叶酸靶向羟基丁酸与羟基辛酸共聚物载药纳米粒缓释给药系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,癌症是当前威胁人类健康的重大疾病之一,每年仅宫颈癌就会夺去20多万人的生命。在目前癌症的临床治疗中,化学抗癌药物发挥着极为重要的作用,不仅可以杀灭局部肿瘤组织,而且能够清除全身性的癌细胞。然而,这些化疗药物对机体有着强烈的毒副作用,会给患者带来很大的肉体与精神痛苦。因此,迫切需要设计与开发一种新型智能抗癌药物剂型。
     在新型抗癌药物剂型的研发中,靶向给药系统(TDDS)成为当代智能化药物剂型的热门课题。该系统的突出特点是将治疗药物定向运送到靶区,在显著提高靶区疗效的同时最大限度地减轻药物在非靶区的毒副作用,从而实现高效低毒的治疗策略。构建TDDS主要包括靶向材料、载体材料、抗癌药物及制备技术等要素。靶向材料决定着药剂在体内的运行方向与结合位点,是实现药剂靶向功能的关键。载体材料关系到药物的装载、运输、疗效及药代动力学,需要具备良好的生物相容性、适宜的生物可降解性和相应的加工可行性。抗癌药物赋予TDDS特异的抗癌作用。而制备技术是完成TDDS研发的核心要素,关系到药剂的成型性和生产可行性。
     通过查阅大量的国内外文献资料,分析比较了各种靶向材料、载体材料和制备技术的特点,设计了本文的研究方案。基于宫颈癌细胞表面叶酸受体(FR)过度表达的特性,选择其相应配体叶酸(FA)作为靶向材料。为了保证药物运输到靶区并延长其作用时间,选用具有良好的理化性质和生物学特性的生物高分子聚酯—羟基丁酸与羟基辛酸共聚物[P(HB-HO)]为载体材料,以阿霉素(DOX)为模型药物,采用W1/O/W2超声乳化法研制了叶酸靶向P(HB-HO)载阿霉素纳米粒,检测了纳米粒的基本特性参数,并进行了其靶向性和抑瘤效果的研究。
     研制叶酸靶向P(HB-HO)载阿霉素纳米粒的过程分为两个阶段。第一阶段合成具有靶向作用的载体材料[FA-PEG-P(HB-HO)]。根据氨基与羧基缩合形成酰胺键的化学反应原理,采用二步法操作程序,首先将偶联剂聚乙二醇二胺(H2N-PEG-NH2)与叶酸(FA)以酰胺键相连接,合成了FA-PEG-NH2。然后再以FA-PEG-NH2与P(HB-HO)进行酰胺化反应,合成FA-PEG-P(HB-HO),其收率达到86.39%。运用红外光谱(IR)和核磁共振氢谱(1H NMR)对该产物进行了结构表征,结果证实FA-PEG-P(HB-HO)合成取得成功。第二阶段研究了叶酸靶向P(HB-HO)载阿霉素纳米粒的制备技术及基本特性。以纳米粒粒径作为主要指标,比较了纳米粒的不同制备方法,最终确定W1/O/W2超声乳化法为最佳制备方法。以L9(34)正交设计法优化了W1/O/W2超声乳化法制备纳米粒的工艺条件,得出最佳的工艺条件为:阿霉素、Ⅰ'A-PEG-P(HB-HO)、PVA、Tween80和Span80的浓度分别为10%、6.5%、3%、5%和1%(W/V),油相与内水相体积比为3:1,超声功率为200W,超声时间180s。对载药纳米粒的基本特性进行了检测,结果表明:叶酸靶向P(HB-HO)载阿霉素纳米粒的平均粒径为241.6±9.3nm,载药量、包封率分别为29.6±2.9%、83.5±5.7%,体外累积释药率11d可达80%,其释放规律符合Higuchi方程。该载药纳米粒在4℃下放置6个月后,其粒径、载药量及包封率均无显著变化,稳定性较好。
     通过体外细胞试验考察了纳米粒对模型细胞株HeLa的细胞相容性、细胞靶向性、细胞毒性及凋亡率。HeLa细胞与纳米粒进行共培养后,经MTT法检测,结果表明:空白P(HB-HO)纳米粒和空白叶酸靶向P(HB-HO)纳米粒均未呈现出细胞毒性,证明P(HB-HO)和FA-PEG-P(HB-HO)具有良好的细胞相容性。当载药纳米粒的药物浓度范围在0.005-50μM时,分别对游离阿霉素、P(HB-HO)载阿霉素纳米粒、叶酸靶向P(HB-HO)载阿霉素纳米粒和添加1mM游离叶酸的叶酸靶向P(HB-HO)载阿霉素纳米粒进行了细胞毒性试验,结果表明:叶酸靶向P(HB-HO)载阿霉素纳米粒对HeLa细胞生长的抑制率最大,IC50最小,为0.87μM。说明叶酸对HeLa细胞具有靶向作用,由叶酸介导的载药纳米粒能更加有效的抑制HeLa细胞的增殖。纳米粒的药物浓度、培育时间、游离叶酸影响试验和倒置荧光显微镜观察结果进一步证明了叶酸靶向P(HB-HO)载阿霉素纳米粒对HeLa细胞具有靶向作用。经显微镜观察发现,叶酸靶向P(HB-HO)载阿霉素纳米粒组的细胞凋亡现象最为严重。当药物浓度为50μM时,流式细胞仪测得叶酸靶向P(HB-HO)载阿霉素纳米粒组的细胞凋亡率最高,达84.25±2.43%。与其它各给药组相比,有着显著性差异(p<0.05)。
     采用体内动物试验研究了叶酸靶向P(HB-HO)载阿霉素纳米粒在荷瘤裸鼠体内组织的分布、靶向作用及抗肿瘤效果。构建HeLa荷瘤裸鼠模型后随机分组,初步研究了纳米粒在体内组织的分布及靶向作用。结果表明:将阿霉素制备成纳米粒后,可以延长其在体内的半衰期,提高机体对阿霉素的生物利用度。同时能大大降低阿霉素对心脏的毒副作用。叶酸靶向P(HB-HO)载药纳米粒组在肿瘤组织中的阿霉素浓度明显高于其它给药组,在48h时该组肿瘤中阿霉素浓度分别为游离阿霉素组、P(HB-HO)载阿霉素纳米粒组的10.81、3.33倍,说明该纳米粒具有良好的肿瘤靶向性。抑瘤试验结果表明:叶酸靶向P(HB-HO)载阿霉素纳米粒组的瘤重与生理盐水组相比具有极显著性差异(p<0.01),其抑瘤率可达76.91%,且明显高于其它给药组。该组肿瘤组织在试验期间体积增长速率最慢,实验动物体重变化较为平稳。试验结束后该组瘤块体积最小,为178.91±17.43 mm3。瘤块组织学观察发现,叶酸靶向P(HB-HO)载阿霉素纳米粒组肿瘤细胞数目明显减少,分布较为稀疏,可以看到肿瘤细胞严重坏死。由此可见,叶酸靶向P(HB-HO)载阿霉素纳米粒具有良好的抑瘤效果。
     通过本文研究,我们首次建立了二步法合成FA-PEG-P(HB-HO)的技术,并获得了FA-PEG-P(HB-HO)产品。建立了叶酸靶向P(HB-HO)载阿霉素纳米粒制备工艺,并确定了主要技术参数,研发出了一种治疗宫颈癌的新型靶向给药纳米制剂。体内外试验结果表明,该纳米粒靶向性好,对宫颈癌疗效显著,对机体的毒副作用小,有着良好的应用前景。
