木质原料快速热解制取生物油及生物油分级催化提质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济社会的迅速发展,作为发展的源动力——化石能源日趋枯竭,特别是石油资源供应问题更为突出;同时化石燃油带来严峻的环境问题。能源与环境叠加效应推动可再生能源的要求。生物质能作为唯一可代替液体燃料的可再生能源,受到世界各国政府和科学家们的重视,并有望成为未来替代汽车燃料的重要来源。
     生物基液体燃料来源丰富,但是品质差,难以满足车用需求。生物油品高效精制技术是有效应对措施之一。生物质快速热解技术是获得生物油品的主要途径。与秸秆生物油相比,木质生物油的热值高、灰分低、分布相对集中、更易于规模化利用,但具有酸性高且产物成分复杂特点,不能直接用作汽车燃料。本文创新性地提出生物油分级精制方法,集成了络合萃取、分级催化重整的过程。该方法既克服了简单蒸馏的变质问题又提高了油品热值。
     基于快速热解技术,本论文主要研究木材原料的热解行为,并优化其热解参数,分析了主要热解产物分布,实现优化和控制热解过程的目标,为工业化和产业化提供应用方案和技术支持。
     对于快速热解制取的生物油品,论文以实验研究为手段,设计了快速裂解装置及分级催化提质的方法,运用气相色谱质谱联用仪(GC-MS)、热重分析仪(TG-MS、TG-DSC和TG-FTIR)等现代分析仪器对木质原料热解、木质生物油燃烧动力学及燃烧产物成分进行了分析,并通过理论分析初步揭示了木质原料的热解机理与木质生物油的燃烧机理。
     论文的主要研究结果或结论如下:(1)建立了木质原料的热解动力学经验模型和生物油的燃烧动力学经验模型;(2)分析了木质原料快速热解反应液体产物,其主要为C6~14的醇类、酯类、酮类和醚类等物质;(3)实验研究了络合萃取对生物油的脱酸效果,并建立了萃取分子动力学模型;(4)论文对生物油进行了分级催化提质。
With the development of economy, fossil energy sourse as development’s impetusdried up daily, in particular, petroleum absence stare us in the face. Superimposedeffect of energy and environment promoted human being’s latency era desire onrenewable energy. As only renewable energy of commutable liquid fuel, bioenergy getmore and more recognition daily by world governments and scientists, and it will bean important source for instead of auto fuel.
     Stable supply of high quality oil has been confronted with challenge badly. Oneof good solution is bio-oil upgrading into automobile fuel. Biomass fast pyrolysisprocess is a major approach for obtaining bio-oil. Compared with stalk based bio-oil,wood based bio-oil has many advantages, such as higher heat value, lower ash, easilerscaleup due to relatively centralized distribution of feedstock. However, high pHvalue and complex components of such bio-oil make it impossible to be used astransport fuel directly. In this paper, we put forward an innovative bio-oil upgradingmethod which integrated with several process, such as complexation extraction andclassification catalytic reforming. This method may overcome metamorphosed directdistillation, but also increase heating value.
     For optimized and controlled fast pyrolysis process, the dissertation mainlystudied on wood based material pyrolysis action, optimized pyrolysis parameter,pyrolysis production anlysis. It can provide technical support for commercializationand industrial applications.
     The fast pyrolysis experimental device was designed and constructed, and stagingcatalytic reforming method was proposed. The modern analytical instruments such asgas chromatography and mass spectrometry (GC-MS), thermogravimetricanalyzer(TG-MS、 TG-DSC and TG-FTIR) were used for product compositionanalysis.
     The results and conclusions in this dissertation are drawn as follow:(1) anempirical model for wood pyrolysis kinetics and a bio-oil combustion kineticsestablished;(2) illustration of pyrolysis reaction products, mainly C6~14alcohols,esters, ketones and ethers, and other substances;(3) Experimental study of woodenbio-oil deacidification by complexation extraction and its kinetics empirical modelpeformed;(4) The study of staging catalytic reforming of bio-oil and bio-oil as auto fuel guideline made.
引文
[1]张百良,王吉庆,徐桂转,等.中国生物能源利用的思考[J],农业工程学报,2009,25(9):226-231.
    [2] zbay N, P t n A E, Uzun B B, et al. Biocrude from biomass: pyrolysis ofcottonseed cake [J]. Renew Energ,2001,24:615-625.
