回转干馏炉内油页岩颗粒混合运动特性实验与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油页岩是一种化石能源,油页岩颗粒在回转干馏炉中停留时间及与固体热载体的混合度是干馏工艺的关键参数,直接关系到干馏气的产量及干馏炉操作与结构参数的优化。本文以回转式干馏炉为研究对象,从理论和实验两个方面深入开展了油页岩颗粒在回转干馏炉内的停留时间及混合运动特性的研究。
     自行设计搭建了回转干馏冷态试验装置,通过改变干馏炉操作参数及结构参数实验,详细研究了装置内部抄板结构、出口挡料圈、填充率、转速及倾角等参数对油页岩颗粒在回转干馏炉内停留时间的影响。结果表明:随转速、倾角和填充率提高,颗粒在干馏炉内的平均停留时间降低;具有直抄板干馏炉内颗粒平均停留时间小于具有直角抄板的干馏炉内颗粒平均停留时间。理论上,采用统计学方法对停留时间分布特性进行分析,去掉测量时的停留时间岐离值后油页岩颗粒在回转干馏炉内停留时间不拒绝正态性。
     通过改变干馏炉操作及结构等相关参数,对油页岩颗粒和固体热载体在回转干馏炉内的出口及轴向混合度进行了详细的实验研究。探讨了具有抄板的回转干馏炉内混合机理及影响参数,获得了回转干馏炉出口混合度达到混合效果最佳状态。通过正交试验直观分析法分析,确定了影响油页岩和固体热载体在回转干馏炉轴向混合因素的影响,影响程度大小依次为抄板形式、填充率、倾角、转速、出口挡板。
     基于回转干馏炉内不同粒度分布的油页岩混合实验,详细研究了填充率、转速等运行参数对颗粒运动模式的影响,探寻了颗粒群的混合机理。从混合机理角度分析,填充率小于33.3%时,随着转速降低,直角抄板与直抄板由对流混合占主导作用均转变为剪切混合增强,但整体混合效果降低;填充率在50%时,随着转速降低,油页岩颗粒群混合程度直角抄板优于直抄板。
     基于回转干馏炉内的颗粒混合机理,建立了干馏炉内颗粒接触与颗粒运动的离散单元数学模型。通过模拟计算,仿真分析了抄板形式、填充率、转速等因素对2种粒径颗粒在干馏炉内径向混合运动的影响。结果表明,干馏炉内未设抄板时径向混合较差,大颗粒主要集中在颗粒层的上表面和干馏炉的外围区域,而小颗粒则集中在中心区域,混合过程中存在混合死区。干馏炉内设抄板时,抄板在不同程度上破坏了自由表面流,增强了颗粒间的混合。转速和抄板形式对颗粒径向混合程度的影响还与填充率有关,填充率为16.7%时,相同转速下,干馏炉内设直抄板时混合较优,转速对混合程度的影响很小;填充率为33.3%时,转速1 Or/min,干馏炉内设弯抄板时混合较优。而在轴向混合过程中,颗粒粒径差异对颗粒间混合的影响较大,大颗粒轴向运动的速度较快。
     为准确估算油页岩颗粒在回转干馏炉内的平均停留时间和出口混合度,建立了支持向量机颗粒运动特性模型,在一定约束条件下,寻找回归最优参数方法对模型的参数进行了优化,获得了最优的模型参数。通过实验数据对模型进行了校验和参数的寻优,利用优化后的模型对平均停留时间和出口混合度进行了预测。结果表明,优化后的模型更具精确性。
Oil Shale is a kind of fossil energy. The mean residence time (MRT) and mixing (M) of oil shale in rotary retorting is the key parameters, which affect the production of retorting gas and the optimization of operation and structure parameters on rotary retorting directly. Research work is built on self-designed laboratory-scale cool simulator rotary retorting. The experiment and theory research studies the motion & mixing characteristics (MRT & M) in rotary retorting.
     The research studies residence time distribution of oil shale particle in rotary retorting with changing operating parameters and structure parameters. Experimental results show that the MRT reduced with an increase in the degree of filling, the angle and the speed of rotary retorting, and the MRT of Spur lifting flight little. Through statistical analysis of the residence time, the residence time distribution of oil shale particle in rotary retorting do not reject normality after reduce the straggler residence time.
