多组分脂质双分子层的侧向相分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来的研究显示构成生物膜基本骨架的脂质双分子层不是一个均相体系。膜表面会发生侧向相分离,特定的脂质成分(鞘糖脂、胆固醇和鞘磷脂)形成微小的脂质功能区——脂筏。脂筏参与许多重要的生命活动,如生物合成运输、胞吞、蛋白筛选以及信号传导。为了理解生命现象背后的物理化学机制,人们构建多组分脂质模型膜来简化和模拟真实的生物膜。在本论文中使用到的固体表面支撑膜是一类重要的模型膜,是在亲水表面形成的平面脂双层。借助表面敏感的原子力显微镜(AFM),可以研究双分子层内纳米尺度的相分离形态,以及相区的形成过程。我们设计和改进了固体表面支撑膜的制备方法,研究了GM1/SM/DOPC/Chol四组分脂质双分子层体系中形貌随组分变化的规律,在变温条件下研究了形貌演化动力学。具体内容为:
     第二章中介绍了一种高效制备固体表面支撑脂双层的方法。首先比较了旋涂法、LB膜转移法和囊泡融合法三类常用的制备方法,指出囊泡融合法在本论文研究中更为适用。其次,基于原子力显微镜改进了制样环境和制样装置,借助进样器可以实现原位改变膜所处的液相环境,有利于控制膜表面的吸附、化学反应及膜表面的相区生长等等。借助于AFM样品台的控温装置,调整了制样步骤,避免引入大量盐离子。最后我们探讨了脂质浓度、超声条件对囊泡尺寸的影响,并给出了最佳的制样条件。这种方法的建立为从原位、实时研究生理环境下生物膜表面的物理化学过程提供了一条可行可靠的途径,具有非常重要的研究和应用价值。
     第三章讨论了在液相环境中,GM1浓度对SM/DOPC/Chol固体支撑脂双层的侧向相分离的影响。增加GM1摩尔比例(x)会导致液体有序相的主要组成发生明显变化,从SM富集演变为(SM+GM1)富集,最终演化为GM1富集。与此同时,当x大于0.005时,有序相的面积(A)随着GM1在体系中的浓度增加而减小,这个变化过程遵循一个标度关系:A~x-3/2。这一标度关系与研究杂质在二维流体膜中的作用的结论一致,即GM1可被视作是存在与(SM+Chol)/DOPC体系中的杂质,在临界浓度以上会对相区生长起到了钉扎(pinning)作用。依据理论计算求出的临界浓度与实验中观测到的临界浓度一致。精密控制的原位GM1插入实验进一步证实了相对高的浓度下,GMl的确能改变相区的形貌。此外,减少胆固醇含量,相区组分和面积随GM1浓度的增加而变化的规律不变,但GM1钉扎作用的临界浓度提高。在这一章中,我们提出将GM1这类有巨大头部的神经节苷脂分子整体视作是体系的杂质参与分相,解决了以往研究结论之间的矛盾,具有普适性。
     在第四章中,我们研究了多组分脂双层中液体有序相区的生长动力学。首先通过反复的升温-降温循环,测定了不同脂质混合物的发生相分离的温度。通过将处于高温液相的支撑膜迅速淬冷到设定的温度,含少量GM1的SM/DOPC/Chol/GM1双分子层内出现液体有序相区,此后这些相区的面积迅速增长。分析相区生长的细节,我们提出有三种相区生长的类型:独立生长,融合生长以及相区消融。在最终形成的相区中,独立生长的相区数量多,其特征是在早期快速生长,后期生长变缓,当相邻相区的形状因子趋于相同(-0.73)时,生长停止。融合生长的发生需要小的形状因子和小的相区间距,通过融合来增加形状因子的值。发生相区消融的临界尺寸为100nm。在这些过程中,相区生长一方面表现出有序相区的六角排列的特性,一方面又通过流动形成趋于圆形的边界。相区生长细节表明有序相区兼具固相和液体无序相的性质。同时比较不同GM1含量下相区生长过程:GM1含量高的双分子内相区生长缓慢;并很快冻结。借助KJMA理论分析,得到不同体系中有序相区分子的平均的扩散系数。含较高浓度GM1的体系中,这些分子的扩散系数较含较低浓度GM1体系中要下降一个数量级,再次表明高浓度的GM1能限制液体相区的生长。这部分工作研究了液体有序相相区生长的发生、发展和停止的过程和条件,国际上这一领域的工作较少。
     本论文最后一部分是关于嵌段高分子体系两尺度相分离在选择性溶剂中的体现。Comb-coil型聚苯乙烯-异戊二烯嵌段共聚物(PS-g-PI)-b-PS的本体相分离理论上能依据两种尺度进行,且在一定条件下两种尺度共存,但在实验上难以观测到。借助选择性溶剂与链段的相互作用不同,增强链段间的不相容。这里选择的是PI支链的良溶剂正烷烃。借助动态光散射和原子力显微镜,发现这类结构的分子在PI选择性溶剂中自组装形成球形胶束,并在尺寸上具有特殊的双分布现象。分析讨论认为,这种双分布现象是comb-coil结构的独特的相分离机制在选择性溶剂中的体现。即体系中存在两种核-壳结构:(1)P1支链构成壳,PS主链完全蜷曲进入核区域;(2)PS-g-PI梳型部分平行排列构成壳区,而coil部分的PS构成核区。这类分子的两种相分离机制在选择性溶剂中存在并共存。进
     一步研究了溶剂、P1支链的链长和分子的接枝密度对这种双分布的影响,证实溶剂选择性越强、P1支链越长以及接枝密度越高,comb-coil PS-PI嵌段共聚物越容易以comb成壳,双分布现象越明显。
In recent decades, researchers have proved that the lipid bilayer is heterogeneous. Lateral phase separation exists on the surface of bio-membrane, and specific lipids (GSLs, SM and Chol) form small lipid domains with biological function-"Rafts". Rafts participate into many vital biological activities, such as protein sorting, signal transduction and material transporting. To understand the mechanisms of these activities, model membranes are employed to simplify and mimic real membranes. The supported lipid bilayers (SLBs) are planar model membranes, which are quite suitable for AFM detection. We designed and modified the preparation method of SLBs and studied the morphological change with compositions, as well as the evolution of the morphologies. For more details:
     O The second chapter is about the efficient method of SLBs preparation. We first compare the ordinary methods including spin-coating, LB deposition and vesicle fusion, and found that result of vesicle fusion was in high quality but time-wasting. Thus, we transferred the preparation process into the small AFM fluid cell and kept the fusion process at high temperature, usually higher than Tm of all lipids. By these modification, we could accomplished SLBs fast without any ion additions. Besides, we also found out best practices in making vesicles. This method is highly efficient and reliable, and has high potential in research and application.
