin rich layer is like elastomer and it can stand large deformation and internal pressure.(2) In the traditional failure analysis, only the failure pressure in the internal layer is taken into account and the residual strength of other failure layers is omitted. The prediction pressure is lower than the tested pressure and the prediction error is5.5%for8.6MPa pipe and6.5%for15.5MPa pipe. The traditional prediction analysis is conservative.(3) The residual strength is taken into account in the progressive prediction analysis. The prediction pressure is higher than the tested pressure and the prediction error is2.9%for8.6MPa pipe and2.0%for15.5MPa pipe. The progressive prediction analysis is more reasonable.(4) The final laminate failure of the high pressure FRP pipe is not caused by the fiber fracture instead of the resin failure. This means that the resin rich layer of the internal surface by the internal curing process of high pressure FRP pipe improves the load capacity greatly.
     This research work provides not only the theoretical evidence and testing basis for the winding, curing and the design and analysis of mechanical performance of high pressure FRP pipe, but also the precious information for the design and manufacturing of other glass fiber/epoxy composites.
引文
[1]韩大匡.中国油气田开发现状、面临的挑战和技术发展方向.中国工程科学,2010,12(5):51-57.
    [2]张彦成,张耀峰,魏军,刘宏峰,卞海斌.高压玻璃纤维管线管.石油科技论坛,2012,(6):66~68.
    [3]郝郑涛.玻璃纤维增强塑料夹砂管物理性能检测的研究.玻璃纤维,2012,(6):1-5.
    [4]K.J. Oswald. Thirty Years of Fiberglass Pipe in Oilfield Applications:a Historical Perspective. Materials Performance,1996,35(5):65-68.
    [5]张玉春,田晶.油田井下用高压玻璃钢管的研究.纤维复合材料,2003,(2):42~44.
    [6]许家忠.高压玻璃钢管制造工艺及技术研究.哈尔滨理工大学博士学位论文.2007:2~4.
    [7]冯小明,张崇才.复合材料.重庆:重庆大学出版社,2007:1-3.
    [8]王善元,张汝光等.纤维增强复合材料.上海:中国纺织大学出版社,1998:5-6.
    [9]王显峰.异型件片面缠绕成型轨迹规划的研究.哈尔滨工业大学博士论文.2008:7-9,39~40.
    [10]吴良义.先进复合材料的应用扩展:航空、航天和民用航空先进复合材料应用技术和市场预测.化工新型材料,2012,40(1):4~9.
    [11]何亚飞,矫维成,杨帆,刘文博,王荣国.树脂基复合材料成型工艺的发展.纤维复合材料,2011,(2):7~13.
    [12]王瑛琪,盖登宇,宋以国.纤维缠绕技术的现状及发展趋势.材料导报,2011,25(3):110~113.
    [13]谢霞,邱冠雄,姜亚明.纤维缠绕技术的发展及研究现状.天津工业大学学报,2004,23(6):19~22.
    [14]Luiz A.L. Martins, Fernando L. Bastian, Theodoro A. Netto. Structural and Functional Failure Pressure of Filament Wound Composite Tubes. Materials and Design,2012, 36(3):779-787.
    [15]罗前宽.玻璃钢管道生产工艺探讨.化学工程与装备,2012,(12):125~127.
    [16]Abraham Keith Allen. A Method for Winding Advanced Composites of Unconventional Shapes Using Continuous and Aligned Fibers[M]. Brigham Young University,2004:12-14.
    [17]GREEN, JOHN E. Overview of Filament Winding. SAMPE Journal,2001,37(1): 7-11.
    [18]张俊华.纤维缠绕机伺服控制系统的PID参数整定方法.纤维复合材料,2012,(2):26~29.
    [19]李国伟.纤维缠绕机的发展状况.玻璃钢/复合材料,1988,(3):48~52.
    [20]刘永纯.新型复合材料成型设备的进展.纤维复合材料,2011,(1):33-34.
    [21]富宏亚,韩振宇,路华.纤维缠绕/铺带/铺丝成型设备的发展状况.航空制造技术,2009,(22):43~46.
