基于单片机的注塑机温度控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的发展、工业的进步,我国注塑成型行业在近几十年得到了迅速的发展。注塑机作为注塑成型行业的主要加工工具,由于其自身的一些优点和不可替代的作用,在社会许多领域将会得到广泛的应用。在塑料的注射过程中,塑料熔体的温度是非常重要的参数。过低和过高的温度都会影响产品的最终质量。精确的温度控制在精密注塑上有利于提高产品质量以及原材料的利用率,是一项十分重要的指标。在塑料加工过程中,温度控制主要包括料筒、喷嘴和模具的温度控制。料筒温度即料筒表面加热温度,由于料筒壁比较厚,因此热电偶检测点的选择非常关键,不同的检测点上温度曲线是有较大的差异的。因此双点平行检测,即在料筒表面与深处同时设置热电偶,将得到比较稳定的温度曲线,有利于温度控制的精度。
     目前国内的注塑机温度控制系统大多在编程前人工整定好PID参数,即在编程时把参数固化在程序中。该方法虽然能够取得比较好的控制效果,但是存在一些缺点:1.人工整定参数费时、费力,且整定效果严重依赖于整定者的经验;2.固化参数的控制系统在同一型号的注塑机里都采用相同PID控制参数,忽略了每台注塑机的性能差异,不可能使每台注塑机都达到最优控制效果;3.注塑机零部件替换后,若要调整PID参数,必须重新人工整定参数并编程。
     本论文结合深圳百科机械有限公司的情况,提出了把PID参数从程序中分离出来,放置于一独立内存区中。程序通过读或写这个内存区来获得或修改PID参数。程序在接受到更新参数的命令后,能够对系统自动建模和根据模型进行参数自整定,这样不仅避免了繁琐的人工整定,而且每台注塑机的PID参数都是在其最合理的模型下整定出来的。每台注塑机都能达到最优的控制效果。即使注塑机的零部件替换需要更新控制参数,也只需要操作面板上的设定键来重新整定系统参数,简化了系统的维护工作。最后刷新放置参数的存储区域。
     文中主要就PID控制、模糊控制、温度采集的硬件电路、如何抗干扰进行了研究,在一定程度上提高了温度控制的精确度。
With development of the national economy and the industry progress, in our country mould plastics in shaping trade has obtained the rapid development in the nearly several dozens years. As mainly processing tools, because it has some advantages and irreplaceable function in shaping trade, it will be widely used in many domains. In plastic injection, the temperature of the plastic melting body is a very important parameter. Low and too high temperature will influence the final quality of the products. It helps to improve the utilization ratio of raw materials and product quality in moulding plastics if accurate temperature is controlled. In plastic processing, temperature control mainly includes the temperature control of material tube, spray nozzle and mould. The material tube temperature is the material tube skin heating temperature. The material tube wall quite is thick, therefore how to choose the thermo-element check point is extremely essential. On the different check point the temperature curve has big difference. So the two point parallel examination, namely simultaneously establishes the thermo-element in the material tube surface and the deep place, will obtain the quite stable temperature curve and be advantageous in the temperature control.
     At present the domestic injection molding machine temperature control system mostly has arranged the PID parameter neatly before programming the predecessor, namely programming the parameter in the procedure. Although this method can obtain the quite good control effect, but it has some shortcomings: (l)Artificial installation parameter is time-consuming, hard sledding, also the installation effect seriously relies on the experience of installators.(2)The solidification parameter control system all uses the same PID controlled variable in the identical model injection molding machine, It has neglected the difference of each injection molding machine performance, not -impossible to enable each injection molding machine all to achieve the optimum control effect. (3)After injection molding machine spare part replace, if it needs to adjust the PID parameter, it must do the artificial installation parameter and programs again.
     To the situation the Shenzhen Baike machinery limited company, we proposed that separate the PID parameter from the procedure and lay it aside in an independent memory area. The procedure obtains or t revises the PID parameter through reading or writing this memory area. After accepting the order to renew the parameter, the procedure can carries on the parameter self regulating to the system automatic modelling and accordmg to the model to decide, finally renovates the memory region laying aside the parameter.
     It not only has avoided the tedious artificial installation, but also PID parameter of each injection molding machine comes out under its most reasonable model. Each injection molding machine can achieve the most superior control effect. Even if the injection molding machine needs to renew the controlled variable, it only needs to operate on the kneading board the hypothesis key to come again the installation system parameter, simplified the system maintenance working.
     The PID control, the fuzzy control, the temperature gathering hardware electric circuit, how to conduct antijamming has mainly been researched. The temperature examination precision Enhanced to a certain extent.
