5-氟尿嘧啶磁性固体脂质纳米粒的制备及其药效学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁靶向药物能有效减小化疗药物的毒副作用,提高药效,在治疗恶性肿瘤方面前景广阔。本文综述了磁靶向给药系统的研究进展,采用化学共沉淀法制备磁性纳米Fe3O4,复乳-溶剂挥发法制备5-氟尿嘧啶磁性固体脂质纳米粒(5-FU-MSLN),研究了5-FU-MSLN对H22肝癌实体瘤的抑瘤作用,期望5-FU浓集于肿瘤靶组织,定位释放,减少不良反应,提高药物的治疗效果。
     1、磁性纳米Fe3O4的制备研究
     以FeCl3·6H2O、FeSO4·7H2O、氨水为原料,用化学共沉淀法制备磁性纳米Fe3O4。采用单因素实验,研究了制备条件(pH值、反应温度、铁盐浓度、Fe3+/Fe2+、陈化时间)对磁性纳米Fe3O4粒径、磁响应性、颜色的影响;在此基础上采用正交设计对制备工艺进行了优化。得到较为理想的工艺条件为:反应过程中保持pH值在9~10之间,Fe3+浓度为0.2mol/L, Fe3+/Fe2+为1.25:1,表面活性剂为SDS,机械搅拌速率为1000r/min,反应温度为65℃,机械搅拌后超声分散30min,并在此温度下保温陈化3h。在此条件下制备的磁性纳米Fe304呈黑色,粒径为15.72nm,在强度为1000Gauss的磁场下磁响应时间为48.67s。采用化学分析方法对产物的组成进行了检测,结果表明其中铁和亚铁的比例为1.96:1,略小于2。通过SEM、XRD对制备的磁性纳米Fe304形貌和结构进行表征,磁性纳米Fe3O4呈球形,XRD图谱与Fe3O4标准衍射图谱一致。
     2、5-氟尿嘧啶磁性固体脂质纳米粒的制备研究
     为提高5-氟尿嘧啶(5-FU)制剂的疗效,降低毒副作用,以单硬脂酸甘油酯为载体,氢化大豆卵磷脂、泊洛沙姆为乳化剂,磁性纳米Fe3O4为磁体,采用复乳-溶剂挥发法制备5-FU-MSLN.通过单因素实验,考察了各因素对粒径、Zeta电位、包封率的影响,初步确定了制备工艺。在单因素实验基础上,以包封率为考察指标,通过正交设计对制备工艺进行优化,得到较佳的制备条件为:单硬脂酸甘油酯含量为4.0%,药脂比为1/10,类脂比为1/10,磁性纳米Fe3O4用量为0.1%,乳化温度为55℃,乳化时间为1h,初乳400W超声分散30s,终乳200W超声分散60s。所制备的5-FU-MSLN粒径为81.49nm,PDI为0.151,Zeta电位为-25.28mV,包封率为58.35%。用透射电镜观察,5-FU-MSLN外观形态圆整,粒径分布均匀,在倒置的显微镜下观察,其体外磁响应性良好。5-FU-MSLN具有一定的稳定性,是有希望的静脉给药靶向制剂。
     3、5-FU-MSLN对H22肝癌实体瘤小鼠的抑瘤作用研究
     观察5-FU-MSLN对小鼠H22肝癌实体瘤的抑瘤作用。昆明种小鼠H22肝癌实体瘤模型建立后,随机分为5组,每组10只,分别为生理盐水对照组,空白磁性固体脂质纳米粒组,5-FU溶液组,5-FU-MSLN组(不加磁场),5-FU-MSLN组(加磁场)。尾静脉给药,连续7天。给药期间,每天观察各组小鼠生活状态,隔天测量各组小鼠的体重和瘤体积。给药结束后,颈椎脱臼处死各组小鼠,剥取瘤块,称重,计算抑瘤率。瘤块做常规切片进行病理检查,SP免疫组织化学染色法检测肿瘤的VEGF、Ki-67、MVD。5-FU-MSLN组(加磁场)与其他各组相比,肿瘤生长缓慢,瘤重、VEGF、Ki-67、MVD检测结果与各组相比都有显著性差异。结果表明,5-FU-MSLN组(加磁场)对肿瘤生长有显著抑制作用。
     用生物相容性好的磁性纳米Fe3O4为磁体制备的5-FU-MSLN工艺稳定,满足用药需求,荷瘤鼠体内的药物在外磁场的作用下能在肿瘤区定位释放,提高了疗效,有希望成为5-FU的新剂型。
Magnetic targeted drugs can effectively reduce the toxic effect of chemotherapy drugs to improve efficacy, which have demonstrated a very bright prospect in the treatment of malignant tumors. In this paper, the research and development of magnetic targeted drugs delivery system was reviewed; the preparation of Fe3O4 magnetic nanoparticles and 5-fluorouracil magnetic solid lipid nanoparticles was introduced and the inhibitory effect of 5-fluorouracil magnetic solid lipid nanoparticles on H22 liver cancer solid tumor was studied.5-fluorouracil was expected to concentrate in tumor target tissue, release positioning and reduce side effect.
