GAP贫氧推进剂热分解特性与燃速相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了GAP(聚缩水甘油叠氮化物)的固化体系。通过调节固化参数,选择合适的固化剂和交联剂体系,添加安定剂以及改进工艺步骤等方法,解决了GAP预聚物及GAP贫氧推进剂制备工艺中的关键技术;采用添加扩链剂的方法改善了GAP贫氧推进剂的力学性能;最后研制出一个可实用的GAP贫氧推进剂配方。
     采用差示扫描量热法(DSC)与高压差热分析法(PDTA),系统研究了GAP贫氧推进剂中主要组分以及GAP模拟推进剂的常压与高压热分解特性。同时考察了过渡金属氧化物(TMO)对上述体系常压与高压热分解特性的影响。实验结果表明,在不同压强下,贫氧推进剂各组分的热分解特征有所不同;在同一压强下,TMO催化剂对贫氧推进剂中不同组分的催化作用不尽相同;同一催化剂,在不同压强下对同一组分的催化能力也不同。
     采用直联式非壅塞固体火箭冲压发动机法,测定了GAP贫氧推进剂的低压燃速。测试结果表明,GAP贫氧推进剂具有点火延迟期短、燃速高、燃速对压强敏感性强等优点,且某些TMO催化剂如MoO_3、Co_2O_3等可显著提高GAP贫氧推进剂的燃速。
     研究结果表明,GAP贫氧推进剂的燃速与AP/KP/GAP模拟贫氧推进剂及其主要组分的热分解性能有一定的相关性。具体表现在:GAP/TMO贫氧推进剂的燃速与常压下TMO催化剂对AP/KP/GAP模拟贫氧推进剂中GAP和KP热分解的催化作用相关。Co_2O_3和CuO对AP的高效催化作用也是提高GAP贫氧推进剂燃速的一个原因。
The curing system of GAP (Glycidyl Azide Polymer) has been studied. The processing techniques to manufacture GAP net polymer and GAP fuel-rich propellant were determined by means of careful selections of curing parameter,proper curative and crosslinking agent,addition of stabilizer and etc. The mechanic property of GAP propellant was modified by addition of chain extender. As a result,the GAP fuel-rich propellant was developed.
    By means of DSC and PDTA methods,the thermal decomposition characteristics of GAP model fuel-rich propellant and its ingredients at both 0.1 and 0.5 MPa were investigated. The actions of TMOs on the thermal decomposition properties of the above-mentioned system were studied. The results showed that the environmental pressure and catalysts have various actions on the thermal decomposition characteristics of the propellant and its ingredients.
    The burning rates of the GAP/TMO fuel-rich propellants were measured by use of the pipe-connected unchoked ducted rocket testing facility. The GAP fuel-rich propellant showed short ignition delay time,high burning rate,and sensitive to variation of gas generator pressure. The results also showed that some TMO,such as MoO3 and 0203 can increase the burning rate of the GAP fuel-rich propellant.
    The experimental results also showed that there is a correlation between the burning rates of GAP fuel-rich propellant and the thermal decomposition temperature of KP and GAP. The effective catalysts of AP thermal decomposition,Co2O3 and CuO,can also increase the burning rate of the GAP fuel-rich propellant.
引文
[1] 刘兴洲等.飞航导弹动力装置.导弹与航天丛书,北京:宇航出版社,1992
    [2] 达维纳A主编,张德雄等译.固体火箭推进剂技术.北京:宇航出版社,1997
    [3] 汪亮.固体火箭冲压发动机综述.96联合推进会议论文集,1996
    [4] 张炜等.新型推进动力装置—冲压发动机.99固体火箭发动机学术交流会论文集,1999
    [5] 张克勤.冲压推进技术评论.推进技术,1990,3:1
    [6] Biass E. H. and Richardson D. Ramjet, the Air-breathing Engine with no Serviceable Parts Inside. ARMADA International, 1996, 4:34
    [7] 梁守磐,王树声.冲压发动机的展望.推进技术,1986,1:1
    [8] 于守志,王绍卿.地空导弹对冲压发动机的要求.推进技术,1986,6:16
    [9] 龚世杰.GAP推进剂综述.推进技术,1991,1:67
    [10] 王永寿译.GAP—先进固体火箭推进剂含能组分(综述).飞航导弹,1993,9:28
    [11] 杜磊,姜志荣,钱维松.含能材料的新进展.出国考察报告.1990,1:46
    [12] 庞爱民,吴京汉.GAP/B贫氧富燃洁净推进剂用于固体火箭冲压发动机的前景分析.特种推进剂研讨会论文集,1997:59
    [13] 庞爱民.国外GAP推进剂研制现状.固体火箭技术,1994,2:46
    [14] 彭培根等.固体推进剂性能及原理.长沙:国防科技大学,1987
    [15] 张仁.固体推进剂的燃烧与催化.长沙:国防科技大学出版社,1992
    [16] 张炜等.冲压发动机发展现状及其关键技术.固体火箭技术,1998,3:24
    [17] Davenas A. History of the Development of the Solid Rocket Propellant in France. J. Propul. Power, 1995, 11(2):287
    [18] 郭振玲.法国冲压发动机研制情况介绍.飞航导弹,1994,4:24
    [19] Webster F. F. Ramjet Development Testing: Are We Doing It Right? AIAA-87-2185
    [20] 吕希诚.我国富燃料固体推进剂发展的回顾与展望.特种推进剂研讨会论文集,1997:53
    [21] 朱平如.我国早期贫氧固体推进剂研制,H9009-3-2/5898
    