    [22]尤波,王广辉,许家忠,张礼勇.三轴玻璃钢容器缠绕机控制系统设计.玻璃钢/复合材料,2011,(1):40~43.
    [23]Richard Stewart. Filament Winding Spins light, Strong Composite Structures with Precision. Reinforced Plastics,2009,53(5),34-39.
    [24]Faissal Abdel-Hady. Filament Winding of Revolution Structures. Journal of Reinforced Plastics and Composites,2005,24(8):855-868.
    [25]张华,王桂英,刘阳.PMAC时基控制在计算机控制缠绕机中的应用.纤维复合材料,2006,3:45~47.
    [26]俞建峰,周杰.基于运动控制的纤维缠绕机控制系统设计.江南大学学报,2009,8(2):159~163.
    [27]谢霞.多向纤维缠绕复合材料制件及其设备的研制.天津工业大学博士学位论文,2006:1-3.
    [28]杜善义,沃丁柱,章怡宁.复合材料及其结构的力学、设计、应用和评价.哈尔滨:哈尔滨工业大学出版社.2000:312-332.
    [29]王显峰,富宏亚.三通管的网格缠绕.玻璃钢/复合材料,2012,(1):48~52.
    [30]王玉江.腐蚀控制技术在胜利油田地面工程的应用.腐蚀科学与防护技术,2012,(5):433~435.
    [31]孔庆宝.纤维缠绕玻璃钢管道应用与发展.纤维复合材料,1997,(2):35~44.
    [32]刘乃伦.高压玻璃钢管在油田井下的应用.玻璃钢/复合材料,1998,(2):26~27.
    [33]孟瑶,许立宁,路民旭.油田用玻璃钢管道的使用和评价现状.腐蚀与防护,2012,33(8):664~667.
    [34]袁凯敏,安强,刘涛,潘年明.高压玻璃钢管管道在油田上的应用.中国石油和化工标准与质量,2011,(8):97.
    [35]狄萌,张路春,王俊清.非金属管道在油田中的应用.中国石油和化工标准与质量,2012,(1):248~249.
    [36]S. Beckwith, M. Greenwood. Don't Overlook Composite FRP Pipe. Chemical Engineering, 2006,113(5):42-48.
    [37]张福承.环氧玻璃钢管快速高效制造技术.纤维复合材料,2004,(1):36~38.
    [38]陈光烈.高压玻璃钢管道的研制及在油田中的应用.纤维复合材料,2002,(4):41-43.
    [39]Lee SY, Springer GS. Filament winding cylinders:Ⅲ. Selection of the Process Variables. Journal of Composite Materials,1990,24(12):1344-1366.
    [40]Lee SY, Springer GS. Filament winding cylinders:Ⅰ. Process model. J Compos Mater 1990;24(12):1270-98.
    [41]Ciriscioli PR, Springer GS, Lee WI. An Expert System for Autoclave Curing of Composites. Journal of Composite Materials,1991,25(12):1542-1587.
    [42]Bogetti T A, Gillespie J JW. Two-dimensional Cure Simulation of Thick Thermosetting Composites. Journal of Composite Materials,1991,25:239-273.
    [43]Bogetti T A, Gillespie J J W. Process-induced Stress and Deformation in Thick-section Thermoset Composite Laminates. Journal of Composite Materials,1992,26(5):625-660.
    [44]K. Azaar, A. E. Brouzi, R. Granger and J. M. Vergnaus, Regulation of the Process of Cure of Thermosets by Varying the Coefficient of Surface Heat Transfer. Eur. Polym. J. 1992,28(6):629-635.
    [45]White SR, Hahn HT. Cure Cycle Optimization for the Reduction of Processing-induced Residual Stresses in Composite Materials. Journal of Composite Materials,1993,27(14): 1352-1378.
    [46]Tzeng J T, Loos A C. A Cure Analysis for Axisymmetric Composites. Composite Manufacturing,1993,4(3):43-51.
    [47]Twardowski, T.E., Lin, S.E., and Geil, P.H., Curing in Thick Composite Laminates: Experiment and Simulation. Journal of Composite Materials,1993,27(3):216-250.