It is well known that cancer has become one of the most serious threats to human at present, and more than 20 million people die of cervical cancer worldwide each year. In the currently clinical treatments to cervical cancer, chemotherapy drugs play a very important role in killing local tumor tissues and removing systemic cancer cells. However, these drugs, owing to its drastic side effects, often bring cancer patients with great pain. Thus, it is necessary to design and develop a novel anticancer drug.
     Targeting drug delivery system (TDDS) with effective therapy and lower side effect has been one of the hottest topics in current pharmacology. TDDS is mainly composed of targeting ligand, carrier, anticancer drug and corresponding technique. The targeting effect and binding sites of TDDS is determined by the targeting ligand, and the drug loading and delivery is depended on carrier with biocompatibility, biodegradability and processing feasibility. Anticancer drug gives TDDS specific anticancer effects, and the technology is the core element of TDDS.
     After reading a large number of literatures, we have designed the research program of this paper. Because of over-expression of folate receptor (FR) on the surface of cancer cells, we selected its corresponding ligand folic acid (FA) as targeting ligand. In order to delivery drug to targeting site and extend its duration of action, we chose poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) [P(HB-HO)] with good physical-chemical properties and biological characteristics as drug carrier. The DOX-loaded, folate-mediated P(HB-HO) nanoparticles (DOX/FA-PEG-P(HB-HO) NPs) were prepared by W1/O/W2 solvent extraction/evaporation method, adopting doxorubicin (DOX) as the model anticancer drug. Their physicochemical properties, targeting effect and pharmacodynamics were also investigated.
     The DOX/FA-PEG-P(HB-HO) NPs have been prepared in two stages. First, an original FA-PEG-P(HB-HO) conjugate with 86.39% yield was synthesized by amide bonds, and its chemical structure was confirmed by FTIR and'H NMR spectroscopy. The DOX/FA-PEG-P(HB-HO) NPs were then prepared by W1/O/W2 ultrasonic emulsification method. The correlative parameters of the method were optimized by L9(34) orthogonal design, and the optimal conditions were as follows:the concentration of DOX, FA-PEG-P(HB-HO), PVA, Tween80 and Span80 were 10%,6.5%,3%,5% and 1%(W/V), separately. The volume ratio of oil phase/internal water phase was 3:1, and the ultrasonic output and time was 200W and 180s, respectively. The average size, drug loading capacity and encapsulation efficiency of such NPs were found to be 241.6±9.3nm,29.6±2.9% and 83.5±5.7%. The in vitro release profile displayed that nearly 80% DOX was released in the first 11 days and its release formulation fitted to Higuchi equation. There were no great changes in the properties of the NPs when they stored for 6 months at 4℃. Therefore, the DOX/FA-PEG-P(HB-HO) NPs have excellent stability.