     1、The preparation of Fe3O4 magnetic nanoparticles
     Chemical co-precipitation method was adopted to prepare Fe3O4 magnetic nanoparticles with FeCl3·6H2O, FeSO4·7H2O, ammonia as the raw materials. Single factor tests were designed to study the influence of preparation conditions (pH, reaction temperature, concentration of iron salt, Fe3+/Fe2+, aging time) on the size, magnetic response and colour of Fe3O4 magnetic nanoparticles. On this basis, an orthogonal test was used to optimize the preparation. The results indicated that the more ideal technical process was as follows:the mechanical stirring rate was 1000r/min for 30 min at 65℃maintaining pH value in the range of 9~10, the concentration of Fe3+ was 0.2mol/L, Fe3+/Fe2+ was 1.25:1, with SDS as surfactant. After 30min mechanical stirring and ultrasonic dispersion, the aging time was 3h at 65℃. Under these conditions, the magnetic Fe3O4 nanoparticle was black, particle size was 15.72nm and response time in the strength of the magnetic field for the 1000Gauss was 48.67s. The composition of the products was tested by chemical analysis to find that the proportion of Fe3+/Fe2+ was 1.96:1, which was slightly less than 2. The structure and particle size of Fe3O4 was characterized by means of XRD and SEM. The results showed that the Fe3O4 magnetic nanoparticles were spherical, whose XRD pattern was consistent with Fe3O4 standard diffraction pattern.
     2、The preparation of 5-fluorouracil magnetic solid lipid nanoparticles
     To improve the therapeutic efficacy and reduce the toxicity of 5-fluorouracil (5-FU),5-fluorouracil magnetic solid lipid nanoparticles (5-FU-MSLN) were prepared by a W/O/W double emulsion solvent evaporation technique, using monostearin as the carrier, hydrogenated soybean lecithin and poloxamer as emulsifier, magnetic Fe3O4 nanoparticles as magnets. Single factor tests were designed to study the influence of preparation on the size, Zeta potential, encapsulation efficiency of 5-FU-MSLN to set the initial preparation. Base on the single factor tests, with the index of encapsulation efficiency, the preparation process was optimized by orthogonal test. The best preparation condition was:the monostearin content was 4.0%, the ratio of drug to lipid ratio was 1/10, the hydrogenated soybean lecithin to monostearin was 1/10, the Fe3O4 magnetic nanoparticles dosage was 0.1%, emulsifying temperature was 55℃, emulsifying time was 1h, the ultrasound power of foremilk was 400W last 30s, the ultrasound power of final milk was 200W last 60s. The result showed that the average diameter in size, PDI, Zeta potential, drug encapsulation efficiency of 5-FU-MSLN were 81.49nm,0.151,-25.28mV,58.35%. TEM presented 5-FU-MSLN as spherical particles, evenly distributed; 5-FU-MSLN were observed under the inverted microscope, whose vitro magnetic responsiveness was good. Such magnetic solid lipid nanoparticles seem appropriate for vascular administration followed by drug targeting.