    [3] P t n A E, Uzun B B, Apaydin E, et al. Bio-oil from olive oil industry wastes:pyrolysis of olive residue under different conditions [J]. Fuel Process Technol,2005,87:25-32
    [4] Das P, Ganesh A. Bio-oil from pyrolysis of cashew nut shell—a near fuel [J].Biomass Bioenergy,2003,25:113-117.
    [5] P t n A E, Apaydin E, P t n E. Bio-oil production from pyrolysis and steampyrolysis of soybean-cake: product yields and composition[J]. Energy,2002,27:703-713.
    [6] Onay O. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixedbed reactor [J]. Fuel,2007,86:1452-1460.
    [7] ens z S, Demiral, Gercel H F. Olive bagasse (Olea europea L.) pyrolysis [J].Bioresour Technol,2006,97:429-436.
    [8] Onay O, Kockar O M. Pyrolysis of rapeseed in a free fall reactor for production ofbio-oil [J]. Fuel,2006,85:1921-1928.
    [9] ens z S, Ang n D. Pyrolysis of safflower (Charthamus tinctorius L.) seed presscake: part1. The effects of pyrolysis parameters on the product yields [J].Bioresour Technol,2008,99:5492-5497.
    [10] Chow J, Kopp R J, Portney P R. Energy Resources and Global Development [J].Science,2003,302:1528-1531.
    [11] P t n A E, Apaydin E, P t n E. Rice straw as a bio-oil source via pyrolysis andsteam pyrolysis [J]. Energy,2004,29:2171-2180.
    [12] ens z S. Slow pyrolysis of wood barks from Pinus brutia Ten and productcompositions [J]. Bioresour Technol,2003,89:307-311.
    [13] Lee S H, Eom M S, Yoo K S, et al. The yields and composition of bio-oilproduced from quercus acutissima in a bubbling fluidized bed pyrolyzer [J]. JAnal Appl Pyrolysis,2008,83:110-114.
    [14] Ate F,P t n A E, P t n E. Catalytic pyrolysis of perennial shrub, Euphorbiarigida in the water vapour atmosphere [J]. J Anal Appl Pyrolysis,2005,73:299-304.
    [15] Pattiya A, Titiloye J O, Bridgwater A V. Fast pyrolysis of cassava rhizome in thepresence of catalysts [J]. J Anal Appl Pyrolysis,2008,81:72-79.
    [16] Demiral, ens z S. The effects of different catalysts on the pyrolysis ofindustrial wastes(olive and hazelnut bagasse)[J]. Bioresour Technol,2008,99:8002-8007.
    [17] Ucar S, Ozkan A R. Characterization of products from the pyrolysis of rapeseedoil cake [J]. Bioresour Technol,2008,99:8771-8776.
    [18] Acikgoz C, Kockar O M. Characterization of slow pyrolysis oil obtained fromlinseed(Linum usitatissimum L.)[J]. J Anal Appl Pyrolysis,2009,85:151-154.
    [19] zbay N, Uzun BB, Varol EA, et al. Comparative analysis of pyrolysis oils andits subfractions under different atmospheric conditions [J]. Fuel Process Technol,2006,87:1013-1019.
    [20] Wang C, Pan J, Li J, et al. Comparative studies of products produced from fourdifferent biomass samples via deoxy-liquefaction [J]. Bioresour Technol,2008,99:2778-2786.
    [21] Onay O, Gaines A F, Kockar O M, et al. Comparison of the generation of oil bythe extraction and the hydropyrolysis of biomass [J]. Fuel,2006,85:382-392.
    [22] Uzun B B, P t n A E, P t n E. Composition of products obtained via fastpyrolysis of olive-oil residue: effect of pyrolysis temperature [J]. J Anal ApplPyrolysis,2007,79:147-153.
    [23] Cornelissen T, Jans M, Yperman J, et al. Flash co-pyrolysis of biomass withpolyhydroxybutyrate: part1. influence on bio-oil yield, water content, heatingvalue and the production of chemicals [J]. Fuel,2008,87:2523-2532.
    [24] Strezov V, Patterson M, Zymla V, et al. Fundamental aspects of biomasscarbonization [J]. J Anal Appl Pyrolysis,2007,79:91-100.
    [25] P t n E, Uzun B B, P t n A E. Production of bio-fuels from cottonseed cake bycatalytic pyrolysis under steam atmosphere [J]. Biomass Bioenergy,2006,30:592-598.