     O In Chapter3, the effect of monosialognglioside GM1concentration on the lateral phase separation in the SM/DOPC/Chol bilayers was studied by using atomic force microscopy. The results show that, with the increase of GM1mole fraction (x), the dominant composition of liquid-ordered (Lo) domains changes from SM to SM/GM1and finally to GM1. Meanwhile, the decrease of domain area (A) of the Lo phase with the increase of x follows a scaling law of A~x-3/2, for x>0.005, indicating that the domain growth is pinned with high GM1concentration. Results of in situ experiments of GM1insertion into SM/DOPC/cholesterol bilayers further supported our observations. In addition, we found that deceasing the content of cholesterol led to a higher critical concentration of the pinning effect of GM1on the phase separation. Here, we provided a general rule to predict the effect of GSLs on morphology by looking them as impurities rather than considering various interactions between lipids. Our results also solved the conflicts in literature.
     O In Chapter4, we studied the domain growth in multicomponent lipid bilayers. By heating and cooling circles, we gained the temperature of phase separation in SLBs. The melting lipid bilayers were under cooled to induce phase separation. We found that with little GM1in SM/DOPC/Chol bilayers, the domain growth after cooling is fast. Closer investigation on details shown three types of growth: isolated growth, merged growth and domain dissolving. The domain area, the shape factor, the distance between neighboring domains play critical roles in defining what types one domain adopted in bilayers. During these processes, the details of liquid-ordered domain growth demonstrated the Ld phase is a phase state between solid and liquid. We further prepared the effect of different GM1concentration on domain growth. Via the KJMA theory, we estimated the averaged diffusion rate in bilayers containing low and high GM1concentration. Results shown that the higher GM1concentration did disturb the domain growth. We studied the early stage of the evolution of domains, which is just a new field in international researches.
     O In the last chapter, we discussed the implement of the coexistence of two phase separation mechanisms of comb-coil PS-PI copolymers in PI selective solvents. The comb-coil A-B copolymer was proved to phase separate in two length scales in its bulk, that is between A/B segments and between comb part and coil chain. By strengthening the miscibility between PS and PI segments by selective solvents, we successfully achieved the coexistence of these two phase separation mechanisms by observing sphere micelles with two sizes in a single solution. Compared the results of DLS and AFM, we estimated the scales of the two sizes of the micelles. We also compared the effects of selectivity of the solvent, the branch length and the branch numbers on the binary size distribution, and found out that increasing these factors made the separation between micelles of different sizes.
引文
[1]De Gennes, P.G. Soft matter[J]. Rev. Mod. Phys.1992,64:569-572.
    [2]Jones, R.A. Soft Condensed Matter[M]. London:Oxford University,2002:1-4.
    [3]隋森芳.膜分子生物学[M].北京:高等教育出版社,2003:152-157.
    [4]Singer, S.J.; Nicolson, G L. The Fluid Mosaic Model of the Structure of Cell Membranes[J]. Science.1972,175:720-731.
    [5]Simons, K.; Ikonen, E. Functional rafts in cell membranes[J]. Nature.1997, 387(6633):569-572.
    [6]Anderson, R. G W.; Jacobson, K. Cell biology-A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains[J]. Science.2002, 296(5574):1821-1825.
    [7]London, E.; Bakht, O.; Megha. Characterizing the principles of lipid raft formation[J]. Journal Of Neurochemistry.2006,99:18-18.
    [8]Simons, K.; Toomre, D. Lipid rafts and signal transduction[J]. Nature Reviews. Molecular Cell Biology.2000,1(1):31-39.
    [9]McKee, T.; McKee, J.R. Biochemistry:An Introduction[M]. McGraw-Hill Education.2000:215.
    [10]Styer, L著,唐有祺,张惠珠,吴相钰,顾孝诚,林性玉,章有章译校.生物化学[M].北京:北京大学出版社,1992.
    [11]Thomas, P.D., Brewer G.J. Gangliosides and synaptic transmission[J]. BBA, 1990,1031:277-289.