    [48]Hojjati, M.and Hoa, S.V. Curing Simulation of Thick Thermosetting Composites. Composites Manufacturing,1994,5(3):159-169.
    [49]Kim C, Teng H, Turcker CL, White SR. The Continuous Curing Process for Thermoset Polymer Composites. Part 1:Modeling and Demonstration. Journal of Composite Materials, 1995,29(9):1222-53.
    [50]Young, W.B. Resin Flow Analysis in the Consolidation of Multi-Directional Laminated Composites. Polymer Composites,1995,16(3):250-257.
    [51]Young, W.B., Consolidation and Cure Simulation for Laminated Composites. Polymer Composites,1996,17(1):142-148.
    [52]Teplinsky S, Gutman EM. Computer Simulation of Process Induced Stress and Strain Development during Cure of Thick-section Thermosetting.Composites Computational Materials Science,1996(6):71-76.
    [53]Sung Y, Hinton HH, Ahmad MF. A Finite Element Approach for Cure Simulation of Thermosetting Matrix Composites. Computers & Structure,1997,64(1-4):383-388.
    [54]Yousefi A, Lafleur P C, Kivetic R G. Kinetic Studies of Thermoset Cure Reactions Review. Polymer Composites,1997,18(2):157-167.
    [55]Yi S, Hilton H. Effects of Thermo-mechanical Properties of Composites on Viscosity, Temperature and Degree of Cure in Thick Thermosetting Composite Laminates during Cure in Thick Thermosetting Composite Laminates during Process. Journal of Composite Materials, 1998,32:600-622.
    [56]Naji M I, Hoa S Y. Curing of Thick Angle-bend Thermoset Composite Part:Cycle Effect on Thickness Variation and Fiber Volume Fraction. Journal of Reinforced Plastics Composites,1999,18(8):702-723.
    [57]Blest D C, Duffy B R, Mckee S, Zulkifle A K. Curing Simulation of Thermoset Composites. Composites Part A,1999,30:1289-1309.
    [58]Joshi S C, Liu X L, Lam Y C. A Numerical Approach to the Modeling of Polymer Curing in Fiber-reinforced Composites. Composite Science Technology,1999,59: 1003-1013.
    [59]Shin D D. Intelligent Processing for Thick Composites. California:University of California,2000.63-65.
    [60]Nap M I, Hoa S Y. Curing of Thick Angle-bend Thermoset Composite Part:Curing Process Modification for Uniform Thickness and Uniform Fiber Volume Fraction Distribution. Journal of Composite Materials,2000,34(20):1710-1755.
    [61]Park H C, Lee S W. Cure Simulation of Thick Composite Structures Using the Finite Element Method. Journal of Composite Materials,2001,35(3):188-200.
    [62]Chern B C, Moon T J, Howell J R, Tan W. New Experimental Data for Enthalpy of Reaction and Temperature and Degree-of-cure-dependent Specific Heat and Thermal Conductivity of the Hercules 3501-6 Epoxy System. Journal of Composite Materials,2002, 36(17):2061-2072
    [63]Pantelelis N, Vrouvakis T, Spentzas K. Cure Cycle Design for Composite Materials Using Computer Simulation and Optimization Tools. Engineering Research,2002,67(6): 254-262.
    [64]Oh J H, Lee D G. Cure Cycle for Thick Glass/Epoxy Composite Laminates. Journal of Composite Materials,2002,36(1):19-45.
    [65]Costa V A F, Sousa A C M. Modeling of Flow and Thermo Kinetics during the Cure of Thick Laminated Composites. International Journal of Thermal Sciences,2003,42:15-22.
    [66]C.C. Ma, S.W. Chang, Analytical Exact Solutions of Heat Conduction Problems for Anisotropic Multi-layered Media. International Journal of Heat Mass Transfer,2004,47: 1643-1655.
    [67]Kalogiannakis G, Hemelrijck D V, Assche G V. Measurements of Thermal Properties of Carbon/Epoxy and Glass/Epoxy Using Modulated Temperature Differential Scanning Calorimetry. Journal of Composite Materials,2004,38(2):163-175.