    [26] Jung S H, Kang B S, Kim J S. Production of bio-oil from rice straw and bamboosawdust under various reaction conditions in a fast pyrolysis plant equipped witha fluidized bed and a char separation system [J]. J Anal Appl Pyrolysis,2008,82:240-247.
    [27] Ate F, P t n A E, P t n E. Pyrolysis of two different biomass samples in afixed-bed reactor combined with two different catalysts [J]. Fuel,2006,85:1851-1859.
    [28]刘荣厚,生物质能工程[M].北京:化学工业出版社,2009,148-183.
    [29]彭锦星,邵千钧.生物质废弃物液化转化燃油技术的研究现状与展望[J].生物质化学工程,2006,40(4):53-56.
    [30] Apell HR, Yu YC, Friedman S, et al. Converting organic wastes to oil [R]. U. S.Bureau of Mines Report of Investigation.1971, No.7560.
    [31]刘一星.木质废弃物再生循环利用技术[M].北京:化学工业出版社,2005:109-114.
    [32]张世润,王岩,刘曙辉.木材液化[J].东北林业大学学报,2000,28(6):95-98.
    [33] Lee J. Biological conversion of lignocellulosic biomass to ethanol [J]. JBiotechnol,1997,56(1):1-24.
    [34]袁权.能源化学进展[M].北京:化学工业出版社,2005,185-193.
    [35]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005,328-336.
    [36]王铁军,常杰,吕鹏梅,等.生物质间接液化一步法合成燃料二甲醚[J].煤炭转化,2003,26(4):21-25.
    [37]张荣成,李秀金.作物秸秆能源转化技术研究进展[J].现代化工,2005,25(6):14-17.
    [38] Demirbas A. Supercritical fluid extraction and chemicals from biomass withsupercritical fluids [J]. Energy Convers Manage,2001,42:279-294.
    [39] Demirbas A. Liquefaction of olive husk by supercritical fluid extraction [J].Energy Convers Manage,2000,41:1875-1883.
    [40] Demirbas A. Conversion of biomass using glycerin to liquid fuel for blendinggasoline as alternative engine fuel [J]. Energy Convers Manage,2000,41:1741-1748.
    [41]曲先锋,彭辉,毕继诚,等.生物质在超临界水中热解行为的初步研究[J].燃料化学学报,2003,31(3):230-233.
    [42]钱学仁.木材超临界萃取工程[M].哈尔滨:东北林业大学出版社,1999:20-30.
    [43]邵千钧,彭锦星,修树东,等.竹子在超临界甲醇中的热解油产物分析[J].太阳能学报,2007,28(9):984-987.
    [44] Zhang Suping, Yan Yongjie, Li Tingchen, et al. Upgrading of liquid fuel fromthe pyrolysis of biomass [J]. Bioresour Technol,2005,96:545-550.
    [45]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [46] Johansson T B, Kelly H, Reddy A K N, et al. Renewable energy sources for fuelsand electricity,1993.
    [47] Govindaswamy S, Vane L M. Kinetics of growth and ethanol production ondifferent carbon substrates using genetically engineered xylose-fermenting yeast [J].Bioresource Technol,2007,98:677-685.
    [48] Akpan U G, Kovo A S, Abdullahi M, et al. The production of ethanol from maizecobsand groundnut shells [J]. AU J Technol,2005,9:106-110.
    [49] Kim S, Dale B E. Global potential bioethanol production from wasted crops andcropresidues [J]. Biomass Bioenergy,2004,26:361-375.
    [50] Dien B S, Cotta M A, Jeffries T W. Bacteria engineered for fuel ethanolproduction: current status [J]. Appl Microbiol Biotechnol,2003,63:258-266.
    [51] Jun K W, Roh H S, Kim K S, et al. Catalytic investigation for Fischer–Tropschsynthesis from bio-mass derived syngas [J]. Appl Catal A,2004,259:221-226.
    [52] Prins M J, Ptasinski K J, Janssen F J J G. Exergetic optimisation of a productionprocess of Fischer–Tropsch fuels from biomass [J]. Fuel Process Technol,2004,86:375-389.
    [53] Tijmensen M J A, Faaij A P C, Hamelinck C N, et al. Exploration of thepossibilities for production of Fischer Tropsch liquids and power via biomassgasification [J]. Biomass Bioenergy,2002,23:129-152.
    [54] Scott D S, Majerski P, Piskorz J, et al. J Anal Appl Pyrolysis,1999,51:23~37.