    [12]Todd P.W. McMullen, Ruthven N.A.H. Lewis, R. N. McElhaney. holesterol-phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes[J]. Current Opinion in Colloid and Interface Science, 2004,8:459-468.
    [13]刘文龙,张志鸿.生物膜与脂质体技术[M].长沙:湖南科学技术出版社,1988.
    [14]Tamm, L.L.; McConnell, H.M. Supported phospholipid bilayers[J]. Biophy. J,1985,47:105-113.
    15 Huang.CH. Studies on phosphatidylocholine vesicles:Formation and physical characteristics [J]. Biochemistry.1969,8:344-352.
    [16]Oku.N; Scheerer JF, M. R. Preparation of giant liposomes[J]. Biochim Biophys Acta.1982,692(3):384-388.
    [17]Heiko Heerklotz. The microcalorimetry of lipid membranes[J]. J. Phys.:Condens. Matter 2004,16:R441-R467.
    [18]Connell S, D.; Smith, D.A. The atomic force microscope as a tool for studying phase separation in lipid membranes (Review)[J]. Molecular Membrane Biology, 2006,23(1):17-28.
    [19]Sackmann, E. Supported membranes:Scientific and practical applications [J]. Science,1996,271(5245):43-48.
    [20]D Keller, NB Larsen, IM M(?)ller. Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers[J]. Phys. Rev. Lett.,2005,94:025701.
    [21]Steffen Schuy, Andreas Janshoff. Thermal Expansion of Microstructured DMPC Bilayers Quantified by Temperature-Controlled Atomic Force Microscopy[J]. ChemPhysChem,2006,7(6):1207-1210.
    [22]Z.V. Leonenko, E. Fino, H. Ma, T.E. S. Dahms and D.T. Cramb.Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy[J] Biophysical Journal, 2004,86(6):3783-3793
    [23]Steffen Schuy, Andreas Janshoff. Thermal Expansion of Microstructured DMPC Bilayers Quantified by Temperature-Controlled Atomic Force Microscopy [J]. ChemPhysChem,2006,7(6):1207-1210.
    [24]Edidin, M. The state of lipid rafts:From model membranes to cells[J]. Annual Review of Biophysics And Biomolecular Structure.2003,32:257-283.
    [25]Yanli Mao, Ryugo Tero, Yosuke Imai, Tyuji Hoshino, Tsuneo Urisu. The morphology of GMlx/SM0.6x/Chol0.4 planar bilayers supported on SiO2 surfaces[J]. Chemical Physics Letters 2008,460:289-294.
    [26]Stephen Z. D. Cheng.Phase transitions in polymers:the role of metastable states[M].Elsevier-Technology & Engineering,2008.
    [27]Alaouie, A.M.; Smirnov, A.I. Cooperativity and kinetics of phase transitions in nanopore-confined bilayers strudied by DSC[J].. Biophy. J 2005,88:11-13.
    [28]Tokumasu, F.; Jin, A.J.; Dvorak, J.A. Lipid membrane phase behaviour elucidated in real time by controlled environment AFM[J]. J Electron Microsc 2002, 51:1-9
    [29]Sugar, I. P., E. Michonova-Alexova, et al. Geometrical Properties of Gel and Fluid Clusters in DMPC/DSPC Bilayers:Monte Carlo Simulation Approach Using a Two-State Model[J]. Biophysical Journal 2001,81(5):2425-2441.
    [30]Shimshic, Ej, Mcconnel, Hm. Lateral Phase Separation in Phospholipid Membrane[J]. Biochemistry 1973,12:2351-2360.
    [31]Mabrey, S. and J. M. Sturtevant. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry 1[J]. Proceedings of the National Academy of Sciences,1976,73(11):3862-3866.
    [32]f(?)rgensen, K., M. M. Sperotto, et al. Phase equilibria and local structure in binary lipid bilayersl[J]. BBA,1993,1152(1):135-145.
    [33]Israelachvili,J.N. Intermolecular and Surface forces [M].Lodon:Academic Press 1992
    [34]McMullen, T.P.W.;Lewis, R.; Mcelhaney, R.N. DSC study of the effect of cholesterol on the thermotropic phosphatidylcholines [J].. Biochemistry 1993, 32:516-522.
    [35]Silvius, J.R. Role of cholesterol in lipid raft formation:lessons from lipid model system. [J]. BBA-Biomembranes 2003,1610:174-183
    [36]Ramstedt, B.; Slotte. J.P. Membrane properties of sphingomyelins [J].. Febs. Letters.2002,531:33-37.
    [37]Ipsen, J.H.; Karlstrom, G.; Mouritsen, O.G.; Wennerstrom, H.; Zuckermann, M.J. Phase-equilibria in the phosphatidylcholine-cholesterol system[J]. BBA 1987, 905:162-172.
    [38]Smaby, J.M.; Momsen, M.M.;Brockman, H.L.; Brown,R.E. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol[J].. Biophysical Journal 1997,73:1492-1505.
    [39]Mcmullen, T.P.W.; Mcelhaney, R.N. New Aspects of the Interaction of cholesterol with DMPC Bilayers as Revealed by High-sensitivity DSC[J]. BBA-Biomembranes 1995,1234:90-98.
    [40]Somerharju, P.; Virtanen, J.A.; Cheng, K.HL. Lateral organisation of membrane lipids-the superlattice view. [J]. BBA-Molecular and Cell Biology of Lipeds,1999, 1440:32-48.
