苦参碱白蛋白亚微粒给药系统的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苦参碱系从豆科植物苦参、苦豆子及广豆根中分离出来的生物碱,具有抗病毒、抗肝纤维化、抗肿瘤、免疫调节、抗过敏、抗心律失常及消肿利尿等多种药理作用,被广泛应用于临床,抗炎、保肝利胆及免疫抑制的作用成为其治疗急慢性肝炎的药理学基础。
     本课题采用现代靶向制剂技术,以苦参碱(matrine,MAT)为模型药物,以安全无毒、无免疫原性、可生物降解、生物相容性好的牛血清白蛋白(bovineserum albumin,BSA)为载体材料,采用去溶剂化—交联法制备苦参碱白蛋白亚微粒(matrine-loaded albumin nanoparticles,MAT-BSA-NP)。实验以包封率为主要考察指标,通过均匀设计法对处方工艺进行了优化,确定最佳处方工艺,并系统的研究了MAT-BSA-NP冻干粉针剂的制备处方和工艺,考察了制剂的体外释放特点以及体内分布和药动学特征。以期通过肝脏靶向分布达到提高MAT治疗肝炎的效果,降低其毒副作用的目的。
     通过均匀设计优化的最佳处方工艺为戊二醛/BSA=2.73μg·mg~(-1),MAT=9.1mg,BSA浓度=2.35%,交联时间=2.4h,转速=700 r·min~(-1),和静置时间=1.5h。优化工艺操作简单,所制备的MAT-BSA-NP包封率稳定,平均包封率(84.25±0.95)%,载药量为(6.06±0.08)%,成球率为(87.47±0.74)%。透射电镜下观察所得纳米粒为类球形实体,表面光滑不粘连,粒径分布的范围较窄,平均粒径为(323.7±12.5)nnl,Zeta电位为(-16.92±0.39)mV。
     以外观、色泽、再分散性为评价指标,将MAT-BSA-NP胶体混悬液制成冻干粉针剂,确定其冻干工艺为:以5%甘露醇作为支架剂,置-80℃的超低温冰箱中冷冻24h,冷冻干燥机中36h。质量评价结果表明冻干过程未影响MAT-BSA-NP的稳定性。对冻干品的DSC和X-射线衍射分析结果表明,制成亚微粒后药物已被载体包裹或吸附,不再是单纯的混合,药物不再以晶体结构存在,即MAT-BSA-NP中形成了新的物相。以MAT-BSA-NP的粒径及分布、包封率和载药量等为指标,评价了MAT-BSA-NP冻干针剂的初步稳定性,结果显示其在3-5℃,20-25℃条件下放置3个月,物理化学稳定性良好。用离心超滤法对MAT-BSA-NP冻干粉针剂的体外释药特性进行了研究,结果表明MAT-BSA-NP的体外释药具有缓释制剂特征,可用双指数方程拟合,方程为100-Q=0.476e~(-0.351t)+0.3253e~(-0.0322t),r_α=0.9985,r_β=0.9987
     本文以MAT溶液为对照组,研究了MAT-BSA-NP冻干粉针剂在小鼠体内的组织分布情况,并选用多种指标评价了该冻干针剂的体内靶向性。结果表明:将MAT制成MAT-BSA-NP后,可明显提高其在肝和脾组织中的浓度分布,肝脾组织中同一时间点的药物浓度均明显高于其普通溶液剂型。同时,MAT-BSA-NP可明显延长药物的作用时间,从而有助于药物疗效的提高,具有重要的临床意义。
     血药浓度数据表明,将MAT制成MAT-BSA-NP后,血药浓度更平稳,利用DAS 2.0版实用药代动力学程序对血药浓度数据进行曲线拟合,选择最佳房室模型,并计算主要药物动力学参数。结果表明,MAT溶液和MAT-BSA-NP冻干粉针剂在小鼠体内药物动力学过程可用开放式二室模型来描述。静脉注射MAT溶液后,小鼠体内药物动力学方程为:C=8.096e~(-2.23t)+2.371e~(-0.449t),分布、消除半衰期及平均滞留时间MRT均很短,分别为T_(1/2α)=0.311h,T_(1/2β)=1.543h,MRT_(0~∞)=1.216h,清除率CLz=4.264 L/h/kg,AUC为9.38 h·μg·ml~(-1),而静脉注射MAT-BSA-NP冻干粉针剂后,小鼠体内药物动力学有明显改变,其药物动力学方程为:C=4.675e~(0.932t)+0.722e~(-0.07t),T_(1/2α)、T_(1/2β)、及MRT均显著延长,分别为T_(1/2α)=0.744h,T_(1/2β)=9.866h,MRT_(0~∞)=9.373h,清除率降低,CLz=2.405 L/h/kg,AUC则增至16.632 h·μg·ml~(-1)。由分析结果可知,MAT-BSA-NP能够显著延长MAT在小鼠体内的消除半衰期和体内滞留时间,AUC显著增高,清除率明显降低,说明将MAT制成MAT-BSA-NP后,有助于提高药物的生物利用度,并发挥长效作用。
     以苦参碱为模型药物制备肝靶向白蛋白亚微粒的研究目前国内外尚未见报道,本文的研究成果丰富了肝靶向给药系统的研究内容,而且将为探讨和总结苦参碱肝靶向给药系统提供有较高学术价值的参考和借鉴,为乙型肝炎治疗探索一种新的思路和治疗手段。
Matrine(MAT) ,a kind of alkaloid extracted from the well known Chinese herb Sophora Flavescens Ait S.Q lopecuroioles L and S. snbprostrata chun at T. Chon, which has many pharmacologic actions such as anti-virus,anti-hepatic fibrosis, anti-tumor, immunological regulation and so on,and it has been used in the treatment of acute / chronic hepatitis extensively.