    [55] Dinesh M, Charles U P J, Philip H S. Pyrolysis of wood/biomass for bio-oil: acritical review [J]. Energy Fuels,2006,20:848-889.
    [56] Abdullah N, Gerhauser H. Bio-oil derived from empty fruit bunches [J]. Fuel,2008,87:2606-2613.
    [57] Zheng J, Yi W, Wang N. Bio-oil production from cotton stalk [J]. EnergyConvers Manage,2008,49:1724-1730.
    [58] Park H J, Dong J I, Jeon J K, et al. Effects of the operating parameters on theproduction of bio-oil in the fast pyrolysis of Japanese larch [J]. Chem Eng J,2008,143:124-132.
    [59] Zhang H, Xiao R, Huang H, et al. Comparison of non-catalytic and catalytic fastpyrolysis of corncob in a fluidized bed reactor [J]. Bioresour Technol,2009,100:1428-1434.
    [60] Miao X, Wu Q, Yang C. Fast pyrolysis of microalgae to produce renewable fuels[J]. JAnal Appl Pyrolysis,2004,71:855-863.
    [61] Kang B S, Lee K H, Park H J, et al. Fast pyrolysis of radiata pine in a bench scaleplantwith a fluidized bed: Influence of a char separation system and reactionconditions on the production of bio-oil [J]. J Anal Appl Pyrolysis,2006,76:32-37.
    [62] Wang S, Fang M, Yu C, et al. Flash pyrolysis of biomass particles in fluidizedbed for bio-oil production [J]. China Paericuology,2005,3:136-140.
    [63] Pa rk H J, Park Y K, Kim J S. Influence of reaction conditions andthe charseparation system on the production of bio-oil from radiata pine sawdust by fastpyrolysis [J]. Fuel Process Technol,2008,89:797-802.
    [64] As adullah M, Rahman M A, Ali M M, et al. Jute stick pyrolysis for bio-oilproduction in fluidized bed reactor [J]. Bioresour Technol,2008,99:44-50.
    [65] Za baniotou A A, Karabelas A J. The Evritania (Greece) demonstration plant ofbiomass pyrolysis [J]. Biomass Bioenergy,1999,16:431-445.
    [66] Cao Q, Jin L, Bao W, et al. Investigations into the characteristics of oils producedfrom co-pyrolysis of biomass and tir [J]. Fuel Process Technol,2009,90:337-342.
    [67] Cornelissen T, Jans M, Yperman J, et al. Flash co-pyrolysis of biomass withpolyhydroxybutyrate: part1. influence on bio-oil yield, water content, heating valueand the production of chemicals [J]. Fuel,2008,87:2523-2532.
    [68] Cornelissen T, Yperman J, Reggers G, et al. Flash co-pyrolysis of biomass withpolylactic acid, part1: influence on bio-oil yield and heating value [J]. Fuel,2008,87:1031-1041.
    [69] Piotr R, Andrzej K. Influence of polystyrene addition to cellulose on chemicalstructure and properties of bio-oil obtained during pyrolysis [J]. Energy ConversManage,2006,47:716-731
    [70] Priyanka B, Philip H.S, El B.M.H, et al. Wood/plastic copyrolysis in an augerreactor: chemical and physical analysisof the products [J]. Fuel,2009,88:1251-1260.
    [71] Ragauskas J, Williams C K, Davison B H, et al. The path forward for biofuelsand biomaterials [J]. Science,2006,311:484-489.
    [72] Marsman J H, Wildschut J, Evers P, et al. Identification and classification ofcomponents in flash pyrolysis oil and hydrodeoxygenated oils bytwo-dimensional gas chromatography and time-of-flight mass spectrometry [J].J Chromatogr A,2008,1188:17-25.
    [73]Bayerbach R, Nguyen V D, Schurr U, et al. Characterization of thewater-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) part III.molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, andPy-FIMS [J]. J Anal Appl Pyrolysis,2006,77:95-101.
    [74] Xu F, Xu Y, Yin H, et al. Analysis of bio-oil obtained by biomass fast pyrolysisusing low-energy electron-impact mass spectrometry[J]. Energy Fuels,2009,23:1775-1777.
    [75] Yanik J, Kornmayer C, Saglam M, et al. Fast pyrolysis of agricultural wastes:Characterization of pyrolysis products[J]. Fuel Process Technol,2007,88:942-947.