    [41]McConnell, H. M. and A. Radhakrishnan. Condensed complexes of cholesterol and phospholipids[J].. Biochimica et Biophysica Acta (BBA)-Biomembranes 20031610(2):159-173.
    [42]Slotte, J.P. Lipid interactions, domain formation, and lateral structure of membranes[J]. BBA,2009,1788(1):1.
    [43]Veatch Sarah L. and Keller Sarah L.. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin[J]. Phys. Rev. Lett.2005,94:148101
    [44]Aurelia R. Honerkamp-Smith, Sarah L. Veatch b, Sarah L. Keller. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes[J]. Biochimica et Biophysica Acta 2009,1788(1): 53-63.
    [45]Gerald W. Feigenson.Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures[J]. Biochimica et Biophysica Acta 2009,1788(1):47-52.
    [46]Laura Cantu, Mario Corti, Paola Brocca, Elena Del Favero. Structural aspects of ganglioside-containing membranes[J]. Biochimica et Biophysica Acta 2009,1788(1): 202-208.
    [47]Bodil Westerlund, J. Peter Slotte. How the molecular features of glycosphingolipids affect domain formation in fluid membranes[J]. Biochimica et Biophysica Acta 2009,1788(1):194-201.
    [48]S. Sonnino, A. Prinetti, L. Mauri, V. Chigorno, G Tettamanti, Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains[J]. Chem. Rev.2006,126:2111-2125.
    [49]C.M. Rosetti, B.Maggio, R.G Oliveira, The self-organization of lipids and proteins of myelin at the membrane interface. Molecular factors underlying the microheterogeneity of domain segregation[J]. Biochim. Biophys. Acta 2008,1778: 1665-1675.
    [50]Reich C, Horton M. R., Krause B., Gast A.P., Joachim O. Radler and Bert Nickel. Asymmetric Structural Features in Single Supported Lipid Bilayers Containing Cholesterol and GM1 Resolved with Synchrotron X-Ray Reflectivity [J]. Biophysical Journal 2008,95:657-668.
    [51].P. Janich, D. Corbeil, GM1 and GM3 gangliosides highlight distinct lipid micro domains within the apical domain of epithelial cells[J]. FEBS Lett.2007, 581:1783-1787
    [55]Tian-Yun Wang, Rania Leventis, John R.Silvius.Fluorescence-Based Evaluation of the Partitioning of Lipids and Lipidated Peptides into Liquid-Ordered Lipid Microdomains:A Model for Molecular Partitioning into "Lipid Rafts"[J].Biophysical Journal,2000,79(2):919-933.
    [53]Chunbo Yuan, Jennifer Furlong, Pierre Burgos, Linda J. Johnston. The Size of Lipid Rafts:An Atomic Force Microscopy Study of Ganglioside GM1 Domains in Sphingomyelin/DOPC/Cholesterol Membranes[J]. Biophysical Journal 2002,82: 2526-2535.
    [54]Chunbo Yuan; Linda J Johnston. Atomic force microscopy studies of ganglioside GM1 domains in phosphatidycholine and cholesterol bilayers[J].Biophysical Journal, 2001,81:1059-1069.
    [55]Oana Coban, Melanie Burger, Mike Laliberte, Anatoli Ianoul, Linda J. Johnston. Ganglioside Partitioning and Aggregation in Phase-Separated Monolayers Characterized by Bodipy GM1 Monomer/Dimer Emission.Langmuir[J],2007,23 (12): 6704-6711
    [56]R.Y. Patel, P.V. Balaji. Characterization of symmetric and asymmetric lipid bilayers composed of varying concentrations of ganglioside GM1 and DPPC[J].J. Phys.Chem., B 112 (2008) 3346-3356.
    [57]Jorgensen, K.; Klinger, A.; Raiman, M.; Biltonen, R. L. Slow nonequilibrium dynamical rearrangement of the lateral structure of a lipid membrane[J]. Journal of Physical Chemistry.1996,100(8):2766-2769.
    [58]Jorgensen, K.; Mouritsen, O. G Investigation of lipid membrane macro-and micro-structure using calorimetry and computer simulation:structural and functional relationships [J]. Thermochimica Acta.1999,328(1-2):81-89.
    [59]Olabisi O, Robes on L M, Shaw M T. P olymer-Polyme Miscibility[M]. London: Academic Press,1978
    [60]Lipowsky, R. Budding Of Membranes Induced By Intramembrane Domains [J]. Journal de Physique Ⅱ.1992,2(10):1825-1840.
    [61]Lipowsky, R.; Dimova, R. Domains in membranes and vesicles[J]. Journal of Physics-Condensed Matter.2003,15(1):S31-S45.
    [62]A.Huse, D. Corrections to later-stage behavior in spinodal decomposition: Lifshitz-Slyozov sacling and Monte Carlo simulations [J]. Phys Rev B.1986,34(11): 7845-7850.
    [63]Giocondi, M; Vie, V.; Lesniewska, E; Milhiet, P.; et al. Phase Topology and Growth of Single Domains in Lipid Bilayers[J]. Langmuir,2001,17:1653 1659.
    [64]W.-C. Lin, C.D. Blanchette, M.L. Longo, Fluid-phase chain unsaturation controllingdomain microstructure and phase in ternary lipid bilayers containing GalCer andcholesterol[J]. Biophys. J.2007,92:2831-2841.