     The experiment studies exit and mixing degree of axial direction of oil shale particle and solid heat carrier in rotary retorting with changing operating parameters and structure parameters. The mixing degree optimized by using right-angled flights forms at 20% vessel filling percentage and 3.24°dip angle with 13.3rpm rotation speed during statistic analysis, then the mixing degree of rotary retorting was at best mixed results. Orthogonal test direct analysis was used to analyze the test data, which identified the optimal conditions (right angle,100mm,4.33°,7.7r/min) of the rotary retorting axial extent of mixing of oil shale and solid heat carrier, in accordance with the impact of mixing the mixed factors were the lifting flight types, the vessel filling percentage, the angle, the rotational speed of rotary retorting and the outlet baffle.
     The research studies the impact of the vessel filling percentage, rotational speed and other operating parameters on particle motion model through observed the mixed progress of different density distribution oil shale particle in rotary retorting, at the same time, researches mixed mechanism of particles. When the filling degree is less then 33%, right-angled flights and straight flights dominated by the convective mixing into shear mixing effects enhance and the integral effect of mixed reduced with the reduce on the speed of rotary retorting; when the filling degree is 50%, right-angled flights is better than straight flights with the reduce on the speed of rotary retorting.
     The research simulates the mixing of particles in rotary retorting by use of discrete element method (DEM), the impact of flights forms, vessel filling percentage and rotational speed on two kinds of particles in rotary retorting are studied. Experimental results show that radial mixing is poor when rotary retorting without flights installed, the moon pattern appears in which the small particles concentrate in a central core and the large particles distribute in the periphery, there is dead region with inferior mixing. The flights destroyed segregation in "lifting and castrating" particles periodically which causes the segregation of particles with flights installed. The flights form and the rotational speed of rotary retorting have influences on particle mixing inordinately, which is closely related to filling degree, when the filling degree is 16.7%, the mixing is optimum in rotary retorting containing right-angled flights with the same speed, the rotational speed has little effect on mixing quality, when the filling degree is 33.3%, the mixing is optimum in rotary retorting containing 120°angled flights with the rotational speed is lOr/min. There have large influences on particle mixing between different particle diameters in axial mixing, the axial movement of large particles is faster than small particles.
     The forecast to the mean residence time and extent of mixing is useful to the forecasting of the distillation effect of oil shale particle and solid heat carrier in rotary retorting. In order to improve the accuracy of predicting performance for the mean residence time and extent of mixing, a support vector machine (SVM) model is employed, and parameters of the SVM model optimized by grid regression and best parameters were obtained. The compositions of the operation and structure parameters were employed as inputs, and the mean residence time and extent of mixing was used as outputs of the SVM model. The model was verified with the experiment datum, result of prediction by the optimized SVM model was compared with the test datum, and the result show the SVM model has achieved good predicting performance for both the mean residence time and extent of mixing.
引文
[1]许毅复.油页岩的故事[M].北京:科学普及出版社,1958:44.
    [2]柏静儒,王擎,陈艳,等.部分痕量元素在油页岩中的富集特性及挥发行为[J].动力工程,2008,28(3):487-492.
    [3]高桂梅,苏克,王文颖,等.吉林省桦甸油页岩中稀土元素和微量元素的研究[J].吉林大学学报:地球科学版,2006,36(6):974-979.
    [4]Shpirt M, Punanova S, Strizhakova Y. Trace elements in black and oil shales [J]. Solid Fuel Chemistry,2007,41(2):119-127.
    [5]Kalinowski B E, Oskarsson A, Albinsson Y, et al. Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad[J]. Geoderma,2004, 122(2-4):177-194.
    [6]Fu X, Wang J, Zeng Y, et al. Concentrations and modes of occurrence of platinum group elements in the Shengli River oil shale, northern Tibet, China [J]. fuel,2010, 89(12):3623-3629.
    [7]柳蓉,刘招君,郭巍,等.巴格毛德油页岩中稀土元素特征研究及其地质意义[J].地球化学,2010,39(4):364-370.