    [76] Lede J, Broust F, Ndiaye F T, et al. Properties of bio-oils produced by biomassfast pyrolysis in a cyclone reactor[J]. Fuel,2007,86:1800-1810
    [77] Lu Q, Yang X, Zhu X. Analysis on chemical and physical properties of bio-oilpyrolyzed from rice husk [J]. J Anal Appl Pyrolysis,2008,82:191-198.
    [78] Zheng J. Bio-oil from fast pyrolysis of rice husk: yields and related propertiesand improvement of the pyrolysis system [J]. J Anal Appl Pyrolysis,2007,80:30-35.
    [79] Sipilaè K, kuoppala E, Fagernaès L, et al. Characterization of biomass-basedflash pyrolysis oils[J]. Biomass Bioenergy,1998,14:103-113.
    [80] Garcia-Perez M, Chaala A, Pakdel H, et al. Characterization of bio-oils inchemical families [J]. Biomass Bioenergy,2007,31:222-242.
    [81] zbay N, Uzun B B, Varol E A, et al. Comparative analysis of pyrolysis oils andits subfractions under different atmospheric conditions [J]. Fuel ProcessTechnol,2006,87:1013-1019.
    [82] Wang S, Gu Y, Liu Q, et al. Separation of bio-oil by molecular distillation [J].Fuel Process Technol,2009,90:738-745.
    [83] Guo Z, Wang S, Zhu Y, et al. Separation of acid compounds for refining biomasspyrolysis oil [J]. J Fuel Chem Technol,2009,37:49-52.
    [84] Sagehashi M, Miyasaka N, Shishido H, et al. Separation of phenols and furfuralby pervaporation and reverse osmosis membranes frombiomass-superheatedsteam pyrolysis-derived aqueous solution [J]. Bioresour Technol,2007,98:2018-2026.
    [85] Sagehashi M, Miyasaka N, Shishido H, et al. Superheated steam pyrolysis ofbiomass elemental components and Sugi (Japanese cedar) for fuels andchemicals [J]. Bioresour Technol,2006,97:1272-1283.
    [86] Parihar M F, Kamil M, Goyal H B, et al. An experimental study on pyrolysis ofbiomass [J]. IchemE,2007,85:458-465.
    [87] Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice straw, sugarcane bagasseand coconut shell in an induction-heating reactor [J]. J Anal Appl Pyrolysis,2006,76:230-237.
    [88] Ates F, Pütün E, Pütün A E. Fast pyrolysis of sesame stalk: yields and structuralanalysis of bio-oil [J]. J Anal Appl Pyrolysis,2004,71:779-790.
    [89] Boucher M E, Chaala A, Roy C. Bio-oils obtained by vacuum pyrolysis ofsoftwood bark as a liquid fuel for gas turbines. part I: propertiesof bio-oil andits blends with methanol and a pyrolytic aqueous phase [J]. Biomass Bioenergy,2000,19:337-350.
    [90] Ozbay N, Apayd n-Varol E, Uzun B B, et al. Characterization of bio-oil obtainedfrom fruit pulp pyrolysis [J]. Energy,2008,33:1233-1240.
    [91] Demirbas A. The influence of temperature on the yields of compounds existingin bio-oils obtained from biomass samples via pyrolysis[J]. Fuel ProcessTechnol,2007,88:591-597.
    [92] Huber G W, Connor P O, Corma A. Processing biomass in conventional oilrefineries: Production of highquality diesel by hydrotreating vegetable oils inheavy vacuum oil mixtures [J]. Appl Catal A,2007,329:120-129.
    [93] enol O, Viljava T R, Krause A O I. Hydrodeoxygenation of methyl esters onsulphided NiMo/g-Al2O3and CoMo/γ-Al2O3catalysts [J]. Catal Today,2005,100:331-335.
    [94] enol O, Ryymin E M, Viljava T R, et al. Effect of hydrogen sulphide on thehydrodeoxygenation of aromatic and aliphatic oxygenates on sulphidedcatalysts [J]. J Mol Catal A: Chem,2007,277:107-112.
    [95] enol O, Viljava T R, Krause A O I. Effect of sulphiding agents on thehydrodeoxygenation of aliphatic esters on sulphided catalysts [J]. Appl Catal A,2007,326:236-244.
    [96] enol O., Ryymin E M, Viljava T R, et al. Reactions of methyl heptanoatehydrodeoxygenationon sulphided catalysts [J]. J Mol Catal A: Chem,2007,268:1-8.