    [65]C.D. Blanchette, W.C. Lin, C.A. Orme, T.V. Ratto, M.L. Longo, Domain nucleation rates and interfacial line tensions in supported bilayers of ternary mixtures containing galactosylceramide[J]. Biophys. J.2008,94:2691-2697.
    [66]C.D. Blanchette, C.A. Orme, T.V. Ratto, M.L. Longo, Quantifying growth of symmetric and asymmetric lipid bilayer domains[J]. Langmuir,2008,24:1219-1224.
    [67]M Avrami. Kinetics of Phase Change-General Theory[J]. Journal of Chem. Phy., 1939,7:1103-1112.
    [68]M Avrami. Kinetics of Phase Change-Transformation-Time Relations for Random Distribution of Nuclei [J]. Journal of Chem. Phy.,1940,8:212-224.
    [69]M Avrami. Kinetics of Phase Change-Transformation-Granulation, Phase Change, and Microstructure [J]. Journal of Chem. Phy.,1940,9:177-184
    [70]江明,A.艾森伯格,刘国军,张希等.大分子自组装[M].北京:科学出版社2006.
    [71]Nap R. J., Brinke G., et al.. Microphase separation at two length scales [J]. Eur. Phys. J. E,2001,4(4):515-519.
    [72]Rikkert J. Nap, Gerrit ten Brinke. Ordering at Two Length Scales in Comb-Coil Diblock Copolymers Consisting of Only Two Different Monomers [J]. Macromolecules,2002,35 (3):952-959.
    [73]杨玉良,邱枫,唐萍,张红东.高分子体系相分离动力学及图样生成和选择[J].化学进展,2006,18(4):363-381.
    [1]隋森芳.膜分子生物学[M].北京:高等教育出版社,2003:317.
    [2]Langmuir, I. The mechanism of the surface phenomena of flotation[J]. Trans. Faraday Soc.,1917,39:1848.
    [3]Blodgett, K.B. Films built by depositing successive monomolecular layers on a solid surface[J]. J. Am. Chem. Soc.,1935,57:1007-1022.
    [4]G. Pompeoa, M. Girasole, A. Cricenti, F. Cattaruzza, A. Flamini. et al.AFM characterization of solid-supported lipid multilayers prepared by spin-coating[J]. Biochimica et Biophysica Acta 2005(1712):29-36.
    [5]Kuhn, H.; Mobius. D; Bucher, H. Physical Methods of Chemistry. In:Physical Methods of Chemistry Part IIIB Opitcal, Spectroscopic, and Radioactivity Methods. Vol 1:577[A]. New York:Wiley-Interscience,1972.
    [6]Tamm, L.L.; McConnell, H.M. Supported phospholipid bilayers[J]. Biophy. J,1985,47:105-113.
    [7]Connell S, D.; Smith, D.A. The atomic force microscope as a tool for studying phase separation in lipid membranes (Review)[J]. Molecular Membrane Biology, 2006,23(1):17-28.
    [8]Sackmann, E. Supported membranes:Scientific and practical applications[J]. Science,1996,271(5245):43-48.
    [9]Chunbo Yuan, Jennifer Furlong, Pierre Burgos, Linda J. Johnston. The Size of Lipid Rafts:An Atomic Force Microscopy Study of Ganglioside GM1 Domains in Sphingomyelin/DOPC/Cholesterol Membranes[J]. Biophysical Journal 2002,82: 2526-2535.
    [10]Chunbo Yuan; Linda J Johnston. Atomic force microscopy studies of ganglioside GM1 domains in phosphatidycholine and cholesterol bilayers[J].Biophysical Journal, 2001,81:1059-1069.
    [11]Watts, T. H.; Brian, A. A.; Kappler, J. W.; Marrack, P.; McConnell, H.M. Antigen presentation by supported planar membranes containing affinity-purified I-Ad.[J]. Proc. Natl. Acad. Sci. U.S.A.1984,81:7564-7568.
    [12]刘文龙;张志鸿.生物膜与脂质体技术[M].长沙:湖南科学技术出版社, 1988.
    [13]Ralf P. Richter, Alain R. Brisson. Following the Formation of Supported Lipid Bilayers on Mica:A Study Combining AFM, QCM-D, and Ellipsometry[J]. Biophysical Journal,2005,88:3422-3433.
    [14]A. Alessandrini, Facci. P. AFM:a versatile tool in biophysics[J]. Meas. Sci. Technol.2005,16:R65-R92.
    [15]鲍稔,李莉,邱枫,杨玉良.一种液相中原位制备脂双分子层膜的方法与装置.[P]专利申请号:200910197858.0
    [16]Ralf P. Richter, Remi Berat, and Alain R. Brisson. Formation of Solid-Supported Lipid Bilayers:An Integrated View[J]. Langmuir 2006,22:3497-3505
    [17]Chenyue Xing, Roland Faller. Interactions of Lipid Bilayers with Supports:A Coarse-Grained Molecular Simulation Study[J].J. Phys. Chem. B,2008,112 (23): 7086-7094.
    [18]Reviakine, I, A. Brisson. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by AFM[J]. Langmuir,2000,16:1806-1815.
    [19]Keller,C.A., K. Glasmatar, V.P. Zhdanov, B. Kasemo. Formation of supported membrane from vesicles[J]. PRL,2000,84:5443-5446.
    [1]Simons, K.; Ikonen, E. Functional rafts in cell membranes[J]. Nature 1997,387: 569-572.