     The cellular compatibility, cellular targeting, cytotoxicity and apoptosis of these NPs to HeLa cells were investigated by in vitro cell line experiments. The results of MTT showed that no toxicity was observed after incubation with blank P(HB-HO) NPs and blank FA-PEG-P(HB-HO) NPs, and the two polymers displayed satisfactory cellular compatibility. The DOX/FA-PEG-P(HB-HO) NPs (IC50=0.87μM) displayed greater cytotoxicity to HeLa cells than other treated groups. The intracellular uptake tests of the NPs in vitro and fluorescence observation showed that the DOX/FA-PEG-P(HB-HO) NPs were efficiently taken up by HeLa cells. In addition, the results of microscope observation and flow cytometry exhibited that the apotosis of HeLa cells treated with 50μM DOX/FA-PEG-P(HB-HO) NPs was 84.25±2.43%, with significant difference (p<0.05). These data in vitro demonstrated that DOX/FA-PEG-P(HB-HO) NPs could target the HeLa cells efficiently and lead to a strong cytotoxicity due to high affinity of FA and FR.
     The tissue distribution, targeting effect and anti-tumor activity of DOX/FA-PEG-P(HB-HO) NPs were evaluated by in vivo experiments. After building HeLa xenograft tumor models, the BALB/c nude tumor-bearing mice were randomly divided into several groups. The results of tissue distribution and targeting tests showed that the half-life of the DOX was prolonged, its bioavailability was enhanced and its toxicity to heart was greatly reduced when DOX was prepared as NPs, the DOX concentration of DOX/FA-PEG-P(HB-HO) NPs group was much higher than other treated groups, and the DOX concentration in the tumors of this group was 10.81 and 3.33 times higher than free DOX group and DOX/P(HB-HO) NPs group, respectively. Thus, the DOX/FA-PEG-P(HB-HO) NPs have good targeting to HeLa tumors. In vivo anti-tumor activity demonstrated that the tumor weight of DOX/FA-PEG-P(HB-HO) NPs group was much smaller than control group (p<0.01), and the inhibit tumor rate was 76.91%. The final mean tumor load of the NPs was 178.91±17.43 mm3, remarkably smaller than other treated groups. Furthermore, the body weight change of DOX/FA-PEG-P(HB-HO) NPs group was very stable. Histopathology observations of tumors displayed that necrosis areas after DOX/FA-PEG-P(HB-HO) NPs treatment were severe. All these results have illustrated that DOX/FA-PEG-P(HB-HO) NPs are effective in targeting treatment of tumors.
     In conclusion, the technique of synthesizing FA-PEG-P(HB-HO) was built, and the product was achieved for the first time. Moreover, the technique and technical parameters of preparing DOX/FA-PEG-P(HB-HO) NPs were established, and a novel targeting nano-agent for treatment of cervical cancer was developed. The results of in vitro and in vivo experiments have illustrated that the NPs with little side effects are effective in the ability of active targeting, and are remarkable in treating cervical cancer. The new TDDS may represent a promising prospect in future.
引文
[1]Shi JF, Canfell K, Lew JB, et al. The Burden of Cervical Cancer in China:Synthesis of the Evidence [J]. International Journal of Cancer,2011, doi:10.1002/ijc.26042.
    [2]Parkin DM, Bray F, Ferlay J, et al. Global Cancer Statistics,2002 [J]. CA Cancer J Clin,2005,55:74-108.
    [3]Ginsberg GM, Edejer TT, Lauer JA, et al. Screening, Prevention and Treatment of Cervical Cancer—A Global and Regional Generalized Cost-effectiveness Analysis [J]. Vaccine,2009,27:6060-6079.
    [4]Tozzi R, Lavra F, Cassese T, et al. Laparoscopic Debulking of Bulky Lymph Nodes in Women with Cervical Cancer:Indication and Surgical Outcomes [J]. British Journal of Obstetrics and Gynaecology,2009,116:688-692.
    [5]Moorthi C, Manavalan R, Kathiresan K. Nanotherapeutics to Overcome Conventional Cancer Chemotherapy Limitations [J]. JPharm Pharmaceut Sci,2011,14:67-77.
    [6]Wang S, Low PS. Folate-mediated Targeting of Antineoplastic Drugs, Imaging Agents, and Nucleic Acids to Cancer Cells [J]. J Control Release,1998,53:39-48.
    [7]Jaracz S, Chen J, Kuznetsova LV, et al. Recent Advances in Tumor Targeting Anticancer Drug Conjugates [J]. Bioorg Med Chem,2005,13:5043-5054.