    As carrier material,bovine serum albumin(BSA) may be very promising because of their biodegradability, lack of toxicity and antigenicity, stability, shelf life, controllable drug-release properties. Therefore, we chose MAT as the model drug and BSA as the drug carrier, and prepared matrine-loaded albumin nanoparticles (MAT-BSA-NP) by a coacervation method and chemical cross-linking with glutaraldehyde in our investigation. The formula and technology for preparing MAT-BSA-NP colloidal solution were optimized by the uniform design method, with the entrapment efficiency as the criterion, and its freeze-dried sample for injection was also systematically studied. The release kinetics in vitro ,characteristics of distribution and Pharmacokinetics in vivo were examined. MAT-BSA-NP were expected to reach the aim of enhancing its therapeutic efficacy of hepatitis through hepatic targeting and decreasing its side effects.
    The optimized parameters were as follows: the glutaraldehyde -BSA ratio was 2.73μg·mg~(-1) , the MAT was 9.1mg,the concentration of BSA in water was 2.35%, the cross-linking time was 2.4h, the stirring rate was 700 r·min~(-1),and the standing time was 1.5h. The entrapment efficiency ,actual drug loading and yield of the nanoparticles were (84.25±0.95)%, (6.06±0.08)% and (87.47±0.74) %, respectively. Through the observation of transmission electron microscope, we found that the nanoparticles we prepared were sphere-like and regular. The size distribution of the nanoparticles was narrow, with the average particle diameter of( 323.7 ±12.5 )nm.The Zeta potential was (-16.92±0.39) mV.
    The formula of freeze-dried MAT-BSA-NP for injection was established based on the criterious of its appearance,color and redispersibility. The final established freeze-dried method was as follows: the protective agent was manicol with the concentration of 5%, the force-freeze temperature was -80℃, the force-freeze time was 24 h, and the freeze-dried time was 36 h. The comparison between the nanoparticles before and after freeze-dried procedure showed that freeze-drying had little effects on the entrapment efficiency, drug-loading, the particle diameter and Zeta potential of the nanoparticles. It was demonstrated by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) that MAT existed in the form of amorphous in the nanoparticles. The initiatory stability research showed that the freeze-dried MAT-BSA-NP could be stored at 3-5 ℃ or 20-25 ℃ for 3 months.