    [2]Simons, K.; Toomre, D. Lipid rafts and signal transduction[J].Nature Reviews: Molecular Cell Biology,2002,1:31-39.
    [3]Wolfgang H. Binder, Veronique Barragan, Fredric M. Menger. Domains and Rafts in Lipid Membranes[J]. Angewandte Chemie International Edition,2003,42: 5802-5827.
    [4]Dietrich C., Bagatolli L.A., Volovyk Z.N., Thompson N.L., Levi M., Jacobson K.and Gratton E. Lipid Rafts Reconstituted in Model Membranes [J]. Biophysical Journal 2001,80:1417-1428.
    [5]Veatch Sarah L. and Keller Sarah L.. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin[J]. Phys. Rev. Lett.2005,94:148101.
    [6]Cantu L., Corti M., Brocca P., Elena Del Favero. Structural aspects of ganglioside-containing membranes[J]. Biochimica et Biophysica Acta,2009, 1788:202-208.
    [7]Alessandro Prinetti, Nicoletta Loberto, Vanna Chigorno, Sandro Sonnino. Glycosphingolipid behaviour in complex membranes[J]. Biochimica et Biophysica Acta,2009,1788:184-193.
    [8]Yokoyama S, Ohta Y, Sakai H, Abe M. Effect of membrane composition on surface states of ganglioside GM1/dipalmitoylphosphatidylcholine /dioleoylphosphatidylcholine monolayers[J]. Colloids and Surfaces B:Biointerfaces, 2004,34:65-68.
    [9]Y Ohta, S. Yokoyama, H. Sakai, M. Abe, Membrane properties of binary and ternary systems of ganglioside GM1/dipalmitoylphosphatidylcholine/ dioleoylphosphatidylcholine[J], Colloids Surf., B Biointerfaces 2004,34:147-153.
    [10]Reich C, Horton M. R., Krause B., Gast A.P., Joachim O. Radler and Bert Nickel. Asymmetric Structural Features in Single Supported Lipid Bilayers Containing Cholesterol and GM1 Resolved with Synchrotron X-Ray Reflectivity[J]. Biophysical Journal 2008,95:657-668.
    [11]Chunbo Yuan, Jennifer Furlong, Pierre Burgos, Linda J. Johnston. The Size of Lipid Rafts:An Atomic Force Microscopy Study of Ganglioside GM1 Domains in Sphingomyelin/DOPC/Cholesterol Membranes [J]. Biophysical Journal 2002,82: 2526-2535.
    [12]Chunbo Yuan; Linda J Johnston. Atomic force microscopy studies of ganglioside GM1 domains in phosphatidycholine and cholesterol bilayers[J].Biophysical Journal, 2001,81:1059-1069.
    [13]Anita Ferraretto, Marina Pitto, Paola Palestini, and Massimo Masserini. Lipid Domains in the Membrane:Thermotropic Properties of Sphingomyeiin Vesicies Containing GM1 Ganglioside and Cholesterol [J]. Biochemistry,1997,36 (30): 9232-9236.
    [14]Oana Coban, Melanie Burger, Mike Laliberte, Anatoli Ianoul, Linda J. Johnston. Ganglioside Partitioning and Aggregation in Phase-Separated Monolayers Characterized by Bodipy GM1 Monomer/Dimer Emission.Langmuir[J],2007,23 (12): 6704-6711.
    [15]Simon D. Connell & D. Alastair Smith.The atomic force microscope as a tool for studying phase separationin lipid membranes (Review) [J].Molecular Membrane Biology 2006,23:17-28.
    [16]Ralf P. Richter, Remi Berat, and Alain R. Brisson. Formation of Solid-Supported Lipid Bilayers:An Integrated View[J].Langmuir 2006,22:3497-3505
    [17].Basu, A., and R. H. Glew. Characterization of the activation of rat liver β-glucosidase by sialosylgangliotetraosylceramide[J]. J. Biol.Chem.1985,260: 13067-13073.
    [18]Patel R.Y., Balaji P.V. Characterization of Symmetric and Asymmetric Lipid Bilayers Composed of Varying Concentrations of Ganglioside GM1 and DPPC[J]. J. Phys. Chem. B,2008,112:3346-3356.
    [19]Tashima Y, Oe R., Lee S.,Sugihara G. Chambers E.J, Takahashi m. Yamada T.. The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid β-peptide from liposomes prepared from brain membrane-like lipids[J]. Journal of Biological Chemistry 2004,279:17587-17595.
    [20]Jared C. Lawrence, David E. Saslowsky, J. Michael Edwardson, Robert M. Henderson. Real-Time Analysis of the Effects of Cholesterol on Lipid Raft Behavior Using Atomic Force Microscopy [J]. Biophysical Journal 2003,84:1827-1832.
    [21]Wang R., Shi J. Parikh A.N., Shreve A.P., Chen L. Swanson B.I. Evidence for cholera aggregation on GM1-decorated lipid bilayers[J]. Colloids and surfaces B: Biointerface 2004,33:45-51.
    [22]Mondal S., Mukhopadhyay C. Molecular level investigation of organization in ternary lipid bilayer:a computational approach[J]. Langmuir,2008,24:10298-10305.
    [23]Emel I. Goksu, Juan M. Vanegas, Craig D. Blanchette, Wan-Chen Lin, Marjorie L. Longo, AFM for structure and dynamics of biomembranes[J]. Biochimica et Biophysica Acta,2009,1788:245-254.