    [8]Hallahan D, Geng L, Qu SM, et al. Integrin-mediated Targeting of Drug Delivery to Irradiated Tumor Blood Vessels [J]. Cancer Cell,2003,3:63-74.
    [9]Theresa MA, Pieter RC. Drug Delivery Systems:Entering the Main Stream [J]. Science,2004,303:1818-1822.
    [10]Takenaga M. Application of Lipid Microspheres for Treatment of Cancer [J]. Adv Drug Delivery Rev,1996,20:209-219.
    [11]Gupta PK. Drug Targeting in Cancer Chemotherapy:A Clinical Perspective [J].J Pharm Sci,1990,79:949-962.
    [12]吴银侠,杨华元.靶向药物转运系统[J].武汉科技大学学报(自然科学版),2002,25:202-205.
    [13]陆彬.药物新剂型与新技术[M],人民卫生出版社,1998.
    [14]Fahmy TM, Fong PM, Goyal A, et al. Targeted for Drug Delivery [J]. Nanotoday, 2005,1369:18-26.
    [15]朱盛山.药物新剂型[M].化学工业出版社,2003.
    [16]Saul JM, Annapragada A, Natarajan JV, et al. Controlled Targeting of Liposomal Doxorubicin via the Folate Receptor in vitro [J]. J Control Release,2003,92:49-67.
    [17]Ruoslahti E. Drug Targeting to Specific Vascular Sites [J]. Drug Discov Today,2002, 7:1138-1143.
    [18]Wang X, Wang YQ, Chen Z, et al. Advances of Cancer Therapy by Nanotechnology [J]. Cancer Res Treat,2009,41:1-11.
    [19]Allen TM, Cullis PR. Drug Delivery Systems:Entering the Mainstream [J]. Science, 2004,303:1818-1822.
    [20]Kairemo K, Erba P, Bergstrom K, et al. Nanoparticles in Cancer [J]. Current Radiopharmaceuticals,2008,1:30-36.
    [21]王新春,何军,阳长明,等.中西药被动靶向制剂的研究新进展[J].中国医院药学杂志,2003,23:238-240.
    [22]Vasir JK, Reddy MK, Labhasetwar VD. Nanosystems in Drug Targeting: Opportunities and Challenges [J]. Current Nanoscience,2005,1:47-64.
    [23]Gullotti E, Yeo Y. Extracellularly Activated Nanocarriers:A New Paradigm of Tumor Targeted Drug Delivery [J]. Mol Pharmaceutics,2009,6:1041-1051.
    [24]Polyak B, Friedman G. Magnetic Targeting for Site-specific Drug Delivery: Applications and Clinical Potential [J]. Expert Opinion on Drug Delivery,2009,6: 53-70.
    [25]Sethuraman VA, Lee MC, Bae YH. A Biodegradable pH-sensitive Micelle System for Targeting Acidic Solid Tumors [J]. Pharmaceutical Research,2007,25:657-666.
    [26]Kono K, Ozawa T, Yoshida T, et al. Highly Temperature-sensitive Liposomes Based on A Thermosensitive Block Copolymer for Tumor-specific Chemotherapy [J]. Biomaterials,2010,31:7096-7105.
    [27]Hafeli UO. Magnetically Modulated Therapeutic Systems [J]. International Journal of Pharmaceutics,2001,277:19-24.
    [28]Chelvi TP, Ralhan R. Hyperthemia Potentiates Antitumor Effect of Thermosensitive Liposome Encapsulated Mephalan and Radiation in Murine Melanoma [J]. Tumor Biol, 1997,18:250-260.
    [29]Liu L, Jin P, Cheng M, et al.5-Fluorouracil-loaded Self-assembled pH-sensitive Nanoparticles as Novel Drug Carrier for Treatment of Malignant Tumors [J]. Chinese J Chem Eng,2006,14:377-382.
    [30]KOhler G, Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity [J]. Nature,1975,256:495-497.
    [31]Feng B, Tomizawa K, Michiue H, et al. Development of a Bfunctional Immunoliposome System for Combined Drug Delivery and Imaging in vivo [J]. Biomaterials,2010,31:4139-4145.
    [32]黄开红,王凌云,赵晓龙,等.抗VEGF单克隆抗体偶联5-FU纳米微粒的初步研究[J].中国病理生理杂志,2007,23:258-261.
    [33]Kurtaran A, Li SR, Raderer M, et al. Technetium-99m-galactocyl-neoglycoalycoalbum in Combined with Iodine-123-Tyr (A14)-insulin Visualizes Human Hepatocellular Carcinomas [J]. J Nucl Med,1995,36: 1875-1881.
    [34]Liu WS, Huang Y, Zhang ZR. Synthesis and Characterization of the Tumor Targeting Mitoxantrone-insulin Conjugate [J]. Arch Pharm Res,2003,26:892-897.
    [35]袁飞,王树斌,彭志平,等.表皮生长因子受体靶向纳米载体荷载c-erbB2反义寡脱氧核苷酸对人乳腺癌SK-BR3细胞的摄取与滞留[J].中国组织工程研究与临床康复,2009,13:3084-3088.