引文
[1] 钟汉如编.注塑机控制系统.北京:化学工业出版,2004
    [2] 成都工学院编.塑料挤出机与注射机的电气装置.北京:轻工业出版社,1980
    [3] 王兴天编.注塑技术与注塑机.北京:化学工业出版社,2005
    [4] 张福臣编.液压与气压传动.北京:机械工业出版社,2006
    [5] 李忠文,朱国宪编.注塑机电子电气电路.北京:化学工业出版社,2006
    [6] 王广春编.快速原型技术及其应用.北京:化学工业出版社,2006
    [7] 金波,宁德胜,许明.注塑机控制系统的现状及发展趋势,液压气动与密封[J],2006.01:7~10
    [8] 赵春晖.注塑过程监控系统的设计与监测方法的研究[D].东北大学,2006
    [9] 谢胜利等编.信号处理的自适应理论.北京:科学出版社,2006
    [10] 金卫国.注塑机料筒温度的模糊控制.机械与电子[J],2006.3:40—41
    [11] 陈飞飞.基于DSP的模块式注塑机微机控制系统研究[D].浙江大学,2005
    [12] 陶永华,尹怡欣,葛芦生编.PID控制.北京:机械工业出版社,1998
    [13] 金波,沈海阔,汤进举,陈鹰.注塑机料筒温度模糊变系数PID控制研究.中国机械工程[J],2005.5:395—398
    [14] 陈昶.注塑机射料管温度的模糊控制.电子技术[J],2000.2:38—40
    [15] 钱锐编.PLC应用技术.北京:科学出版社,2006。
    [16] 吴麒,高黛陵编.控制系统的智能设计.北京:机械工业出版社,2003
    [17] 白方周,庞国仲编.多变量频域理论与设计技术.北京:国防工业出版社,1988
    [18] 柴天佑编.多变量自适应解耦控制及应用.北京:科学出版社,2001
    [19] 赵文峰编.控制系统设计与仿真.西安电子科技大学出版社,2002
    [20] 飞思科技产品研发中心.MATLAB 7辅助控制系统设计与仿真.北京:电子工业出版社,2005
    [21] 姜忠良,陈秀云编.温度的测量与控制.北京:清华大学出版社,2005
    [22] 朱良宏编.实用温度控制线路50例.上海:上海科学技术出版社,1992
    [23] 黄泽铣编.热电偶原理及其检定.北京:中国计量出版社,1993
    [24] 张永枫.热电偶冷端温度智能补偿与检测.传感器技术[J],2001.06:38—40
    [25] 马文华编.嵌入式系统设计与开发.北京:科学出版社,2006.03
    [26] 梁晓萌.刘文彬.基于ARM硬件平台和嵌入式Linux操作系统的注塑机智能控制器的研制.机电工程技术[J],2006.2:40—43
    [27] 杜春雷编.ARM体系结构与编程.北京:清华大学出版社,2003
    [28] 季昱,林俊超,宋飞著.ARM嵌入式应用系统开发典型实例.北京:中国电力出版社,2005
    [29] Miltiadis V. Papa lexandris. Feedback Control of Thermal Systems Modeled via the Network Approach. Journal of Dynamic Systems, Measurement, and Control, Volume: 126, Issue: 3, 2004 (9): 509-519
    [30] D. C. Sheats, Z. S. Rothand J. W. Snyder. Auto tune of PID Temperature Control Based on Closed-loop Step Response Tests. AIP Conference Proceedings, Volume: 823, April 27, 2006:259-266
    [31] J. Q. Gong and Bin Yao. Output Feedback Neural Network Adaptive Robust Control With Application to Linear Motor Drive System , Journal of Dynamic Systems, Measurement, and Control , Volume: 128, Issue: 2, June 2006:227-235
    [32] W. Menzell and J. KassnerNovel. Techniques for packaging and interconnects in mm-ave comunication front-ends. IEE Seminar on Packaging and Interconnects at Microwave and MM-Wave Frequencies, 2000 (83):1
    [33] H.L. Cather andK. H. Chan .An integrated approach to computer aided estimating. 4th International Conference on AdvancedFactoryAutomation, 2000 (CP398):349 -355
    [34] Sun. Shu Huang Optimum topology design for the stationary platen of a plastic injection machine Computers in Industry, 2004(10):147-158
    [35] Kato, Takehiro, Ihara, Tohru. The evolution method by changing software on the machine tool tobe adapted for production culture (2nd report, the plastic molding manufacturing). Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, 2005(2): 693-698
    [36] Mendes, Jose; Fonseca, Jaime. Application of a web-based monitoring and control system in plastic rotational moulding machine. Proceedings of the IEEE International Conference on Industrial Technology, v 2, Proceedings of the 2004 IEEE International Conference on Industrial Technology, ICIT, 2004:819-820
    [37] Kleinebrahm, M. Injection moulding machine control technology. Kunststoffe Plast Europe, v 91, n5, 2001(5): 26-28
    [38] Juang, Chia-Feng. Mold temperature control of a rubber injection-molding machine by TSK-type recurrent neural fuzzy network. Neurocomputing, v 70, n 1-3, December, 2006: 559-567
    [39] Diduch, Chris; Li, Wan Gui . Temperature control in injection molding. Part II: Controller design, simulation, and implementation. Polymer Engineering and Science, v 44, nl2, December, 2004, p 2318-2326
    [40] Jarosch, Peter , Wonberg, Johannes; Kamps, Thomas . Comparison of drive concepts on injection molding machines under production conditions. Annual Technical Conference - ANTEC, Conference Proceedings, v 1, ANTEC 2004 -Annual Technical Conference proceedings, Volume 1: Processing, 2004, p 480-484
    [ 41 ] Sombatsompop, N. Chaiwattanpipat, W. Temperature profiles of glass fibre-filled polypropylene melts in injection moulding. Polymer Testing, v 19, n6, Sep, 2000, p 713-724
    [42] Qin, X. Thompson, M. R. ; Hrymak, A. N. ; Torres, A . Rheology studies of polyethylene/chemical blowing agent solutions within an injection molding machine. Polymer Engineering and Science, v45, n8, August, 2005, p 1108-1118
    [43] Sombatsompop, N. Chaiwattanpipat, W. Temperature profiles of glass fibre-filled polypropylene melts in injection moulding Polymer Testing, v 19, n6, Sep, 2000, p 713-724

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700