    [8]王擎,姜庆贤,孙佰仲,等.桦甸油页岩燃烧性能的热分析研究[J].能源工程,2006,3(2):1-5.
    [9]宋岩,石岩,闫锋.影响油页岩低温干馏因素的考察[J].精细石油化工进展,2004,5(7):45-47.
    [10]孙长利.影响油页岩热分解的因素[J].煤炭加工与综合利用,2006,(1):36-38.
    [11]中国石油和石化工程研究会.当代石油和石化工业技术普及读本 油页岩和页岩油[M].北京:中国石化出版社,2009:127.
    [12]钱家麟,尹亮.油页岩-石油的补充能源[M].北京:中国石化出版社,2008:407.
    [13]扈英彬,王艳梅,崔德荣,等.我国油页岩资源潜力及其利用的可行性[J].吉林地质,2008,27(2):82-84.
    [14]刘招君,董清水,叶松青,等.中国油页岩资源现状[J].吉林大学学报:地球科学版,2006,36(6):869-876.
    [15]周鹏飞,富振宗.我国油页岩性质及其沸腾燃烧特性分析[J].实用能源,1991,(1):36-39.
    [16]刘柏谦,李岩峰.中国油页岩及其流化床燃料[J].中国能源,1995,17(6):6-8.
    [17]钱家麟,工剑秋,李术元.世界油页岩综述[J].中国能源,2006,28(8):16-19.
    [18]郑恩辉,王擎,郝志金,等.油页岩在流化床锅炉内着火和燃烧特性的试验研究[J].洁净煤技术,2001,7(04):41-45.
    [19]王擎,孙佰仲,吴吓华,等.油页岩半焦燃烧反应活性分析[J].化学工程2006,34(11):16-19.
    [20]潘冬慧.油页岩循环流化床锅炉燃烧数值模拟研究[D].东北电力大学,2010:20-35
    [21]林民.油页岩和半焦燃点的研究[J].燃料化学学报,1992,20(4):421-429.
    [22]邹永文.桦甸油页岩及其半焦基础特性研究[D].东北电力大学,2010:30-36
    [23]崔志刚.油页岩及其半焦流化床燃烧N_20生成机理研究[D].上海交通大学,2010:35-68
    [24]孙佰仲.油页岩及半焦混合燃烧特性理论与试验研究[D].华北电力大学(北京),2009:38-68
    [25]Brandt A R. Converting oil shale to liquid fuels:energy inputs and greenhouse gas emissions of the Shell in situ conversion process.[J]. Environ Sci Technol,2008, 42(19):7489-7495.
    [26]刘胜英,王世辉,陈春瑞,等.壳牌公司页岩油开采技术与进展[J].大庆石油学院学报,2007,31(3):53-55.
    [27]薛华庆,杜发平,徐文林.油页岩电加热原位开采技术研究进展[J].天然气技术,2010,4(1):18-20.
    [28]康志勤,吕兆兴,杨栋,等.油页岩原位注蒸汽开发的固—流—热—化学耦合数学模型研究[J].西安石油大学学报:自然科学版,2008,23(4):30-34.
    [29]刘洪林,刘德勋,方朝合,等.利用微波加热开采地下油页岩的技术[J].石油学报,2010,31(4):623-625.
    [30]张秋民,关珺,何德民.几种典型的油页岩干馏技术[J].吉林大学学报:地球科学版,2006,36(6):1019-1026.
    [31]Li S Q, Yan J H, Li R D, et al. Axial transport and residence time of MS W in rotary kilns Part I. Experimental [J]. Powder Technology.2002,126(3): 217-227.
    [32]Li S Q, Chi Y, Li R D, et al. Axial transport and residence time of MSW in rotary kilns Part Ⅱ. Theoretical and optimal analyses[J]. Powder Technology,2002, 126(3):228-240.
    [33]王擎,孙佰仲,李少华,等.微波滚筒干馏装置及其作为干馏热解油页岩的应用[P]中国专利:200710055363,2007-08-22.
    [34]王擎,桓现坤,刘洪鹏,等.桦甸油页岩的微波干馏特性[J].化工学报,2008, 59(5):1288-1293.