    [24]B. Goins, M. Masserini, B.G. Barisas and E. Freire. Lateral diffusion of ganglioside GM1 in phospholipid bilayer membranes [J]. Biophysical Journal 1986, 49:849-856.
    [25]Qiu F., Peng G, Ginzburg V.V.,. Balazs A.C.Spinodal decomposition of a binary fluid with fixed impurities [J]. J. Chem. Phys.2001,115:3779-3784.
    [26]Reginald Garrett, Charles M. Grisham.Biochemistry(4th Edition) [M] California:Brooks/Cole; International ed.,2008.
    [27]Ana J. Garcia-Saez, Salvatore Chiantia, and Petra Schwille, Effect of Line Tension on the Lateral Organization of Lipid Membranes[J].J. Biological Chemistry, 2007,282(46) 33537-33544.
    [28]Bach, D., I. R. Miller, and B.-A. Sela. Calorimetric studies on various gangliosides and ganglioside-lipid interactions [J]. Biochim. Biophys. Acta.,1982, 686:233-239.
    [1]Simons, K.; Ikonen, E. Functional rafts in cell membranes[J]. Nature 1997,387: 569-572.
    [2]Simons, K.; Toomre, D. Lipid rafts and signal transduction[J].Nature Reviews: Molecular Cell Biology,2002,1,31-39.
    [3]Wolfgang H. Binder, Veronique Barragan, Fredric M. Menger. Domains and Rafts in Lipid Membranes[J]. Angewandte Chemie International Edition,2003,42: 5802-5827.
    [4]刘文龙;张志鸿.生物膜与脂质体技术[M].长沙:湖南科学技术出版社,1988.
    [5]Kuhn, H.; Mobius. D; Bucher, H. Physical Methods of Chemistry. In:Physical Methods of Chemistry Part ⅢB Opitcal, Spectroscopic, and Radioactivity Methods. Vol 1:577[A]. New York:Wiley-Interscience,1972.
    [6]Tamm, L.L.; McConnell, H.M. Supported phospholipid bilayers[J]. Biophy. J,1985,47:105-113.
    [7]Edidin, M. The state of lipid rafts:From model membranes to cells[J]. Annual Review Of Biophysics And Biomolecular Structure.2003,32:257-283.
    [8]Pike, L. J. Lipid rafts:bringing order to chaos[J]. Journal Of Lipid Research. 2003,44(4):655-667.
    [9]Dietrich, C.; Bagatolli, L. A.; Volovyk, Z. N.; Thompson, N. L.; Levi, M.; Jacobson, K.; Gratton, E. Lipid rafts reconstituted in model membranes[J]. Biophysical Journal.2001,80(3):1417-1428.
    [10]Lipowsky, R. The Conformation Of Membranes [J]. Nature.1991,349(6309): 475-481.
    [11]Allain, J. M.; Ben Amar, M. Budding and fission of a multiphase vesicle[J]. European Physical Journal E.2006,20(4):409-420.
    [12]Giocondi, M; Vie, V.; Lesniewska, E; Milhiet, P.; et al. Phase Topology and Growth of Single Domains in Lipid Bilayers[J]. Langmuir,2001,17:1653 1659.
    [13]W.-C. Lin, C.D. Blanchette, M.L. Longo, Fluid-phase chain unsaturation controllingdomain microstructure and phase in ternary lipid bilayers containing GalCer andcholesterol[J]. Biophys. J.2007,92:2831-2841.
    [14]C.D. Blanchette, W.C. Lin, C.A. Orme, T.V. Ratto, M.L. Longo, Domain nucleation rates and interfacial line tensions in supported bilayers of ternary mixtures containing galactosylceramide[J]. Biophys. J.2008,94:2691-2697.
    [15]C.D. Blanchette, C.A. Orme, T.V. Ratto, M.L. Longo, Quantifying growth of symmetric and asymmetric lipid bilayer domains[J]. Langmuir,2008,24:1219-1224.
    [16]Ren Bao, Li Li, Feng Qiu, Yuliang Yang. GM1 in Model Lipid Bilayer Modulates the Effects of Cholesterol in Membrane Phase-Separation, Journal of Physical Chemistry B,2011, ASAP.
    [17]Heiko Heerklotz. The microcalorimetry of lipid membranes[J]. J. Phys.:Condens. Matter 2004,16:R441-R467.
    [18]D Keller, NB Larsen, IM M(?)ller. Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers[J]. Phys. Rev. Lett.,2005, 94:025701.
    [19]Steffen Schuy, Andreas Janshoff. Thermal Expansion of Microstructured DMPC Bilayers Quantified by Temperature-Controlled Atomic Force Microscopy[J]. ChemPhysChem,2006,7(6):1207-1210.
    [20]Z.V. Leonenko, E. Fino, H. Ma, T.E. S. Dahms and D.T. Cramb.Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy[J] Biophysical Journal, 2004,86(6):3783-3793.
    [21]McConnell, H. M. and A. Radhakrishnan. Condensed complexes of cholesterol and phospholipids. Biochimica et Biophysica Acta (BBA)-Biomembranes 20031610(2):159-173.
    [22]Ramstedt, B.; Slotte. J.P. Membrane properties of sphingomyelins. Febs. Letters. 2002,531:33-37.
    [23]Jones, R.A. Soft Condensed Matter[M]. London:Oxford University,2002.