    [97] Vitolo S, Seggiani M, Frediani P, et al. Catalytic upgrading of pyrolytic oils tofuel over different zeolites [J]. Fuel,1999,78:1147-1159.
    [98] Adjaye JD, Bakhshi NN. Production of hydrocarbons by catalytic upgrading of afast pyrolysis bio-oil, part I: conversion over various catalysts [J]. Fuel ProcessTechnol,1995,45:161-183.
    [99] Zhang S, Yan Y, Li T, et al. Upgrading of liquid fuel from the pyrolysis ofbiomass [J]. Bioresour Technol,2005,96:545-550.
    [100] Corma A, Huber G W, Sauvanaud L, et al. Processing biomass-derivedoxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways androle of catalyst [J]. J Catal,2007,247:307-327.
    [101]Aho A, Kumar N, Er nen K, et al. Catalytic pyrolysis of woody biomass in afluidized bed reactor: influence of the zeolitestructure [J]. Fuel,2008,87:2493-2501.
    [102]Aho A, Kumar N, Er nen K, et al. Catalytic pyrolysis of biomass in a fluidizedbed: influence of the acidity of H-Beta zeolite [J]. Trans IChemE, Part B,Process Safety and Environmental Protection,2007,85:473-480.
    [103]Tamunaidu P, Bhatia S. Catalytic cracking of palm oil for the production ofbiofuels: optimization studies [J]. Bioresour Technol,2007,98:3593-3601.
    [104] Nokkosm ki M I, Kuoppala E T, Lepp m ki E A, et al. Catalytic conversion ofbiomass pyrolysis vapours with zinc oxide [J]. J Anal Appl Pyrolysis,2000,55:119-131.
    [105]Iliopoulou E F, Antonakou E V, Karakoulia S A, et al. Catalytic conversion ofbiomass pyrolysis products by mesoporous materials: Effect of steam stabilityand acidity of Al-MCM-41catalysts [J]. Chem Eng J,2007,134:51-57.
    [106]Ooi Y, Zakaria R, Mohamed A R, et al. Hydrothermal stability and catalyticactivity of mesoporous aluminum-containing SBA-15[J]. Catal Commun,2004,5:441-445.
    [107]Triantafyllidis K S, Iliopoulou E F, Antonakou E V, et al. Hydrothermallystable mesoporous aluminosilicates(MSU-S) assembled from zeolite seeds ascatalysts for biomass pyrolysis [J]. Microporous Mesoporous Mater,2007,99:132-139.
    [108]Yorgun S, im ek Y E. Catalytic pyrolysis of Miscanthus×giganteus overactivated alumina [J]. Bioresour Technol,2008,99:8095-8100.
    [109] Adam J, Blazsó M, Mészáros E, et al. Pyrolysis of biomass in the presence ofAl-MCM-41type catalysts [J]. Fuel,2005,84:1494-1502.
    [110] Adam J, Antonakou E, Lappas A, et al. In situ catalytic upgrading of biomassderived fast pyrolysis vapours in a fixed bed reactor using mesoporousmaterials [J]. Microporous Mesoporous Mater,2006,96:93-101.
    [111]Antonakou E, Lappas A, Nilsen M H, et al. Evaluation of various types ofAl-MCM-41materials as catalysts in biomass pyrolysis for theproduction ofbio-fuels and chemicals [J]. Fuel,2006,85:2202-2212.
    [112]Nilsen M H, Antonakou E, Bouzga A, et al. Investigation of the effect of metalsites in Me–Al-MCM-41(Me=Fe, Cu or Zn) on the catalytic behavior duringthe pyrolysis of wooden based biomass [J]. Microporous Mesoporous Mater,2007,105:189-203.
    [113]Li H, Shen B, Kabalu J C, et al. Enhancing the production of biofuels fromcottonseed oil by fixed-fluidized bed catalytic cracking [J]. Renew Energ,2009,34:1033-1039.
    [114]Zhang S, Yan Y, Li T, Ren Z. et al. Upgrading of liquid fuel from the pyrolysisof biomass [J]. Bioresour Technol,2005,96:545-550.
    [115]郭晓亚,颜涌捷.生物质快速裂解油的催化裂解精制[J].化学反应工程与工艺,2005,21(3):227-233.
    [116] Xu J, Jiang J, Sun Y, et al. A novel method of upgrading bio-oil by reactiveRectification [J]. J Fuel Chem Technol,2008,36:421-425.