    [35]薛向欣,刘艳辉,李勇,等.红外光谱法研究油页岩及干酪根的生油能力[J].东北大学学报:自然科学版,2010,31(09):1292-1295.
    [36]周仕学.内热式回转炉煤热解工艺的焦油产率与性质研究[J].煤炭转化,1998,21(2):82-86.
    [37]周仕学,戴和武.年轻煤内热式回转炉热解试验研究[J].煤炭加工与综合利用,1997,(1):21-23.
    [38]周仕学.褐煤回转炉温和气化产品性质的研究[J].煤炭加工与综合利用,1998,(4):22-24.
    [39]周仕学.褐煤内热式回转炉温和气化的研究[J].洁净煤技术,1998,4(2):37-39.
    [40]梁鹏,王志锋,董众兵,等.固体热载体热解淮南煤实验研究[J].燃料化学学报,2005,33(3):257-262.
    [41]王伟东,邹春玉,孙国刚.油页岩固体热载体流化干馏炼油工艺中试研究[J].煤化工,2009,37(3):19-22.
    [42]Koiv M, Liira M, Mander U, et al. Phosphorus removal using Ca-rich hydrated oil shale ash as filter material--the effect of different phosphorus loadings and waste water compositions.[J]. Water Res,2010,44(18):5232-5239.
    [43]Luan J, Li A, Su T, et al. Synthesis of nucleated glass-ceramics using oil shale fly ash.[J]. J Hazard Mater,2010,173(1-3):427-432.
    [44]连玉环.油页岩残渣制备白炭黑及改性研究[D].大连理工大学,2007:27-35
    [45]谭欣,王福良,王荣生,等.油页岩脱油残渣制备白炭黑的试验研究[J].矿冶,2004,13(1):59-63.
    [46]邓家平,张明华,李泽林,等.利用油页岩渣烧制超轻陶粒的研究与工艺方案设计[J].建筑砌块与砌块建筑,2007,(3):37-39.
    [47]高桂梅.油页岩灰渣制备纳米SiO_2和气凝胶的方法研究[D].吉林大学,2010:37-68
    [48]安佰超.油页岩灰渣提取氧化铝及其应用[D].吉林大学,2010:25-39
    [49]冯宗玉,李勇,薛向欣,等.利用油页岩渣制备氧化铝和白炭黑[J].矿冶工程,2008,28(4):53-57.
    [50]肖其海.油页岩灰填充母粒的研制[J].塑料科技,1995,23(2):5-8.
    [51]张明华,陈宇腾,张美琴,等.我国油母页岩综合利用的现状和可能的途径[J].吉林建材,2003,(3):15-21
    [52]张丽萍,曾荣树,徐文东,等.油页岩综合利用对周围环境的影响——以抚顺矿区为例[J].中国煤田地质,2006,18(2):46-48.
    [53]Pollumaa L, Maloveryan A, Trapido M, et al. Study of the environmental hazard caused by the oil shale industry solid waste.[J]. Altern Lab Anim,2001,29(3): 259-267.
    [54]Xia H P. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land.[J]. Chemosphere,2004,54(3):345-353.
    [55]李易.油母页岩干馏新技术的清洁生产分析[J].环境保护科学,2007,33(2):86-88.
    [56]孔国辉,刘世忠,吴彤,等.油页岩废渣场26种木本植物光合作用和生长的差异[J].热带亚热带植物学报,2006,14(6):467-476.
    [57]邓旺秋,潘超美,李泰辉,等.油页岩废渣场植林修复过程中的土壤微生物生态[J].应用与环境生物学报,2003,9(5):522-524.
    [58]孔国辉,刘世忠,陈志东,等.油页岩废渣场植物修复的生态效应[J].热带亚热带植物学报,2006,14(1):61-68.
    [59]夏汉平,黄娟,孔国辉.油页岩废渣场的生态恢复[J].生态学报,2004,24(12):2887-2893.
    [60]黄娟,夏汉平,孔国辉.油页岩废渣对植物生长的影响及石灰改良效应[J].生态学杂志,2007,26(1):9-15.
    [61]李喆,王贤清.油页岩资源开发利用中的生态环境问题[J].石油化工环境保护,1991,14(3):8-12.