    [24]Clavaguera-Mora M.T.; Clavaguer,N.; Crespo, P. et al. Crystallisation kinetics and microstructure development in metallic systems[J]. Progress in Materials Science, 2002,47:559-619.
    [25]M Avrami. Kinetics of Phase Change-General Theory[J]. Journal of Chem. Phy., 1939,7:1103-1112
    [26]M Avrami. Kinetics of Phase Change-Transformation-Time Relations for Random Distribution of Nuclei [J]. Journal of Chem. Phy.,1940,8:212-224.
    [27]M Avrami. Kinetics of Phase Change-Transformation-Granulation, Phase Change, and Microstructure [J]. Journal of Chem. Phy.,1940,9:177-184.
    [1]Kataoka, K.;Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance [J]. Adv. Drug Delivery Rev 2001, 47(1):113-131.
    [2]Ciebien, J.F.; Cohen, R.E.; Duran, A.. Catalytic properties of palladium nanoclusters synthesized within diblock copolymer films:hydrogenation of ethylene and propylene[J]. Supramolecular Science,1998,5(1-2):31-39.
    [3]Stoykovich, M. P.; Muller, M.; Kim, S. O., et al.. Directed assembly of block copolymer blends into nonregular device-oriented structures [J]. Science,2005, 308(5727):1442-1446.
    [4]Balsara, N. P.; Tirrell, M.; Lodge, T. P. Micelle formation of BAB triblock copolymers in solvents that preferentially dissolve the A block[J]. Macromolecules, 1991,24(8):1975-1986.
    [5]Lodge, T. P.; Pudil, B.; Hanley K. J.. The full phase behavior for block copolymers in solvents of varying selectivity[J]. Macromolecules,2002,35(12):4707-4717.
    [6]Bang J., Jain S., Li Z. B., et al.. Sphere, cylinder, and vesicle nanoaggregates in poly (styrene-b-isoprene) diblock copolymer solutions[J].Macromolecules,2006, 39(3):1199-1208.
    [7]Bougard F., Giacomelli C, Mespouille L., et al.. Synthesis and supramolecular organization of amphiphilic diblock copolymers combining poly (N, N-dimethylamino-2-ethyl methacrylate) and poly (ε-caprolactone) [J]. Langmuir, 2007,23 (5):2339-2345
    [8]Lanson D., Schappacher M., Borsali R., et al.. Poly (styrene) comb-b-Poly (ethylene oxide) comb Copolymers:Synthesis and AFM Investigation of Intra-and Supramolecular Organization as Thin Deposits[J]. Macromolecules,2007,40(15): 5559-5565.
    [9]Ouarti N., Viville P., Lazzaroni R., et al.. Micellar aggregation in blends of linear and cyclic poly (styrene-b-isoprene) diblock copolymers [J]. Langmuir,2005,21(20): 9085-9090.
    [10]Pispas S., Hadjichristidis N., Potemkin I., et al.. Micellar aggregation in blends of linear and cyclic poly (styrene-b-isoprene) diblock copolymers [J]. Macromolecules, 2000,33(5):1741-1746.
    [11]Fernyhough C. M., Chalari I., Pispas S., et al.. The micellar behavior of linear triblock terpolymers of styrene (S), isoprene (I), and methyl methacrylate (MMA) in selective solvents for PS and PMMA[J]. European Polymer Journal,2004,40(1): 73-79.
    [12]Iatrou H., Hadjichristidis N., Meier G.,et al.. Synthesis and Characterization of Model Cyclic Block Copolymers of Styrene and Butadiene. Comparison of the Aggregation Phenomena in Selective Solvents with Linear Diblock and Triblock Analogues[J]. Macromolecules,2002,35(14):5426-5437
    [13]Fernyhough C. M., Pantazis D., Pispas S., et al.. Micellar behavior of a well-defined dendritic polymer (PS2PI) 3:the effects of architecture and solvent selectivity [J]. European Polymer Journal,2004,40(2):237-244.
    [14]Zhang L.F., Eisenberg A.. J. Am. Chem. Soc. [J],1996,118:3168-3181
    [15]Riegela I. C., Samiosa D., Petzholda C. L., et al.. Self-assembly of amphiphilic di and triblock copolymers of styrene and quaternized 5-(N, N-diethylamino) isoprene in selective solvents[J]. Polymer,2003,44(7):2117-2128.
    [16]Lanson D., Schappacher M., Deffieux, A., et al.. Synthesis of comblike poly (styrene-b-isoprene) block copolymers and their properties in good and selective solvents[J]. Macromolecules,2006,39(20):7107-7114
    [17]Nap R. J., Kok C., Brinke G., et al.. Microphase separation at two length scales[J]. Eur. Phys. J. E,2001,4(4):515-519
    [18]Zhang L. F., Barlow R. J., Eisenberg A.. Scaling relations and coronal dimensions in aqueous block poly electrolyte micelles [J]. Macromolecules,1995, 28(18):6055-6066.
    [19]Xu F., Li T.C., Xia J.F., et al. (Polystyrene-g-polyisoprene)-b-polystyrene comb-coil block copolymer in selective solvent[J].Polymer,2007,48(5):1428-1434
    [20]Bao R., Li L., Qiu F., et al.. submitted to Polymer Bulletin
    [21]Wang J., Guo K, An L, et al.. Micelles of Coil-Comb Block Copolymers in Selective Solvents:Competition of Length Scales[J]. Macromolecules, 2010,43(4):2037-2041

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700