    [68]M. Blanc, M. Touratier, A Constrained Discrete Layer Model for Heat Conduction in Laminated Composites. Computers & Structures,2005,83:1705-1718.
    [69]C. Corlay, S.G. Advani, Temperature Distribution in a Thin Composite Plate Exposed to a Concentrated Heat Source. International Journal of Heat Mass Transfer, 2007,50:2883-2894.
    [70]S. Singh, P.K. Jain, Rizwan-uddin, Analytical Solution toTransient Heat Conduction in Polar Coordinates with Multiple Layers in Radial Direction. International Journal of Thermal Science,2008,47:261-273.
    [71]M.H. Kayhani, M. Shariati, M. Norouzi, M.K. Demneh, Exact Solution of Conductive Heat Transfer in Cylindrical Composite Laminate. Heat Mass Transfer,2009,46:83-94.
    [72]M.H. Kayhani, M. Norouzi, A. Amiri Delouei, A General Analytical Solution for Heat Conduction in Cylindrical Multilayer Composite Laminates. International Journal of Thermal Science,2012,52:73-82.
    [73]杨正林,陈浩然.层合板在固化全过程中瞬态温度场及固化度的有限元分析.玻璃钢/复合材料,1997,(3):3-7.
    [74]陈浩然,杨正林,唐立民.复合材料层合板固化过程的数值模拟.应用力学学报,1998,15(3):30~36.
    [75]李辰砂.复合材料成型工艺智能化的研究.哈尔滨工业大学博士学位论文,1999:8-10.
    [76]武湛君.基于光纤传感技术的复合材料固化监测技术.哈尔滨工业大学博士学位论,2001:7-9.
    [77]左德峰,朱金福,黄再兴.树脂基复合材料固化过程中温度场的数值模拟.南京航空航天大学学报.1999,31(6):701~705.
    [78]胡训传,李松年,赵天惠.复合材料弹翼结构热力力学分析.北京航空航天大学学报,1996,22(3):374~378.
    [79]杨自春.复合材料层合结构的非线性传热分析.海军工程大学学报,2000,(5):9-13.
    [80]郭战胜,杜善义,张博明,武湛君.厚截面树脂基复合材料的温度场研究.复合材料学报,2004,21(5):122~127.
    [81]Z.S.Guo,S.Y.Du,B.M.Zhang. Temperature Distribution of Thick Thermoset Composites Modeling and Simulation in Materials Science and Engineering,2004,12(3):443-452.
    [82]陈祥宝,邢丽英,周正刚.树脂基复合材料制造过程温度变化模拟研究.航空材料学报,2009,29(2):61~65.
    [83]张铖,张博明,王永贵等.复合材料结构固化温度场精化模拟.材料开发与应用,2010,(6):41~46.
    [84]黄其忠,任明法,陈浩然,张驰群.复合材料先进网格结构共固化工艺的温度场模拟.复合材料学报,2011,28(3):141~147.
    [85]李君,姚学锋,刘应华,寇哲君,戴棣.复合材料固化过程中温度及应变场分布的解析解.清华大学学报(自然科学版),2009,49(5):767-771.
    [86]郭洪涛,程珏,林欣等.新型脂环环氧树脂/胺体系固化动力学及性能研究.热固性树脂,2013,28(1):1-5.
    [87]李建,李伟.环氧树脂非等温固化动力学及其固化工艺的研究.广东化工,2012, 39(51):270~272.
    [88]洪晓东,王旭东,王铀等.原位与离位FTIR法研究环氧树脂固化动力学.材料导报,2012,26(11):64~66.
    [89]陈汝训.纤维缠绕压力容器爆破压强计算.宇航材料工艺,2000,(6):28-31.
    [90]段登平.纤维缠绕壳体宏细观力学性能研究及其非线性分析.哈尔滨工业大学博士学位论文,1996:5-10.
    [91]嵇醒等,顾星若,戴瑛.纤维缠绕压力容器的爆破压力与纤维强度转换率.高科技纤维与应用,2003,28(4):40-41.