    [62]李少华,王擎,刘洪鹏,等.油页岩干馏炼油、半焦燃烧发电集成工艺[P].中国专利:200710055610,2010-03-22.
    [63]陶珍东,郑少华.粉体工程与设备[M].北京:化学工业出版社,2003:365.
    [64]蒋阳,陶珍东.粉体工程[M].武汉:武汉理工大学出版社,2008:426.
    [65]王春华,陈文仲,陈海耿,等.炭素回转窑内物料停留时间的实验研究[J].中国冶金,2009,19(03):24-27.
    [66]李爱民,李水清,严建华,等.城市垃圾在回转窑内传输过程的冷态实验[J].化工学报,2002,53(9):912-917.
    [67]李爱民,李水清,严建华,等.固体废弃物在回转窑内停留时间的试验研究[J].化学反应工程与工艺,2002,18(2):152-157.
    [68]盛骤,谢式千,潘承毅.概率论与数理统计[M].第3版.北京:高等教育出版社,2001:56-62.
    [69]江茂强,赵永志,郑津洋.非等密度颗粒气固流化床的微观尺度模拟与分析[J].浙江大学学报:工学版,2009,43(9):1703-1708.
    [70]Lacey P M C. Developments in the theory of particle mixing[J]. Journal of Applied Chemistry,1954,4(5):257-268.
    [71]Finnie G J, Kruyt N P, Ye M, et al. Longitudinal and transverse mixing in rotary kilns:A discrete element method approach[J]. Chemical Engineering Science, 2005,60(15):4083-4091.
    [72]Schutyser M A I. Padding J T, Weber F J, et al. Discrete particle simulations predicting mixing behavior of solid substrate particles in a rotating drum fermenter[J]. Biotechnology and Bioengineering,2001,75(6):666-675.
    [73]张少明,瞿旭东,刘业云.粉体工程[M].北京:中国建材工业出版社,1994:28-39
    [74]李爱民,蔡九菊,王志,等.固体废弃物在回转窑内混合特性的试验[J].东北大学学报:自然科学版,2002,23(2):152-155.
    [75]欧阳鸿武,何世文,廖奇音,等.圆筒型混合器中颗粒混合运动的研究[J].中南大学学报:自然科学版,2004,35(1):26-30.
    [76]Ding Y L, Seville J P K, Forster R. Solids motion in rolling mode rotating drums operated at low to medium rotational speeds[J]. Chemical Engineering Science, 2001,56(3):1769-1780.
    [77]赵改菊,吴静,尹凤交,等.转筒干燥器中物料运动模型的研究现状[J].化工机械,2009,36(3):190-194.
    [78]Hogg R, Cahn D S, Healy T W, et al. Diffusional mixing in an deal system[J]. Chemical Engineering Science,1966,21(11):1025-1038.
    [79]Donald M B, Roseman B. Mixing and demixing of solid particles part 1: mechanisms in a horizontal drum mixer[J]. Brit.Chem.Eng,1962,7(10):749-753.
    [80]Ding Y L, Forster R, Seville J P K, et al. Granular motion in rotating drums:bed turnover time and slumping rolling transition[J]. Powder Technology,2002, 124(1-2):18-27.
    [81]化学工程手册编委会.《化学工程手册》第5篇搅拌与混合[M].第1版.北京:化学工业出版社,1986:1-35
    [82]潘健平.带倾斜抄板的水平转鼓内的颗粒输送特性研究[D].清华大学,2006:26-50
    [83]黄长雄等编写化学工程手册编辑委员会.化学工程手册 第19篇 颗粒及颗粒系统[M].北京:化学工业出版社,1989:240.
    [84]Makse H A, Havlin S, King P R, et al. Spontaneous stratification in granular mixtures[J]. Nature,1997,386(6623):379-381.
    [85]Pouliquen O, Delour J, Savage S.B. Fingering in granular flows[J]. Nature,1997, 386(6627):816-817.
    [86]刘刚,池涌,蒋旭光,等.颗粒物料在回转窑内的运动特性模型[J].浙江大学 学报:工学版,2007,41(7):1195-1200.