    [36]Vyas SP, Sihorkar V. Endogenous Carriers and Lgands in Non-immunogenic Site-specific Drug Delivery [J]. Trends Pharmacol Sci,2002,23:206-209.
    [37]Maruyama A, Ishida O, Kasaoka S, et al. Intracellular Targeting of Sodium Mercaptoundecahydrododecaborate (BSH) to Solid Tumors by Transferring-PEG Liposomes, for Boron Neutron-capture Therapy (BNCT) [J]. J Control Release,2004, 98:195-207.
    [38]Ishida O, Maruyama K, Tanahashi H, et al. Liposomes Bearing Polyethyleneglycol-coupled Transferring with Intracellular Targeting Property to the Solid Tumors in vivo [J]. Pharmaceutical Research,2001,18:1042-1048.
    [39]Sudimack J, Lee RJ. Targeted Drug Delivery via the Folate Receptor [J]. Advanced drug delivery reviews,2000,41:147-162.
    [40]Hattori Y, Maitani Y. Enhanced in vitro DNA Transfection Efficiency by Novel Folate-linked Nanoparticles in Human Prostate Cancer and Oral Cancer [J]. J Control Release,2004,97:173-183.
    [41]Schroeder JE, Shweky I, Shmeeda H, et al. Folate-mediated Tumor Cell Uptake of Quantum Dots Entrapped in Lipid Nanoparticles [J]. J Control Release,2007,124: 28-34.
    [42]Zhang ZP, Lee SH, Feng SS. Folate-decorated Poly(lactide-co-glycolide)-vitamin E TPGS Nanoparticles for Targeted Drug Delivery [J]. Biomaterials,2007,28: 1889-1899.
    [43]陆伟跃,刘敏,潘俊,等.叶酸-脂质体制备及对HeLa细胞靶向作用[J].上海医科大学学报,2000,27:4-8.
    [44]俞耀庭主编.生物医用材料[M].天津大学出版社,2000,192.
    [45]石淑先主编.生物材料制备与加工[M].化学工业出版社,2009,64.
    [46]王晓波主编.药物运释系统[M].中国医药科技出版社,2007,25.
    [47]陈治清主编.口腔生物材料学[M].化学工业出版社,2004,220.
    [48]Kratz F. Albumin as a Drug Carrier:Design of Prodrugs, Drug Conjugates and Nanoparticles [J]. Journal of Controlled Release,2008,132:171-183.
    [49]Zillies JC, Zwiorek K, Hoffmann F, et al. Formulation Development of Freeze-dried Oligonucleotide-loaded Gelatin Nanoparticles [J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,70:514-521.
    [50]Gan Q, Wang T. Chitosan Nanoparticle as Protein Delivery Carrier—Systematic Examination of Fabrication Conditions for Efficient Loading and Release [J]. Colloids and Surfaces B:Biointerfaces,2007,59:24-34.
    [51]Simi CK, Abraham TE. Hydrophobic Grafted and Cross-linked Starch Nanoparticles for Drug Delivery [J]. Bioprocess and Biosystems Engineering,2007,30:173-180.
    [52]Zhu HG, Ji J, Shen JC. Biomacromolecules Electrostatic Self-Assembly on 3-Dimensional Tissue Engineering Scaffold [J]. Biomacromolecules,2004,5: 1933-1939.
    [53]Quintanar GD, Ganem QA, Allemann E, et al. Influence of the Stabilizer Coating Layer on the Purification and Freeze-drying of Poly(D,L-lactic acid) Nanoparticles Prepared by An Emulsion-diffusion Technique [J].J Microencapsul,1998,15: 107-119.
    [54]Pattison MA, Wurster S, Webster TJ, et al. Three-dimensional, Nano-structured PLGA Scaffolds for Bladder Tissue Replacement Applications [J]. Biomaterials,2005, 26:2491-2500.
    [55]Yang R, Shim WS, Cui FD, et al. Enhanced Electrostatic Interaction Between Chitosan-modified PLGA Nanoparticle and Tumor [J]. International Journal of Pharmaceutics,2009,371:142-147.
    [56]Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified Poly(ε-caprolactone) Nanoparticles for Targeted Delivery of Tamoxifen in Breast Cancer [J]. International Journal of Pharmaceutics,2005,293:261-270.
    [57]Chauvierre C, Marden MC, Vauthier C, et al. Heparin Coated Poly(alkylcyanoacrylate) Nanoparticles Coupled to Hemoglobin:A New Oxygen Carrier [J]. Biomaterials,2004,25:3081-3086.
    [58]Pouton CW, Akhtar S. Biosynthetic Polyhydroxyalcanoates and their Application in Drug Delivery [J]. Adv Drug Deliv Rev,1996,18:133-162.
    [59]Chen GQ, Wu Q. The Application of Polyhydroxyalcanoates as Tissue Engineering Materials [J]. Biomaterials,2005,26:6565-6578.