    [92]黄代尧.固体火箭发动机纤维缠绕设计准则判别式.固体火箭技术,1997,20(1):9~14.
    [93]陈汝训,固体火箭发动机混杂纤维缠绕壳体设计分析.宇航学报,2000,21(4):129-133
    [94]崔海涛,温卫东,佟莉莉.纤维缠绕复合材料弯管强度分析.宇航材料工艺,2003,33(6):39~42.
    [95]孙学坤.纤维缠绕复合材料壳体结构分析及安全评定.哈尔滨工业大学博士学位论文,1995:7~10.
    [96]Sun X K,Dun S Y,Wang G D. Bursting Problem of Filament Wound Composite Pressure Vessels. International Journal of Pressure Vessels and Piping,1999,76(1):55-59
    [97]李磊,王毅,侯乃先,岳珠峰.带圆孔层合板孔边层间应力分析、失效研究及软件开发.机械强度,2008,30(4):633-637.
    [98]杨眉,陈秀华,伍春波.固体火箭发动机纤维缠绕复合材料壳体爆破渐进失效的数值模拟.机械工程材料,2012,36(11):92~96.
    [99]王晓宏,张博明,刘长喜等.纤维缠绕复合材料压力容器渐进损伤分析.计算力学学报,2009,26(3):446~451.
    [100]吴其俊,周克栋,赫雷等.连续损伤力学在复合材料厚壁圆筒渐进破坏分析中的应用.南京理工大学学报,2011,35(4):479~483.
    [101]冯学军.纤维缠绕复合材料管的强度分析.机械强度,2012,34(6):840-843.
    [102]李成刚.复合材料层合板首末层失效强度的预测方法研究.工程材料应,2012,39(3):48~52.
    [103]金乘武,王立忠,张永强.薄壁管道爆破压力的强度差异效应与强度准则影响.应用数学和力学,2012,33(11):1266-1274.
    [104]C.Ray,and S.K.Satsangi.A First Ply Failure Analysis of Composite Laminates. Journal of Reinforced Plastics and Composites.1999,18:1061-1075
    [105]B.G.Prusty,C.Ray,and S.K.Satsangi. First Ply Failure Analysis of Stiffened Panels-A Finite Element Approach. Composite Structures,2001,51:73-81.
    [106]W.C.Hwang,and C.T.Sun.Failure Analysis of Laminated Composites by Using Iterative Three-Dimensional Finite Element Method. Computers and Structures,1989,33:41-47.
    [107]S.Tolson,and N.Zabaras.Finite Element Analysis of Progressive Failure in Laminated Composite Plates. Computers and Structures,1991,38:361-376.
    [108]P.Pal,and C.Ray.Progressive Failure Analysis of Laminated Composite Plates by Finite Element Method. Journal of Reinforced Plastics and Composites,2002,21:1505-1513.
    [109]Kweon, Jin-Hwel.Shin, So-Young.Choi, Jin-Ho. A Two-dimensional Progressive Failure Analysis of Pinned Joints in Unidirectional-fabric Laminated Composites. Journal of Composite Materials,2007,41 (17):2083-2104.
    [110]C. Huhne, A.K. Zerbst, G. Kuhlmann, C. Steenbock, R. Rolfes. Progressive Damage Analysis of Composite Bolted Joints with Liquid Shim Layers Using Constant and Continuous Degradation Models. Composite Structures,2010,92:189-200.
    [111]Luiz A.L. Martins, Fernando L. Bastian,Theodoro A. Netto. Structural and Functional Failure Pressure of Filament Wound Composite Tubes. Materials and Design,2012,36: 779-787.
    [112]P.Satheesh Kumar Reddy, Ch.Nagaraju, T.Hari Krishna. Optimum Design And Analysis Of Filament Wound Composite Tubes In Pure And Combined Loading. International Journal of Engineering Research & Technology,2012,1(8):1-4.
    [113]Jovan Radulovic, MSc, Katarina Maksimovic, MSc. Filament Wound Composite Tubes: Experimental and Numerical Simulations Results. Scientific Technical Review,2009, LIX(2):30-35.