     3、The inhibitory effect of 5-FU-MSLN on H22 liver cancer tumor-bearing mice
     The aim was to evaluate the inhibitory effect of 5-FU-MSLN on the growth of H22 liver cancer solid tumor in mice. Fifty Kunming mice with H22 liver cancer solid tumor were divided into 5 groups evenly at random, namely, saline control group、blank magnetic solid lipid nanoparticles group、5-FU solution group、5-FU-MSLN group(without magnetic field) and 5-FU-MSLN group(plus magnetic field), which were received tail vein injection for seven days. The living condition of mice was observed everyday and the body weight and tumor volume were measured every other day. After the administration, the mice were killed in each group through cervical dislocation and the tour was stripped, weighed to calculate inhibition rate. The pathology of tumor was examined through conventional biopsy and the VEGF, Ki-67, MVD of tour were detected by SP immunohistochemical staining. 5-FU-MSLN group (plus magnetic field) was compared with other groups:the tumors grew slowly, tumor weight compared with the significant difference, VEGF, Ki-67, MVD detection and each group has a significantly compared to differences. The results show that 5-FU-MSLN (plus magnetic field) can significantly inhibit tumor growth.
     5-FU-MSLN was prepared with Fe3O4 magnetic nanoparticles which had good biocompatibility for the magnets, whose process was stable, meeting the needs for drugs. The drug in tumor-bearing mice under the influence of external magnetic field can locate and release, whose efficacy was improved. The results showed that 5-FU-MSLN was prospective for a new formulation.
引文
[1]李明亚,奇西伟,刘宣文,等.制备纳米Fe3O4磁性粉体的研究进展[J].金属热处理,2007,32(12):26~29
    [2]Hironori I, Kosuke T, Takuya N, et al. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis [J]. Journal of Colloid and Interface Science,2007(314):274~280
    [3]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,2002:329~331
    [4]Fenga S S, Ruanb G, Lic Q T. Fabrication and characterizations of a novel drug delivery device liposomes in microsphere(LIM)[J]. Biomaterials,2004 (25):5181~5189
    [5]沈正荣,朱家蕙,张伟军,等.5-FU/PLGA微球的制备[J].现代应用药学,1993,10(6):14~18
    [6]Omotosho J A, Florence A T, Whateley T L. Absorption and lymphatic uptake of 5-fluorouracil in the rat following oral administration of w/o/w multiple emulsions[J]. International Journal of Pharmaceyties,1990,61(1):51~56
    [7]刘鑫.5-氟尿嘧啶磁性脂质体纳米粒在肝癌动物模型中的靶向性及药动学研究[D].[博士学位论文].长沙:中南大学,2006
    [8]Mao S R, Wang P, BiDZ. Investigations on 5-fluorouracil solid lipid nanoparticles(SLN) prepared by hot homogenization[J]. Pharmazie,2005,60(4):273~277
    [9]Chan H T, Do Y Y, Huang P L, et al. Preparation and properties of bio-compatible Magnetic Fe3O4 nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2006 (304):415~ 417
    [10]王平康,袁青禄,刘岐山,等.磁性抗癌药物载体研制[J].中国医院药学杂志,1990,10(1):2~4
    [11]刘毅敏,赵先英,杨旭.基于磁性纳米材料的肿瘤治疗研究[J].材料导报,2007,21(5):14~15
    [12]Beata C, Bradford A M, Allan E D, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors [J]. Biomaterials,2008 (29):487~496.