    [117] Xu J, Jiang J, Sun Y, et al. Bio-oil upgrading by means of ethyl ester productionin reactive distillation to removewater and to improvestorage and fuelcharacteristics [J]. Biomass Bioenergy,2008,32:1056-1061.
    [118]徐莹,常杰,张琦,等.固体碱催化剂上生物油催化酯化改质[J].石油化工,2006,35(7):615-618.
    [119]张琦,常杰,王铁军,等.固体酸催化剂SO42-/SiO2-TiO2的制备及其催化酯化性能[J].催化学报,2006,27(11):1033-1038.
    [120] Devan P K, Mahalakshmi N V. A study of the performance, emission andcombustion characteristics of a compression ignition engine using methyl esterof paradise oil–eucalyptus oil blends [J]. Appl Energ,2009,86:675-680.
    [121]Boucher M E, Chaala A, Pakdel H, et al. Bio-oils obtained by vacuum pyrolysisof softwood bark as a liquid fuel for gas turbines, part II:stability and ageing ofbio-oil and its blends with methanol and a pyrolytic aqueous phase [J]. BiomassBioenergy,2000,19:351-361.
    [122]Chiaramonti D, Bonini M, Fratini E, et al. Development of emulsions frombiomass pyrolysis liquid and diesel and their use in engines—part1: emulsionproduction [J]. Biomass Bioenergy,2003,25:85-99.
    [123]Chiaramonti D, Bonini M, Fratini E, et al. Development of emulsions frombiomass pyrolysis liquid and diesel and their use inengines—part2: tests indiesel engines [J]. Biomass Bioenergy,2003,25:101-111.
    [124]Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived bio-oilin diesel fuel [J]. Biomass Bioenergy,2003,24:221-232.
    [125]于济业,彭艳丽,李燕飞,等.生物油/柴油乳化燃油稳定性试验[J].山东理工大学学报(自然科学版),2007,21(5):200-202.
    [126] Czernik S, Evans R, French R. Hydrogen from biomass-production by steamreforming of biomass pyrolysis oil [J]. Catal Today,2007,129:265-268.
    [127] Bimbela F, Oliva M, Ruiz J, et al. Hydrogen production by catalytic steamreforming of acetic acid, a model compound of biomass pyrolysis liquids[J]. JAnal Appl Pyrolysis,2007,79:112-120.
    [128]Iojoiu E E, Domine M E, Davidian T, et al. Hydrogen production by sequentialcracking of biomass-derived pyrolysis oil over noble metal catalysts supportedon ceria-zirconia [J]. Appl Catal A,2007,323:147-161.
    [129]Domine M E, Iojoiu E E, Davidian T, et al. Hydrogen production frombiomass-derived oil over monolithic Pt-and Rh-basedcatalysts using steamreforming and sequential cracking processes [J]. Catal Today,2008,133-135:565-573.
    [130]Davidian T, Guilhaume N, Iojoiu E, et al. Hydrogen production from crudepyrolysisoil by a sequential catalytic process [J]. Appl Catalysis B:Environmental,2007,73:116-127.
    [131]Wu C, Huang Q, Sui M, et al. Hydrogen production via catalytic steamreforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system [J].Fuel Process Technol,2008,89:1306-1316.
    [132]Vagia E C, Lemonidou A A. Hydrogen production via steam reforming ofbio-oil components over calcium aluminatesupported nickel and noble metalcatalysts [J]. Appl Catal A,2008,351:111-121.
    [133]Wang Z, Pan Y, Dong T, et al. Production of hydrogen from catalytic steamreforming of bio-oil using C12A7-O-based catalysts [J]. Appl Catal A,2007,320:24-34.
    [134]Takanabe K, Aika K, Seshan K, et al. Sustainable hydrogen frombio-oil—Steam reforming of acetic acid as a model oxygenate [J]. J Catal,2004,227:101-108.
    [135]Kechagiopoulos P N, Voutetakis S S, Lemonidou A A, et al. Sustainablehydrogen production via reforming of ethylene glycol using a novel spoutedbed reactor [J]. Catal Today,2007,127:246-255.
    [136]Mahfud F H, Bussemaker S, Kooi B J, et al. The application of water-solubleruthenium catalysts for the hydrogenation of the dichloromethane solublefraction of fast pyrolysis oil and related model compounds in a two phaseaqueous–organic system [J]. J Mol Catal A: Chem,2007,277:127-136.