    [114]孙曼灵,吴良义.环氧树脂应用原理与技术.北京:机械工业出版社,2002:213~216.
    [115]Julia Mergheim,Gunnar Possart,Paul Steinmann. Modelling and Computation of Curing and Damage of Thermosets. Computational Materials Science,2012,53(1):359-367.
    [116]Xiaoxia Wang, Chengguo Wang, Yuxi Jia, Ling Luo, Pan Li. Cure-volume-temperature relationships of epoxy resin and graphite/epoxy composites. Polymer,2012,53:4152-4156.
    [117]岳广全.整体化复合材料壁板结构固化变形模拟及控制方法研究.哈尔滨工业大学博士学位论文.2010:7~9.
    [118]Hoon Cheol Park, Nam Seo Goo, Kyung Jae Min, Kwang Joon Yoon. Three-dimensional cure simulation of composite structures by the finite element method. Composite Structures,2003,62:51-57.
    [119]Chanchira Jubsilp, Kanokwan Punson, Tsutomu Takeichi, Sarawut Rimdusit. Curing kinetics of Benzoxazinee-epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polymer Degradation and Stability,2010,95:918-924.
    [120]Rodrigo Ruzicki Corsetti, Thomas Neumeyer, Manuela May, Daniel Jandrey, Volker Altstaedt, Nilo Sergio Medeiros Cardozo. Modeling and Estimation of Parameters for the Curing of an Epoxy/Amine System. Polymer Testing,2013,5:121-129.
    [121]Surya D. Pandita, Liwei Wang, Ramani S. Mahendran, Venkata R. Machavaram, Muhammad S. Irfan,Dee Harris, Gerard F. Fernando. Simultaneous DSC-FTIR spectroscopy: Comparison of cross-linking kinetics of an epoxy/amine resin system. Thermochimica Acta, 2012,543:9-17.
    [122]J. McHugh,P. Fideu, A. Herrmann, W. Stark. Determination and review of specific heat capacity measurements during isothermal cure of an epoxy using TM-DSC and standard DSC techniques. Polymer Testing,2010,29:759-765.
    [123]GS.Springer.A Model of the Curing Process of Epoxy Matrix Compositesin Progress in Science and Engineering of Composites, Japan Society for Composite Materials,1983:23-35.
    [124]Bogetti, T.A. and Gillespie, J.W., Jr. Two-Dimensional Cure Simulation of Thick Thermo-setting Composites. Journal of Composite Materials,1991,25:239-273.
    [125]戴福洪.树脂传递模塑工艺有限元模拟与树脂流动过程监测.哈尔滨工业大学博士学位论文.2004:62~65.
    [126]张纪奎,郦正能,关志东,程小全,王军.热固性树脂基复合材料固化变形影响因素分析.复合材料学报,2009,26(1):179~184.
    [127]郁成岩,李辅安,王晓洁,周东伟.纤维缠绕工艺浸胶技术研究进展.玻璃钢/复合材料,2010,(5):84~88.
    [128]张华,周放,陈日东.计算机控制缠绕机的接地方式研究.纤维复合材料,2006,23(2):13~16.
    [129]文立伟,路华,王永章,付云忠.基于回转体构件的六坐标纤维缠绕轨迹规划.宇航学报,2008,29(2):710-714.
    [130]佟丽莉,林再文,侯涤洋.纤维缠绕复合材料压力容器CAD/CAE/CAM一体化研究.玻璃钢/复合材料,2004,(1):33~37.
    [131]彭文杰.复合材料层合结构极限强度预测方法及分层应力最小化研究.华中科技大学大学博士论文.2009:31~33.
    [132]王丹勇,温卫东,崔海涛.含孔复合材料层合板静拉伸三维逐渐损伤分析.力学学报,2005,37(6):788~794.
    [133]沈军.CFRP缠绕压力容器可靠性研究.哈尔滨工业大学大学博士论文.2006.
    [134]王宝来,吴世来,梁军.复合材料失效及其强度理论.失效分析与预防,2006,1(2):13~19.
    [135]南发学.高压天然气非金属玻璃钢管承载能力与应用研究.西南石油大学博士论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700