    The in vitro release properties of the freeze-dried MAT-BSA-NP for injection was evaluated by ultrafiltration/centrifugation. The results showed that the drug release pattern was in accord with two phases kinetics equation,having sustained-release character: 100-Q=0.476e~(-0.351t)+0.3253e~(-0.0322t), r_α =0.9985, r_β=0.9987
    We utilized the HPLC method to determine and compare the content of MAT in different tissues of mice following the tail intravenous injection of MAT solution and freeze-dried MAT-BSA-NP for injection. The results showed that being packed in nanoparticles, the distribution of MAT in liver and spleen were all enhanced. Moreover, the mean retention time in these tissues was also prolonged. Therefore, MAT-BSA-NP were helpful for MAT to improve its therapertic efficiency and achieve a long-term effect. The results of pharmaceutics showed that, the encapsulation of MAT in MAT-BSA-NP was remarkably effective in prolonging its blood circulation time and possessing a stable blood drug level. Pharmacokinetic parameters and the best compartment method were obtained using the Practical Pharmacokinetic Program-DAS 2.0. The results showed that both preparations' Pharmacokinetics process were conformed to the two-compartment model. The pharmacokinetic equation of MAT solution and freeze-dried MAT-BSA-NP for injection were C=8.096e~(2.23t)+2.371e~(-0.449t) and C=4.675e~(-0.932t)+0.722e~(-0.07t), respectively. The major calculated parameters of the MAT solution group were as follows: T_(1/2α)=0.311h, T_(1/2β)=1.543h, MRT_(0-∞)=1.216h, CLz =4.264 L/h/kg , AUC=9.38h·μg·ml~(-1) , Meanwhile, the major calculated parameters of the freeze-dried MAT-BSA-NP group were as follows: T_(1/2α)=0.744h, T_(1/2β)=9.866h, MRT_(0-∞)=9.373h, CLz =2.405 L/h/kg, AUC =16.632 h·μg·ml~(-1) The results indicated that BSA nanoparticles could be a potential carrier for MAT to prolonged elimination half life and increased bioavailability.
    MAT-BSA-NP are novel targeting drug delivery system, which were prepared first time in this research. The results which not only offered reference and experience for hepatic targeting drug delivery system but also brought new ideas to design and develop a new type drug delivery system for hepatitis .
引文
[1] 林屹.慢性乙型病毒性肝炎的中医药治疗近况[J].安徽中医学院学报,2004,23(1):60-61
    [2] Zoulim F. Mechanism of viral persistence and resistance to nucleoside and nucleotide analogs in chronic hepatitis B virus infection[J]. Antiviral Res, 2004, 64 :1-15
    [3] 李旭.慢性乙型肝炎抗病毒治疗进展[J].实用肝脏病杂志,2005,8(2):113-116
    [4] Chander G, Sulkowski MS, Jenckes MW, et al. Treatment of chronic hepatitis C: a systematic review[J]. Hepatology, 2002, 36:S135-S144
    [5] Santos ND, Cox KA, McKenzie CA, et al. pH gradient loading of anthracyclines into cholesterol-free liposomes:enhancing drug loading rates through use of ethanol[J]. Biochim Biophys Acta, 2004, 1661:47-60
    [6] 罗明,贺平,吴孟超等.苦参碱和氧化苦参碱对二乙基亚硝胺诱发大鼠肝癌作用的影响[J].中国药理学通报,2000,16(4):416-417
    [7] 叶明.苦参碱注射液的药理研究[J].广东医学,1997,18(11):793-794
    [8] 司维柯,肖桃元,康格非.苦参碱对人肝癌细胞HepG2的细胞形态影响和相关增殖因素的变化[J].第三军医大学学报,2000,22(6):553-555
    [9] 丁劲行.苦参碱治疗慢性乙型肝炎的疗效观察[J].中华内科杂志,1990,29(11):648-650
    [10] 陈伟仲,张俊平,许青.苦参碱对大鼠实验性肝纤维化的影响[J].第二军医大学学报,1996,7(5):424-426
    [11] 张友祥,张佳发,刘龙民.苦参碱及其有效成分治疗病毒性肝炎作用机理的研究进展[J].上海中医药大学学报,2001,15(2):63-65
    [12] 周一萍.苦参碱注射液治疗慢性病毒性乙型肝炎临床疗效观察[J].广州医药,2000,31(2):62-63
    [13] 董培智,李波,钱之玉.苦参碱的体外抗乙型肝炎病毒作用[J].药物分析杂志,2005,25(3):331-335
    [14] 樊宏伟,卢继红,张蓉.苦参碱类生物碱的体外抑菌、抑病毒及诱生干扰素的实验研究[J].中医药信息,2000,(4):75-76
    [15] 刘梅,刘雪英,程建峰.苦参碱的药理研究进展[J].中国中药杂志,2003,28(9):801—804
    [16] 林文,张俊平,胡振林,等.苦参碱对细菌脂多糖诱导大鼠枯否细胞释放肿瘤坏死因子及白细胞介素-6的影响[J].药学学报,1997,32(2):93-96.