    [87]王汇,罗申,温治.回转窑内流动传热和燃烧过程数学模型的研究现状及其发展趋势[J].矿冶,2006,1 5(2):28-34.
    [88]彭思众,赵绪新.回转窑内物料流动模型研究[J].工业炉,2002,24(4):6-9.
    [89]黄志刚.转筒干燥器中颗粒物料流动和传热传质过程的研究[D].中国农业大学,2004:35-56
    [90]卢寿慈.粉体技术手册[M].北京:化学工业出版社,2004:590-603.
    [91]江茂强.双锥型混合器内颗粒混合及增混机理研究[D].浙江大学,2010:35-48
    [92]Ottino J, Khakhar D V. Mixing and segregation of granular materials[J]. Annual Review of Fluid Mechanics,2000,32:55-91.
    [93]Jha A K, Puri V M. Percolation segregation of multi-size and mult-component particulate materials[J]. Powder Technology,2010,197(3):274-282.
    [94]化学工程手册编委会.《化学工程手册》第20篇颗粒及颗粒系统[M].第1版.北京:化学工业出版社,1989:16.
    [95]Jha A K, Gill J S. Pereolation segregation in binary size mixtures of spherical and angular-shaped particles of differeni densities[J]. Partieulate Science and Technology.2008,26(5):482-493.
    [96]Consway S L, Shinbrot T, Glassser B J. A Taylor vortex analogy in granular flows[J]. Nature,2004,431(7007):433-437.
    [97]Hill K M, Khakhar D V, Gilchrist J F, et al. Segregation-driven organization in chaotic granular flows[J]. PNAS,1999,21(96):11701-11706.
    [98]Hill K M, Gioia G, Amravati D. Moon patterns, sun patterns, wave breaking in rotating granular mixtures[J]. Wiley Periodicals,2005,10(4):79-86.
    [99]Zuriguel I, Peixinho J, Mullin T. Segregation pattern competition in a thin rotating drum[J]. Physical Review E,2009,75:51301.
    [100]耿凡,徐大勇,袁竹林,等.滚筒干燥器中杆状颗粒混合特性的三维数值模拟[J].东南大学学报:自然科学版,2008,38(1):116-122.
    [101]Ottino J M, Lueptow R M. On Mixing and Demixing[J]. Science,2008,319(5865): 912-913.
    [102]Samadani A, Kudrolli A. Segregation Transitions in Wet Granular Matter[J]. Physical Review Letters,2000,85(24):5102-5105.
    [103]Hajra S K, Bhattacharya T, Mccarthy J J. Improvement of granular mixing of dissimilar materials in rotating cylinders[J]. Powder Technology,2010,198(2): 175-182.
    [104]Jenkins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles[J]. Journal of Fluid Mechanics.1983,130:187-202.
    [105]Mccarthy J J, Shinbrot T, Metcalfe G. Mixing of Granular Materials in Slowly Rotated Containers[J]. Particle Technology and Fluidization,1996,42(12): 3351-3361.
    [106]耿凡,袁竹林,孟德才,等.球磨机中颗粒混合运动的数值模拟[J].热能动力工程,2009,24(5):623-629.
    [107]赵永志,张宪旗,刘延雷,等.滚筒内非等粒径二元颗粒体系增混机理研究[J].物理学报,2009,58(12):8386-8393.
    [108]Shi D, Abatan A A, Vargas W L, et al. Eliminating Segregation in Free-Surface Flows of Particles[J]. Physical Review Letters,2007,99(14):148001.
    [109]Ding Y L, Forster R, Seville J R K. Segregation of granular flow in the transverse plane of a rolling mode rotating drum[J]. International Journal of Multiphase Flow,2002,28(4):635-663.
    [110]Lawrence L R, Beddow J K. Some effects of vibration upon Powder segregation during die filling[J]. Powder Technology,1968,2(2):125-130.
    [111]Ahmad K., Smalley J I.Observation of particle segregation in vibrated granular systems[J]. Powder Technology,1973,8(1-2):69-75.
    [112]Dury C M, Ristow G H. Radial segregation through axial migration[J]. Europhys. Letters,1999,48(1):60-65.