    [60]Zhao LQ, Xiao JF, Feng T, et al. Synthesis of Poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) by a Sinorhizobium fredii Strain [J]. Lett Appl Microbiol,2006,42:344-349.
    [61]Conway BR, Eyles JE, Alpar HO. A Comparative Study on the Immune Responses to Antigens in PLA and PHB Microspheres [J]. J Control Release,1997,49:1-9.
    [62]Sendil D, Gursel I, Wise DL, et al. Antibiotic Release From Biodegradable PHBV Microparticles [J]. J Control Release,1999,59:207-217.
    [63]Cheng S, Wu Q, Zhao Y, et al. Effect of Poly(hydroxybutyrate-co-hydroxyhexanoate) Microparticles on Growth of Murine Fibroblast L929 Cells [J]. Polymer Degradation and Stability,2006,91:3191-3196.
    [64]赵良启.白色污染防治与可降解塑料的开发[M].山西科学技术出版社,2002,110.
    [65]Miller K, Wang M, Gralow J, et al. Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer [J]. The New England Journal of Medicine,2007, 357:2666-2676.
    [66]Liu J, Jiang ZZ, Zhang SM, et al. Poly(ω-pentadecalactone-co-butylene-co-succinate) Nanoparticles as Biodegradable Carriers for Camptothecin Delivery [J]. Biomaterials, 2009,30:5707-5719.
    [67]Suzushima H, Wada N, Yamasaki H, et al. Low-dose Cytarabine and Aclarubicin in Combination with Granulocyte Colony-stimulating Factor for Elderly Patients with Previously Untreated Acute Myeloid Leukemia [J]. Leukemia Research,2010,34: 610-614.
    [68]Mukhopadhyay P, Rajesh M, Batkai S, et al. Role of superoxide, Nitric Oxide, and Peroxynitrite in Doxorubicin-induced Cell Death in vivo and in vitro [J]. Br J Pharmacol,2003,138:532-543.
    [69]Adamsom RH, Canellos GP, Sieber SM. Biological Metal Ligand Systems [J]. Cancer Chemo therapy,1975,59:599-623.
    [70]Kobayashi H, Komuro T, Furue H. Effect of Combination Immunochemotherapy with an Organogermanium Compound, Ge-132, and Antitumor Agents on C57BL/6 Mice bearing Lewis Lung Carcinoma (3LL) [J]. Gan To Kagaku Ryoho,1986,13: 2588-2593.
    [71]Brown NM. Tin-based antitumor drugs [M]. Springer-verlag press in Berlin,1990, 69.
    [72]孙丽芳,施中凯,胡晓丽.女贞子复方纳米中药制剂对盐酸林可霉素脱污染小鼠肠道微生态失调的调整作用[J].中药材,2009,32:257-259.
    [73]Souto EB, Muellet RH. Investigation of the Factors Influencing the Incorporation of Clotrimazole in SLN and NLC Prepared by Hot High-pressure Homogenization [J]. J Microencap,2006,23:377-388.
    [74]Hoa LTM, Chi NT, Triet NM, et al. Preparation of Drug Nanoparticles by Emulsion Evaporation Method [C]. Journal of Physics:Conference Series,2009,187:012047.
    [75]杨时成,朱家壁,梁秉文,等.喜树碱固体脂质纳米粒的研究[J].药学学报,1999,34:146-150.
    [76]Yegin BA, Benoit JP, Lamprecht A. Paclitaxel-loaded Lipid Nanoparticles Prepared by Solvent Injection or Ultrasound Emulsification [J]. Drug Development and Industrial Pharmacy,2006,32:1089-1094.
    [77]Lamprecht A, Ubrich N, Hombreiro PM, et al. Biodegradable Monodispersed Nanoparticles Prepared by Pressure Homogenization-emulsification [J]. Int J Pharm, 1999,184:97-105.
    [78]Legrand P, Lesieur S, Bochot A, et al. Influence of Polymer Behaviour in Organic Solution on the Production of Polylactide Nanoparticles by Nanoprecipitation [J]. Int J Pharm,2007,344:33-43.
    [79]田新华,林锦超,林晓宁,等.聚氰基丙烯酸正丁酯纳米粒载福莫司汀的制备工艺[J].中国临床药学杂志,2010,19:208-212.
    [80]Watnasirichaikul S, Davies NM, Rades T, et al. Preparation of Biodegradable Insulin Nanocupsules from Biocompatible Microemulsions [J]. Pharmaceutical Research, 2000,17:684-689.
    [81]陈娟,胡权,侯振清,等.离子诱导结合化学交联法制备壳聚糖纳米粒及其作为药物靶向缓释载体的初步研究[J].中国药学杂志,2010,45:1400-1403.
    [82]Lochmann A, Nitzsche H, Einem SV, et al. The Influence of Covalently Linked and Free Polyethylene glycol on the Structural and Release Properties of rhBMP-2 Loaded Microspheres [J]. Journal of Controlled Release,2010,147:92-100.