    [13]Widder K, Flouret G, Senyei A. Magnetic microspheres:Synthesis of a novel parenteral drug carrier [J]. J Pharm Sci,1979,68(1):79~82
    [14]任杰,王佐,滕新荣,等.磁性药物微球制备的研究进展[J].材料导报,2006,20(4):25~29
    [15]慕容.载阿霉素磁性壳聚糖毫微球靶向治疗大鼠移植性肝癌的研究[D].[硕士学位论文].西安:西北大学,2005
    [16]Goya, Cerardo F. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling[J]. Solid State Commun,2004,130 (12):783~785
    [17]H O Pierson. Hand book of Chemical Vapor Deposition:Principles, Technology, and Applications [M]. Virginia:William Andrew Inc,1999:48-51
    [18]A Tavakoli, M Sohrabi, A Kargari. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds[J]. Chemical Papers,2007,61(3):151~170
    [19]W Chang, G Skandan, S C Danforth, et al. Chemical vapor processing and applications for nanostructured ceramic powders and whiskers [J]. Nanostructured Materials,1994, 4(5):507~520
    [20]P Tartaj, M D Morales, S Veintemillas-Verdaguer, et al. The preparation of magnetic nanoparticles for applications in biomedicine[J]. Journal of Physics D:Applied Physics, 2003,36 (13):182~197
    [21]P Majewski, B Thierry. Functionalized Magnetite Nanoparticles-Synthesis, Properties, and Bio-Applications[J]. Critical Reviews in Solid State and Material Sciences,2007, 32(3-4):203~215
    [22]T Sugimoto, E Matijevic. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels[J]. Journal of Colloid and Interface Science, 1980,74(1):227~243
    [23]S E Khalafalla, G W Reimers. Preparation of dilution-stable aqueous magnetic fluids[J]. IEEE Transactions on Magnetics,1980,16(2):178~183
    [24]A Wooding, M Kilner, D B Lambrick. Studies of the double surfactant layer stabilization of water-based magnetic fluids [J]. Journal of Colloid and Interface Science,1991,144(1): 236~242
    [25]何秋星,杨华,刘素琴,等.转相法制备高比表面积纳米Fe3O4磁性粉体[J].精细化工,2003,20(5):257~260
    [26]U T Lam, R Mammucari, K Suzuki, et al. Processing of Iron Oxide Nanoparticles by Supercritical Fluids [J]. Industrial & Engineering Chemistry Research,2008,47 (3):599~ 614
    [27]C Xu. Continuous and batch hydrothermal synthesis of metal oxide nanoparticles and metal oxide-activated Carbon nanocomposites, PhD thesis,Georgia Institute of Technolog, GA, 2006
    [28]T Adschiri, K Kanazawa, K Arai. Rapid and Continuous Hydrothermal Crystallization of Metal Oxide Particles in Supercritical Water[J]. Journal of the American Ceramic Society,1992,75 (4):1019~1022
    [29]E Lester, P Blood, J Denyer, et al. Reaction engineering:The supercritical water hydrothermal synthesis of nano-particles[J]. Journal of Super critical Fluids,2006,37(2): 209~214
    [30]Sun S H, Zeng H. Size-controlled synthesis of magnetite nanoparticies[J]. Journal of the American Chemical Society,2002(124):8204~8205
    [31]周平红,姚礼庆,秦新裕,等.磁性阿霉素纳米脂质体的研制及其磁靶向定位研究[J].中华实验外科杂质,2004,4(21):492~495
    [32]付京,包国强,王化宁,等.磁性热敏阿霉素脂质体聚集及释药特性的体外观察[J].吉林大学学报,2007,33(1):71~74
    [33]霍宗利,朱林,肖莹,等.甲氨蝶呤热敏磁靶向脂质体的制备和靶向性研究[J].海峡药学,2008,21(7):14~17
    [34]吴传斌,魏树礼.磁性靶向释药系统研究进展[J].天津药学,1992,4(2):1~4