    [17] 张俊平,胡振林,林文,等.苦参碱对巨噬细胞释放肿瘤坏死因子及其蛋白激酶C活性的影响[J].第二军医大学学报,1995,16(6):513-514.
    [18] 梁萍,薄爱华,薛贵平,等.苦参碱抗免疫性肝损伤机制的研究[J].世界华人消化杂志,1999,7(2):104-108.
    [19] 刘涛,胡晋红,蔡溱.苦参碱抗肝纤维化机理的体外研究[J].解放军药学学报,2000,16(3):119-122.
    [20] 玄延花,曹春花,曹东铉,等.苦参碱对体外培养小鼠心肌细胞感染柯萨奇B_3病毒的影响[J].中国中医药科技,2000,7(2):90.
    [21] 裴仁九,肖玲,樊小平,等.苦参碱对小鼠免疫功能的影响[J].海峡药学,1998,10(2):7-8.
    [22] 刘瑞林,辛顺妹,王鲁萍,等.苦参碱的利胆作用与药代动力学的关系[J].中成药,1996,18(8):25-26.
    [23] 林洪生,,李树奇,裴迎霞,等.川芎嗪、苦参碱对癌细胞与内皮细胞粘附及粘附因子表达的影响[J].中国新药杂志,1999,8(6):384-386.
    [24] 张燕军,夏天,赵建斌.苦参碱对SMMC-7721细胞系的诱导分化作用[J].第四军医大学学报,1998,19(3):340-343.
    [25] 张百红,岳红云,李新民.苦参碱对胃腺癌细胞SGC-7901、Bcl-2表达的影响[J].中国肿瘤临床与康复,2000,7(3):34-35.
    [26] 张莉萍,蒋纪恺,张彦,等.苦参碱对K562细胞增殖与分化作用的机制研究[J].中华血液学杂志,1999,20(6):315-316.
    [27] 李旭芬,张苏展,郑树,等.苦参碱对K562及其多药耐药细胞K562/vin、K562/dox的诱导凋亡作用[J].实用癌症杂志,2000,15(6):566-568.
    [28] 齐亚娟,杨林,王树华,等.苦参碱抑制丙二醛生成及对阿霉素在小鼠 肝细胞内蓄积的影响[J].华北煤炭医学院学报,1999,1(3):187-188.
    [29] 龙尧,林小田,曾昆仑,等.苦参碱治疗慢性乙型肝炎的临床研究[J].中国自然医学杂志,2001,3(3):148—150.
    [30] 王勤环.慢性病毒性肝炎药物治疗新研究[J].医学研究通讯,2001,30(4):8—11.
    [31] 张耀华,张月圆,关慧敏.茵栀黄与苦参碱联合应用治疗重度黄疸型肝炎疗效观察[J].临床肝胆病杂志,2001,17(S:S):149.
    [32] 包乐群,彭义梅,袁宏银.羟基喜树碱与吗特灵肝动脉灌注预防肝癌复发的临床观察[J].肿瘤防治研究,2001,28(4):303—305.
    [33] 施林花,裘友好.苦参碱加化疗治疗中晚期恶性肿瘤的临床观察[J].肿瘤学杂志,2001,7(2):95—97.
    [34] 王学武.苦参碱栓剂的研制[J].中草药,1983,14(3):10-12.
    [35] 全红,王建明,程立华.苦参总碱贴片抗心律不剂的实验研究[J].中医药学报,2001,29(5)::46.
    [36] 魏红,李中文.苦参碱乳膏剂的动物药动学及生物利用度研究[J].中国药学杂志,2001,36(3):183—185.
    [37] 谈宣忠,章仲懿,李俊松.消瘤止痛巴布剂中苦参碱的体外透皮吸收实验[J].中成药,2000,22(11):760—761.
    [38] 王黎.肝靶向给药系统的研究[J].国外医学药学分册,2001,28(3):160-164
    [39] 袁东峰,易以木.肝靶向纳米粒的研究进展[J].医药导报,2003,22(2):113-114
    [40] 韩勇,易以木.纳米粒肝靶向作用机制的研究进展[J].中国药师,2002,5(12):751-752
    [41] 丁立,张钧寿.药物肝靶向研究的最新动态[J].中国新药杂志,1998,7(3):180-183
    [42] 李凤前,胡晋红.肝靶向给药系统研究的新进展[J].中国药学杂志,2002,37(5):321-325
    [43] 邓树海.现代药物制剂技术[M].北京:化学工业出版社,2007:199
    [44] 张强,武凤兰.药剂学[M].北京:北京大学医学出版社,2005:452-454.