    [83]Yamazaki M. The Single Guv Method to Reveal Elementary Processes of Leakage of Internal Contents from Liposomes Induced by Antimicrobial Substances [J]. Advances in Planar Lipid Bilayers and Liposomes,2008,7:121-142.
    [84]Zhang CY, Zhang XY, Dai JB, et al. Synthesis and Properties of PDMS Modified Waterborne Polyurethane-acrylic Hybrid Emulsion by Solvent-free Method [J]. Progress in Organic Coatings,2008,63:238-244.
    [85]Brown LR, Bisker-leib V, Scott TL, et al. Delivery of As-oligonucleotide Microspheres to Induce Dendritic Cell Tolerance for the Treatment of Autoimmune Type 1 Diabetes [P]. United States Patent, Patent number:20100260855,2010.
    [86]Zhang Q, Li F, Zhuo RX, et al. Self-assembled Complexes with Dual-targeting Properties for Gene Delivery [J]. J Mater Chem,2011,21:4636-4643.
    [87]Li X, Zhou HY, Yang L, et al. Enhancement of Cell Recognition in vitro by Dual-ligand Cancer Targeting Gold Nanoparticles [J]. Biomaterials,2011,32: 2540-2545.
    [88]Morrisa VB, Sharma CP. Folate Mediated L-arginine Modified Oligo(alkylaminosiloxane) Graft Poly(ethyleneimine) for Tumor Targeted Gene Delivery [J]. Biomaterials,2011,32:3030-3041.
    [89]国家药典委员会.中华人民共和国药典[M].化学工业出版社,2005,109.
    [90]Gabizon A, Shmeeda H, Horowitz AT, et al. Tumor Cell Targeting of Liposome-entrapped Drugs with Phospholipid-anchored Folic acid-PEG Conjugates [J].Advanced Drug Delivery Reviews,2004,56:1177-1192.
    [91]Mansouri S, Cuie Y, Winnik F, et al. Characterization of Folate-chitosan-DNA Nanoparticles for Gene Therapy [J]. Biomaterials,2006,27:2060-2065.
    [92]郭圣荣.药用高分子材料[M].人民卫生出版社,2009,417.
    [93]Lee RJ, Low PS. Folate-mediated Tumor Cell Targeting of Liposome-entrapped Doxorubicin in vitro [J]. Biochimica et Biophysica Acta,1995,1233:134-144.
    [94]Zhao HZ, Yung LYL. Selectivity of Folate Conjugated Polymer Micelles Against Different Tumor Cells [J]. Int J Pharm,2008,349:256-268.
    [95]Turk MJ. Folate-targeted Liposomal Drug Delivery:Applications from Cancer to Arthritis [D]. Philosophy Doctor' Thesis of Purdue University,2001.
    [96]邢新苗,刘自镕,任建平.一种简单实用的谷氨酸浓度测定法[J].微生物学杂志,2004,24:62-63.
    [97]Kaiser E, Colescott RL, Bossinger CD, et al. Color Test for Detection of Free Terminal Amino Groups in the Solid-phase Synthesis of Peptides [J]. Anal Biochem, 1970,34:595-598.
    [98]Chertok B, David AE, Yang VC. Polyethyleneimine-modified Iron Oxide Nanoparticles for Brain Tumor Drug Delivery Using Magnetic Targeting and Intra-carotid Administration [J]. Biomaterials,2010,31:6317-6324.
    [99]Sheng Y, Liu CS, Yuan Y, et al. Long-circulating Polymeric Nanoparticles Bearing a Combinatorial Coating of PEG and Water-soluble Chitosan [J]. Biomaterials,2009,30: 2340-2348.
    [100]Cun DM, Foged C, Yang MS, et al. Preparation and Characterization of Poly(DL-lactide-co-glycolide) Nanoparticles for siRNA Delivery [J]. International Journal of Pharmaceutics,2009, doi:10.1016/j.ijpharm.2009.10.023.
    [101]吴青,朱照静.10-羟基喜树碱乳酸-羟基乙酸共聚物超声微泡制备及工艺优化[J].第三军医大学学报,2009,31:1349-1352.
    [102]徐强,董明敏,庄银凤,等.褪黑素纳米粒的制备工艺研究[J].中国药科大学学报,2005,36:129-133.
    [103]Shah PN, Manthe RL, Lopina ST, et al. Electrospinning of L-tyrosine Polyurethanes for Potential Biomedical Applications [J]. Polymer,2009,50:2281-2289.
    [104]Agarwal S, Wendorff JH, Greiner A. Use of Electrospinning Technique for Biomedical Applications [J]. Polymer,2008,49:5603-5621.
    [105]李梅,韩高义,赵良启,等.利用静电纺丝法制备载药聚羟基丁酸酯电纺纤维毡[J].中国药学杂志,2009,44:440-443.
    [106]Liu YT, Li K, Pan J, et al. Folic Acid Conjugated Nanoparticles of Mixed Lipid Monolayer Shell and Biodegradable Polymer Core for Targeted Delivery of Docetaxel [J]. Biomaterials,2010,31:330-338.