    [137]Medrano J A, Oliva M, Ruiz J, et al. Catalytic steam reforming of acetic acid ina fluidized bed reactor with oxygen addition [J]. Int J Hydrogen Energy,2008,33:4387-4396.
    [138]Fisk CA, Morgan T, Ji Y, et al. Bio-oil upgrading over platinum catalysts usingin situ generatedhydrogen [J]. Appl Catal A,2009,358:150-156.
    [139]王兆祥,朱锡锋,潘越,等. C12A7-K2O催化水蒸气重整生物油制氢,中国科技大学学报[J].2006,36(4):953-955.
    [140]贤晖,潘越,仇松柏,等. C12A7-MgO催化剂上的生物油裂解制氢[J].化学物理学报,2005,18(4):73-74.
    [141] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of Biomass [J].Energy Convers Manage,2000,41:633-646.
    [142] Papadikis K, Gu S, Bridgwater A V, et al. Application of CFD to model fastpyrolysis of biomass [J]. Fuel Process Technol,2009,90:504-512.
    [143] Papadikis K, Gerhauser H, Bridgwater A V, et al. CFD modelling of the fastpyrolysis of an in-flight cellulosic particle subjected to convective heat transfer[J]. Biomass Bioenergy,2009;33:97-107.
    [144]Papadikis K, Bridgwater A V, Gu S. CFD modelling of the fastpyrolysis ofbiomass influidised bed reactors, partA: eulerian computation of momentumtransport in bubbling fluidised beds [J]. Chem Eng Sci,2008,63:4218-4227.
    [145]Papadikis K, Gu S, Bridgwater A V. CFD modelling of the fast pyrolysis ofbiomass in fluidised bed reactors. part B heat,momentum and mass transportinbubbling fluidised beds [J]. Chem Eng Sci,2009,64:1036-1045.
    [146]Ozbay N, ApaydInVarol E, Uzun B B, et al. Characterization of bio-oil obtainedfrom fruit pulp pyrolysis [J]. Energy,2008,33:1233-1240.
    [147]王鹏起,常建民,杜洪双,等.落叶松树皮喷动循环流化床快速热解的影响因素[J].林业科学,2009,45(10):126-129.
    [148]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [149]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003,31(4):311-316.
    [150]刘乃安,王海晖,夏敦煌,等.林木热解动力学模型研究[J].中国科学技术大学学报,1998,28(1):40-48.
    [151] Koufopanos C A, Papayannakos N, Maschio G, et al. Modelling of thepyrolysis of biomass particles. studies on kinetics, thermal and heat transfereffects [J]. Can J Chem Eng,1991,69:907-915.
    [152]邵千钧,彭锦星,徐群芳,等.竹质材料热解失重行为及其动力学研究[J].太阳能学报,2006(27),7:671-676.
    [153] Lu C, Song W, Lin W. Kinetics of biomass catalytic pyrolysis [J]. BiotechnolAdv,2009,27:583-587.
    [154] Orfao J J M, Martins F G. Kinetic analysis of thermogravimetric data obtainedunder linear temperatureprogramming–a method based on calculations of thetemperature integral by interpolation [J]. Thermochim Acta,2002,390:195-211.
    [155]Ozawa T. A new method of analyzing thermogravimetric data [J]. Bull ChemSoc Jpn,38:1881-1886.
    [156] Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal Chem,1957,29:1702-1706.
    [157] Skvara F, Sestak J. Computer calculation of the mechanism and associatedkinetic data using a non-isothermal integral method [J]. J Therm Anal Calorim,1975,8:477-489.
    [158]Miura K, Maki T. A simple method for estimating f(E) and k0(E) in thedistributed activation energy model [J]. Energy Fuels,1998,12:864-869.
    [159] Ji A, Zhang S, Lu X, et al. A new method for evaluating the sewage sludgepyrolysis kinetics [J]. Waste Manage,2009,30:1225-1229.
    [160] S J H, Shan Z, Maschmeyer T, et al. Synthesis of bimodal nanostructured silicaswith independently controlled small and large mesopore sizes [J]. Langmuir,2003,19:8395-8402.
    [161]赵成大,梁春余.统计热力学导论[M].长春:吉林人民出版社,1983.
    [162]郭平生,刘海力,宁军贤,等.微波辅助萃取的动力学模型[J].化工学报,
    2009,60(2):394-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700