    [113]Buchholtz V, Poschel T, Tillemans H. Simulation of rotating drum experiments using non-circur particle[J]. Physica A:Statistical and Theoretical Physics,1995, 216(3):199-212.
    [114]Richard P, Taberlet N. Recent advances in DEM simulations of grains in a rotating drum[J]. Soft Matter,2008,4(7):1345-1348.
    [115]Juarez G, Ottino J M, Lueptow R M. Axial band scaling for bi-dispersed mixtures in granular tumblers[J]. Physical Review E,2008,78(3):31306.
    [116]Hill K M, Kakalios J. Reversible axial segregation of rotating granular media[J]. Physical Review E,1995,52(4):4393-4400.
    [117]Gupta S D, Bhatia S K, Khakhar D V. Axial segregation of particles in a horizontal rotating cylinder[J]. Chem. Eng. Science,1991,46(5):1513-1517.
    [118]Finniea G.J., Kruytb N.P., Ye M.,et al. Longitudinal and transverse mixing in rotary kilns:A discrete element method approach[J]. Chemical Engineering Science,2005,60:4083-4091.
    [119]Sherritt R G, Chaouki J, Mehrotra A K, et al. Axial dispersion in the three dimensional mixing of particles in a rotating drum reactor[J]. Chemical Engineering Science,2003,58(2):401-415.
    [120]Zhu H P, Yu A B. Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom:microscopic analysis[J]. Journal of Physics D:Applied Physics,2004,37(10):1497-1508.
    [121]王国强,郝万军,王继新.离散单元法及其在EDEM上的实践[M].西安:西北工业大学出版社,2010:155.
    [122]Cundall P A. A computer model for simulating progressive large scale movement in block rock system[J]. france:ISRM.1971:129-136.
    [123]王泳嘉,邢纪波.离散单元法及其在岩土中的应用[M].沈阳:东北工学院出版社,1991.
    [124]Kaneko Y, Shiojima T, Horio M. Numerical analysis of particle mixing characteristics in a single helical ribbon agitator using DEM simulation[J]. Powder Technology,2000,108(1):55-64.
    [125]Yamane K.. Discrete element method application to mixing and segregation model in industrial blending system[J]. Journal of Materials Research,2004,19(2): 623-627.
    [126]Hema V, Subasini S, Usha K, et al. Simulation of mixing and segregation in tumbling mixers through DEM[J]. Transactions of Indian Institute of Metals,2004, 57(5):A56.
    [127]Hong C V, Greil P. DEM Simulation of particle packing dynamics during colloidal forming processed[J]. Ceram.Trans,1995,51:349-353.
    [128]Cheng Y F, Guo S J, Lai H Y. Dynamic simulation of random packing of spherical particles[J]. Powder Technology,2000,107(1):123-130.
    [129]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [130]刘波.基于三维离散单元法的衬板提升条研究[D].昆明:昆明理工大学,2008:25-38
    [131]李媛华.基于离散元技术的球磨机参数优化研究[D].吉林大学,2009:24-39
    [132]Van Puyvelde D R. Young B R, Wilson M A, et al. Experimental determination of transverse mixing kinetics in a rolling drum by image analysis[J]. Powder Technology,1999,106(3):183-191.
    [133]Van Puyvelde D R. Comparison of discrete elemental modeling to experimental data regarding mixing of solids in the transverse direction of a rotating kiln[J]. Chemical Engineering Science,2006,61(13):4462-4465.
    [134]Gupta A, Katterfel A, Soeteman B. Discrete Element Study Mixing in an I ndustrial Sized Mixer[J]. http://www.msm.ctw.utwente.nl/sluding/PAPERS/Gupt aWCPT2010.pdf.2010.
    [135]Vapnik V. The Nature of Statistical Learning Theory[M]. New York:Springer, 1995:138-145.
    [136]Vapnik V N, Chervonenkis A Y. Necessary and Sufficient Conditions for the Uniform Convergence of Means to their Expectations[J]. Theory of Probability and its Applications,1982,26(3):532-553.
    [137]王春林,周昊,李国能,等.基于支持向量机与遗传算法的灰熔点预测[J].中国电机工程学报,2007,27(8):11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700