    
    [22] 杨为民.富燃料固体推进剂的发展研究,H8934-2-6/5433
    [23] 李文新等.火箭冲压发动机贫氧推进剂研制.推进技术,1985,(1):54
    [24] Macek A. et al. Combustion of boron particles at atmospheric pressure. AIAA-69-562
    [25] 姜栋华等.中能贫氧推进剂提高性能的研究.推进技术,1992,(5):68
    [26] Mitsuno M. Combustion of metallized propellants for ducted rockets. AIAA-87-1724
    [27] Stockholm C. et al. Combustion properties of fuel-rich magnesium propellants with HTPB binds. N85-15924
    [28] 张炜等.低压下贫氧推进剂燃烧性能测试方法研究.含能材料,1999,3:118
    [29] Fourest B. and Masson C. Rescherche et development de pro-pergols aerobies a fort exposant de pression[C]. Proc. of the 21st Int. Annu. Conf. of ICT, 1993, 39/1-14
    [30] 张炜,朱慧等.镁铝中能贫氧推进剂燃烧性能初探.火炸药学报,1998,3:4
    [31] 张炜,朱慧,薛金根等.铝镁贫氧推进剂低压可燃极限研究.推进技术,1999,20(2):95
    [32] 薛金根,张炜,朱慧等.铝镁中能贫氧推进剂研究.99固体火箭发动机学术交流会论文集,1999
    [33] 王永寿译.GAP的合成及其特性,飞航导弹,1999,2:24
    [34] 张炜,朱慧等.用于燃气流量可调固冲发动机的贫氧推进剂.推进技术,1999,5
    [35] 仝玉社.GAP贫氧推进剂及其组分的热分解性能研究[学士学位论文]. 长沙:国防科技大学五系,2000
    [36] 鲁国林,夏强等.丁羟推进剂粘合剂体系固化催化研究.推进技术,1998,6:97
    [37] 方丁酉等.固体火箭发动机内弹道学.长沙:国防科技大学出版社,1997,10
    [38] Fisher S A, 李存杰译.作为导弹推进系统的现代冲压发动机.飞航导弹,1992,10:28
    [39] 张景春. 固体推进剂化学与工艺.长沙:国防科技大学出版社,1987
    [40] 吴祝俊等.叠氮推进剂性能研究.中国航天第三专业信息网第二十一届技术信息交流会论文集,2000
    [41] 洪啸吟,冯汉保.涂料化学.北京:科学出版社,1997
    [42] 庞爱民,张汝文,吴京汉.GAP推进剂力学性能初步研究.固体火箭技
    
     术,1995;2:31
    [43] Bircumshaw L. L. et al. The thermal decomposition of ammonium perchlorate. Proc. Roy. Soc. ,1954,227:115
    [44] Jacobs P. W. M. et al. The thermal decomposition of ammonium perchlorate at low temperature. Proc. Roy. Soc. ,1960,254:455
    [45] Jacobs P. W. M. et al. Thermal decomposition of ammonium perchlorate. J. Chem. Soc. , 1959,3:837
    [46] Jacobs P. W. M. et al. Thermal decomposition of ammonium perchlorate. J. Phys. Chem. , 1968,72:202
    [47] Kurt H. S. et al. Mechanism of the isothermal decomposition of potassium perchlorate. J. Phys. Chem. , 1960, 64(11) : 1781
    [48] 庞爱民,叠氢粘合剂推进剂热分解剂燃烧性能综述.固体火箭技术, 1993,4
    [49] H. T. Feng et al. Thermal analysis of branched GAP. Thermochimia Acta, 1998, 311:105
    [50] David E. G. Jones et al. Thermal analysis of GAPTRIOL-an energetic azide polymer. Thermochimia Acta, 1994, 242:187
    [51] H. ARISAWA and T. B. BRILL. Thermal Decomposition of Energetic Materials 71: Structure Decomposition and Kinetic Relationships in Flash Pyrolysis of Glycidyl Azide Polymer(GAP). Combustion and Flame, 1998, 112:533
    [52] Yoshio Oyumi. Thermal Decomposition of Azide Polymers. Propellants, Explosive & Pyrotechnics, 1992, 17:226
    [53] K. SELIM et al. Thermal Characterization of GAP and GAP-Based Binders for Composite Propellant. Journal of Applied Polymer Science, 2000, 77:538

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700