    [107]Xiang GY, Wu J, Lu YH, et al. Synthesis and Evaluation of A Novel Ligand for Folate-mediated Targeting Liposomes [J]. Int J Pharm,2008,356:29-36.
    [108]Fisichella M, Dabboue H, Bhattacharyya S, et al. Mesoporous Silica Nanoparticles Enhance MTT Formazan Exocytosis in HeLa Cells and Astrocytes [J]. Toxicology in Vitro,2009,23:697-703.
    [109]Cuong NV, Chen CH, Chen YT. Preparation of Nanoparticle of Methoxy Poly(ethylene glycol)/poly(ε-caprolactone)/methoxy Poly(ethylene glycol) Triblock Copolymer for Drug Delivery Applications [C].7th Asian-Pacific Conference on Medical and Biological Engineering IFMBE Proceedings,2008,19(Part 6):190-193.
    [110]Oyewumi MO, Mumper RJ. Influence of Formulation Parameters on Gadolinium Entrapment and Tumor Cell Uptake Using Folate-coated Nanoparticles [J]. International Journal of Pharmaceutics,2003,251:85-97.
    [111]Steenis JH, Maarseveen EM, Verbaan FJ, et al. Preparation and Characterization of Folate-targeted PEG-coated pDMAEMA-based Polyplexes [J]. Journal of Controlled Release,2003,87:167-176.
    [112]Zhang YH, Guo LL, Roeske RW, et al. Pteroyl-y-glutamate-cysteine Synthesis and its Application in Folate Receptor-mediated Cancer Cell Targeting using Folate-tethered Liposomes [J]. Analytical Biochemistry,2004,332:168-177.
    [113]董岳峰,谢红,郭羽,等.新型支架材料羟基丁酸与羟基辛酸共聚体的生物相容性[J].中国组织工程研究与临床康复,2008,12:1870-1872.
    [114]Anderson RG. Potocytosis:Sequestration and Transport of Small Molecules by Caveolae [J]. Science,1992,255:410-411.
    [115]Lu T, Sun J, Chen X, et al. Folate-conjugated Micelles and their Folate-receptor-mediated Endocytosis [J]. Macromol Biosci,2009,9:1059-1068.
    [116]Zhao HZ, Yung LYL. Selectivity of Folate Conjugated Polymer Micelles against Different Tumor Cells [J]. Int J Pharm,2008,349:256-268.
    [117]Kerr JFR, Wyllie AH, Currie AR. Apoptosis:A Basic Biological Phenomenon with Wide Ranging Implications in Tissue Kinetics [J]. Br J Cancer,1972,26:239-257.
    [118]吕万良,齐宪荣,孙华东,等.阿霉素隐形脂质体的研制及其在小鼠体内的组织分布[J].中国药学杂志,1999,34:310-312.
    [119]Badea I, Lazar L, Moja D, et al. A HPLC Method for the Simultaneous Determination of Seven Anthracyclines [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,39:305-309.
    [120]童珊珊,王旭波,沈玉萍,等.放射示踪法研究半乳糖化阿霉素白蛋白纳米粒在小鼠体内的分布[J].药物分析杂志,2010,30:77-81.
    [121]Oh I, Lee K, Kwon HY, et al. Release of Adriamycin from Poly(y-benzyl-L-glutamate)/poly(ethylene oxide) Nanoparticles [J]. International Journal of Pharmaceutics,1999,181:107-115.
    [122]Hu FQ, Liu LN, Du YZ, et al. Synthesis and Antitumor Activity of Doxorubicin Conjugated Stearic Acid-g-chitosan Oligosaccharide Polymeric Micelles [J]. Biomaterials,2009,30:6955-6963.
    [123]张晓茗.宫颈癌Hela细胞裸鼠移植瘤模型的建立及大蒜素对移植瘤的影响[D],河北医科大学硕士学位论文,2005.
    [124]王可可.MG132联合顺铂对人宫颈癌Hela细胞裸鼠移植瘤和细胞内p65表达的影响[D],中南大学硕士学位论文,2008.
    [125]Wu XH, Li ZH, Wang HM, et al. Inhibition of Lung Cancer by Transfer of p53 Gene using Tie2-mediated Gene Delivery System [J]. Tumor,2007,27:256-259.
    [126]Tsai BY, Lin YL, Chiang BL. Autoimmune Response Induced by Dendritic Cells Exerts Anti-tumor Effect in Murine Model of Leukemia [J]. Journal of Autoimmunity, 2010,34:364-370.
    [127]Yuan F, Qin X, Zhou D, et al. In vitro Cytotoxicity, in vivo Biodistribution and Antitumor Activity of HPMA Copolymer-5-fluorouracil Conjugates [J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,70:770-776.
    [128]Janes KA, Fresneau MP, Marazuela A, et al. Chitosan Nanoparticles as Delivery Systems for Doxorubicin [J]. J Control Release,2001,73:255-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700