    [45] Davis SS, Ilium L. Polymeric microspheres as drug carders[J]. Bio materials, 1988, 9(1): 111-115
    [46] Gibaud S, Demoy M, Andreux JP, et al. Cells involved in the capture of nanoparticles in hematopoietic organs[J]. J Pharm Sci, 1996, 85 (9): 944-950
    [47] Afee Me Jc, Subramanian G, Aburano T, et al. A new formation of Te-99m minimicroaggregated albumin for marrow imaging[J]. J Nucl Med, 1982, 23: 21-28
    [48] Couvreur P, Kante B, Roland M, et al. Polycyanoacrylate nanocapsules as potential lysosomotropic cartier: Preparation, morphology and sorptive properties[J], J Pharm Pharmcol, 1979, 31(5): 331-332
    [49] Smith A, Hunneyball IM. Evaluation of poly(laetic acid)as a biodegradable drug delivery system for parenteral administration[J]. Int J Pharm, 1986, 30:215-220
    [50] Muller RH, Mader K, Gohla S. Solid lipid nanoparticles(SLN) for controlled drug delivery-a review of the state of the art[J]. Eur J Pharm Biopharm, 2000, 50:161-177
    [51] 高春新.白蛋白的使用方法[J].现代中西医结合杂志,2004,13(7):918
    [52] 苏华,胡晋红,李风钱.白蛋白纳米粒的制备工艺及其靶向性研究进展[J].中国药学杂志,2005,40(9):641-644
    [53] Coombes A G, Breeze V, Lin W, et al. Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings[J] . Biomaterials, 2001, 22(1): 1-8.
    [54] Rhodes BA, Zolle I, Buchanan JW, et al. Radioactive albumin microspheres for studies of the pulmonary circulation[J] Radiology, 1969, 92(7): 1453-1460
    [55] Zolle I, Rhodes BA, Wagner HN Jr. Preparation of metabolizable radioactive human serum albumin microspheres for studies of the circulation[J], Int J Appl Radiat Isot, 1970, 21(3): 155-167
    [56] Scheffel U. et al. Albumin microspheres for study of the reticuloendothelial system[J]. J Nusle Med, 1972, 13(7): 498-503
    [57] 杨莉,侯连兵,王新亚,等.新型超声造影剂全氟丙烷白蛋白微囊的制 备[J].中国药学杂志,2005,49(21):1637-1640.
    [58] Santhi K, Dhanaraj SA, Joseph V, et al. A study on the preparation and anti-tumor efficacy of bovine serum albumin nanosphere containing 5-fluorouracil[J]. Drug Dev Ind Pharm, 2002, 28(9): 1171-1179
    [59] Lin W, Coombes AG, Davies MC, et al. Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method[J], J. Drug Targeting, 1993, 1(3): 237-243
    [60] C. Weber, C. Coester, J. Kreuter, et al. Desolvation process and surface characterization of protein nanoparticles[J]. Int J. Pharm, 2000, 194(1): 91-102
    [61] A. Arnedo, S. Espuelas, J. M. Irache. Albumin nanoparticles as carriers for a phosphodiester oligonucleotide[J]. Int J. Pharm, 2002, 244: 59-72.
    [62] Marta Merodio, Amaia Amedo, M. Jesu's Renedo, et al. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties[J]. Eur J Pharm Sci, 2001, 12:251-259.