    [35]Seyei A, Widder K, Czerlinski G. Magnetic guidance of drug carrying microspheres[J]. J Appl Phys,1978,49(12):3578~3581
    [36]陈骐,李潮武.抗癌药物新剂型5-FU磁性微球载体的研究[J].沈阳药学院学报,1982,15(3):27~33
    [37]Ghassabian S, Ehtezazi T, Forutan S M, et al. Dexamethasone-loaded magnetic albumin microsphere:preparation and in vitro release[J]. Inter J Pharm,1996,130 (1):49~ 55
    [38]朱瀛,陆伟根,邹凌燕,等.丝裂霉素C磁性纳米粒Ⅰ.制备和质量评价[J].中国医药工业杂志,2006,37(3):168~171
    [39]徐敏,姜丽丽.免疫磁性制剂的研究[J].药学进展,1999,23(1):23~26
    [40]康继超,沙木屯布卡,谢蜀生,等.用免疫磁性微球从骨髓中分离癌细胞[J].药学学报,1998,33(1):52~54
    [41]王风秀,胡建国.磁性制剂等药物新剂型研究的进展[J].中国药业,2004,13(10):17~18
    [42]Tobias N, Bernhard S, Heinrich H, et al. Superparamagnetic nanoparticles for biomedical applications:Possibilities and limitations of a new drugdelivery system [J]. Journal of Magnetism and Magnetic Materials,2005,293,483~496
    [43]Subbiah, Palanisamy S, Chelladurai S K, et al. Formulation development and evaluation of metronidazole magnetic nanosuspension as a magnetic-targeted and polymeric-controlled drug delivery system [J]. Journal of Magnetism and Magnetic Materials,2009,321 (10): 1580~1585
    [44]石可瑜,李朝兴,何炳林.磁导向多柔比星-羧甲基葡聚糖磁性纳米粒的研究[J].生物医学工程学杂志,2000,17(1):21~24
    [45]吴远,叶红军,王家龙,等.丝裂霉素-聚碳酸酯磁性微球的制备及靶向治疗原发性肝癌的实验研究[J].华夏医学,2001,14(1):1~3
    [46]Kubo T, Sugita T, Scimose S, et al. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters[J]. Int J Oncol,2000, 17(2):309~315
    [47]平其能.现代药剂学[M].北京:中国医药科技出版社,1998.665~666
    [48]Gruttner C, Rudershausen S, Teller J. Improved properties of magnetic particles by combination of different polymer materials as particle matrix[J]. J Magn Mater,2001, 225(1):1~7
    [49]辛胜昌,李忠彦,吴新荣.磁性靶向药物的研究进展[J].医药导报,2006,25(7):680~682
    [50]张阳德,吴泽建,龚连生,等.外加磁场对半乳糖化清蛋白磁性多柔比星纳米粒在大鼠体内分布的影响的研究[J].纳米生物技术,2004,12(4):8~10
    [51]Browning L M, Lee K J, Huang T, et al. Random walk of single gold particles in zebrafish embryos leading to stochastic toxic effects on embryonic development [J]. Nanoscale,2009 (1):138~152
    [52]Ferrari M. The mathematical engines of nanomedicine[J]. Small,2008 (4):20~25
    [53]Pakatip R, Janice M C, Alexander T F. Nanosystem drug targeting:Facing up to complex realities[J]. Journal of Controlled Release,2010(141):265~276
    [54]邹海平,邱祖民,高长华,等.沉淀法制备纳米氧化铁的研究进展[J].无机盐工业,2007,39(4):12~14
    [55]李贵平,汪勇先.磁性纳米微粒的制备及其在磁靶向药物运转中的应用[J].核技术,2006,29(9):685~689
    [56]周小丽.磁性氧化铁纳米微粒的水热合成及其表面修饰[D].[硕士学位论文].合肥:安徽大学,2007
    [57]崔升,沈晓冬,林本兰.四氧化三铁纳米粉的制备方法及应用[J].无机盐工业,2005,37(2):4~6
    [58]Amyn S T, Pei Y K. Synthesis, properties, and applications of magnetic Iron oxide nanoparticles[J]. Crystal Growth and Characterization of Materials,2008:1~24
    [59]李享,杨海滨.纳米Fe3O4磁性颗粒的制备进展[J].材料导报,2006,20(6):145~148
    [60]Rodrigo F C M, Cecile G, Pierre L, et al. Electro-precipitation of Fe3O4 nanoparticles in ethanol [J]. Journal of Magnetism and Magnetic Materials,2008(320):2311~2315
    [61]Yuksel K. Effect of surfactant coating on magnetic properties of Fe3O4 nanoparticles:ESR study[J]. Journal of Magnetism and Magnetic Materials,2006 (300):327~330