    [63] A. Arnedo, J. M. Irache, M. Merodio, et al. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide[J]. J Control Rel, 2004, 94:217-227
    [64] 王旭波,徐希明,葛亮,等.半乳糖化阿霉素白蛋白纳米粒的制备及其质量评价[J].中国新药杂志,2005,14(7):870-872
    [65] 毛声俊,侯世祥,张良珂,等.甘草酸表面修饰万乃洛韦白蛋白纳米粒的制备及其肝靶向性研究[J].生物医学工程学杂志,2004,21(4):570-574
    [66] 毛声俊,侯世祥,张良珂,等.肝细胞靶向甘草酸表面修饰白蛋白纳米粒的制备工艺[J].药学学报,2003,38(10):787-790
    [67] K. Langer, S. Balthasar, V. Vogel, et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles[J]. Int J. Pharm, 2003, 257:169-180
    [68] C. B. Michalowski, S. S. Guterres, T. Dalla Costa. Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles[J]. J Pharm Biomed Analysis, 2004, 35:1093-1100
    [69] F. Q. Hu, Y. Hong, H. Yuan. Preparation and characterization of solid lipid nanoparticles containing peptide[J]. Int J. Pharm, 2004, 273:29-35
    [70] 汪作良,袁弘,章槿.环孢素A固体脂质纳米粒的制备与理化性质考察[J].中国药学杂志,2005,40(6):444-447
    [71] 李娟,张耀庭,曾伟,罗漩,廖长春.应用考马斯亮蓝法测定总蛋白含量[J].中国生物制品学杂志,2000,13(1):118—120
    [72] 陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002:95
    [73] 邹桂欣,尤献民.薄层—分光光度法测定参归颗粒中苦参碱含量[J].时珍国医国药,2001,12(3):212
    [74] 杨梦玉,邬国庆,周富荣.薄层扫描法测定苦参中苦参碱含量[J].中国中药杂志,1999,24(6):337-338
    [75] 马长华,曹天海.HPLC法测定山豆根中苦参碱和氧化苦参碱的含量[J].药物分析杂志,2000,20(6):408-409
    [76] 曾令高.HPLC测定苦参碱葡萄糖注射液中苦参碱的含量及有关物质[J].华西药学杂志,2004,19(4):290-291
    [77] 刘杰,张莉,任斌.反相高效液相色谱法测定注射用苦参碱的含量[J].中山大学学报,2003,42(3):116-117
    [78] 路玫,黄雪梅,谢东.HPLC法测定桂林西瓜霜喷剂中苦参碱的含量[J].华西药学杂志,2001,16(1):76-78
    [79] 张毅.HPLC法测定苦参中苦参碱的含量[J].安徽医药,2004,8(2):123-124
    [80] 邓富良,陈本美,梁绍先.HPLC法测定山豆根中苦参碱的含量[J].中成药,2001,23(9):670-672
    [81] 杨跃辉,邓意辉.反相高效液相色谱法测定苦参碱脂质体含量[J].中国医院药学杂志,2004,24(4):250-251
    [82] 郑国钢,方宇谨.高效液相色谱法测定苦参碱滴眼液的含量[J].中国医院药学杂志,2004,24(3):182-183
    [83] 徐辉碧,杨祥良.纳米医药[M].北京:清华大学出版社,2004:36-38.
    [84] 赵鹤皋,林秀诚.冷冻干燥技术[M].武汉,华中理工大学出版社,1990:35-36.
    [85] 孟涛,周华,张业勇等.生物制品冻干技术的进展[J].中国生物制品学杂 志.2003,16(4):253.
    [86] 陆彬 主编.药剂学[M].北京:中国医药科技出版社,2003,254-255
    [87] Chansiri G., Lyons R. T., Patel M. Effect of surface charge on the stability of oil/water emulsions during steam sterilization[J]. J Pharm Sci, 1999, 88(4): 454-458.
    [88] 周祖康,顾锡人,马季铭.胶体化学基础[M].北京,北京大学出版社,1987:240-246.
    [89] Zambaux M. F., Bonneaux F., Gref R., et al. Preparation and characterization of protein C-loaded PLA nanoparticles[J]. J Control Rel, 1999, 60(5): 179-188.
    [90] 陈亚飞,田颂九,宋景政,孙曾培.苦参总碱注射液的药动学的研究[J].中国药学杂志,2002,37(7):524-526
    [91] 苦参碱冻干脂质体注射剂制剂学研究;硕士;广州中医药大学
    [92] 毕殿洲 主编.药剂学(第四版)[M].北京:人民卫生出版社,2000,450
    [93] 张景勍,陆彬.肺靶向卡铂明胶微球的药物动力学和体内分布研究[J].中国医药工业杂志,2001,32(6):251
    [94] 张明,侯世祥,龚涛等.肺靶向顺铂白蛋白微球在小鼠体内分布及肺器官中药代动力学研究[J].华西医科大学学报,1994,25(4):393
    [95] 邓树海,刘兆平主编.药物动力学[M].北京:人民卫生出版社,1998:85-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700