    [62]Taegyun K, Lynn R, Krishna R, et al. Magnetic behavior of iron oxide nanoparticle-biomolecule assembly [J]. Journal of Magnetism and Magnetic Materials, 2005 (295):132~138
    [63]Omid V, Jonathan W G, Zhang M Q. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging[J]. Advanced Drug Delivery Review,2010,62(3): 284~304
    [64]任欢鱼,刘勇健,庄虹.醇-水共热法制备Fe3O4磁流体—一种制备Fe3O4磁流体得新方法[J].苏州科技学院学报,2003,20(1):13~16
    [65]Huang Z B, Tang F Q. Preparation, structure, and magnetic pro perties of polystyrenecoated by Fe3O4 nanoparticles[J]. Journal of Colloid and Interface Science,2004 (275):142~147
    [66]何运兵.磁性靶向药物载体Fe3O4的制备及性能研究[D].[硕士学位论文].南昌:南昌大学,2006
    [67]程芳婷,罗细珍,孙立忠.常用铁离子含量分析方法探讨[J].工业水处理,2007,27(1):61~63
    [68]Jain S K, Chaurasiya A, Gupta Y, et al. Development and characterizion of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting [J]. J Microencapsul,2008, 25(5):289~297
    [69]Jose L A, Visitacion G, Ruiz M A, et al. Magnetite poly-(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting[J]. Eur J Pharm Biopharm,2008(69):54~63
    [70]李航,袁华,仲谦,等.5-氟尿嘧啶载药微球的制备及性能研究[J].功能材料,2007,2(38):298~301
    [71]毛世瑞,王燕芝,纪宏宇,等.微乳化技术制备固体脂质纳米粒[J].药学学报,2003,38(8):624~626
    [72]Nicol N, Chantal S, Christian G, et al. Polylactide microparticles prepared by double emulsion/evaporation technique. I. effect of primary emulsion stability [J]. Pharm Res, 1994,11(10):1479~1484
    [73]Fan T M, Guang H M, Wei Q, et al. W/O/W double emulsion technique using ethyl acetate as organic solvent:effects of its diffusion rate on the characteristics of microparticles [J]. J Controlled Release,2003(97):407~416
    [74]王馨,黄华.醋酸泼尼松龙固体脂质纳米粒的试制[J].中国医药工业杂志,2007,38(7):499~501
    [75]倪倩,吴海燕,凌飒,等.咪喹莫特固体脂质纳米粒包封率的测定[J].中国药师,2006,9(7):599~602
    [76]张景勃,张志荣,谭群友,等.紫杉素磁靶向脂质体的研制及其抗肿瘤作用的研究[J].中国医院药学杂志,2002,22(9):523~525
    [77]姜福全,王强,蔡清萍,等.5-氟尿嘧啶腹腔内缓释化疗对H22腹水瘤小鼠的抑瘤疗效观察[J].第二军医大学学报,2006,27(11):1207~1209
    [78]Wong H L, Reina B, Andrew M R, et al. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles[J]. Adv Drug Delivery Rev,2007,59:491~504
    [79]徐淑云,卞如濂,陈修.药理实验方法学[M].第三版.北京:人民卫生出版社,2002:1757~1759
    [80]邵国光,张曙东,田荣阁,等.均强磁场对S180实体瘤及带瘤小白鼠影响的实验研究[J].白求恩医科大学学报,1992,18(2):145~146
    [81]Sun J B, Duan J H, Dai S L, et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes(DBMs) on H22 cells:The magnetic bio-nanoparticles as drug carriers[J]. Cancer Letters,2007, (258)109~117
    [82]Zhai Y, Xie H, Gu H C. Effects of hyperthermia with dextran magnetic fluid on the growth of grafted H22 tumor in mice[J]. Int. J. Hyperthermia,2009,25(1):65~71
    [83]Gerdes J, Scwab U, Lemke H, et al. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation [J]. Int J Cancer,1983, 31(1):13~20
    [84]Pizem J, Marolt V F, Luzar B, et al. Proliferative and apoptotic activity in hepatocellular carcinoma and surrounding non-neoplastic liver tissue[J]. Pflugers Arch,2001,442:174~ 176
    [85]刘军,彭志海,裘国强.肝细胞癌和肝硬化组织中增殖细胞核抗原及Ki-67抗原的表达及意义[J].山东医药,2003,43(12):3~4
    [86]符炜,穆毅,路逵阳.Ki-67和凋亡细胞在肝癌中的表达及其临床意义[J].徐州医学院学报,2004,24(3):227~22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700