改性聚醚醚酮增韧环氧树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂(Epoxy resin,简称EP)由于在强度、模量、热稳定性及耐湿热、耐化学性方面的突出优点而成为应用广泛的基体树脂。但因其固化后交联密度高、质脆等缺点,在很大程度上限制了它在某些高技术领域的应用。因此,对EP增韧研究具有非常重要的理论价值和现实意义。本文在综述了目前国内外环氧树脂增韧方法与机理的基础上,提出了将聚醚醚酮(PEEK)进行化学改性后用于增韧环氧树脂的新思路。主要的研究内容和结论如下:
     1、以PEEK为原料、浓硫酸为磺化剂,制备了不同磺化度的磺化聚醚醚酮(SPEEK)。研究结果表明,SPEEK的热稳定性好,在400℃以下SPEEK热失重小于3wt%;SPEEK的磺化度随着反应时间和反应温度的增加而提高;与PEEK相比,SPEEK的结晶性下降。SPEEK经过氯甲基化和胺化改性,得到苯环上具有-SO_3H和-CH_2N(CH_3)_2基团的改性PEEK。
     根据实验数据计算,得到了PEEK磺化反应动力学参数,即表观活化能Ea=35.48kJ/mol,反应速率常数k=2266.5×exp(4267.5/T)。
     2、利用非等温差示扫描量热法(DSC)分析,确定了改性PEEK/EP树脂体系的固化工艺制度:80℃/2h+125℃/2h+180℃/3h,得到了改性PEEK/EP体系的固化反应表观活化能ΔE=63.82kJ/mol,反应级数n=0.964,固化反应的动力学方程为:dα/dt=1.792×10~7exp(-7676.2/T)(1-α)~(0.964)。对改性PEEK/EP体系的固化反应机理进行了初步分析。
     3、对改性PEEK/EP体系力学性能进行了研究。常温下稳定性好,黏度变化小,凝胶时间较长,在高温下对温度敏感,具有良好的高温反应活性,可以满足施工工艺性要求。改性PEEK在增韧环氧树脂的同时,使固化体系拉伸强度、弯曲强度、弹性模量、断裂伸长率均有不同程度的提高。在实验条件下得到该改性树脂最大拉伸强度、弯曲强度、冲击韧性、断裂伸长率为71MPa、142.3MPa、23.1kJm~(-2)和4.13%,分别比纯环氧固化物提高了24.6%、53%、151%和56%。当树脂体系中改性PEEK含量为8wt%时,断裂韧性K_(IC)达到最大值2.169MPa.m~(1/2),比纯环氧树脂试样提高了1.1倍。
     4、DMA测试表明,改性PEEK的加入较好地改善树脂体系的热性能。改性树脂的玻璃化温度Tg、起始分解温度T_(onset)随着改性PEEK含量的增加而升高,储能模量E′在Tg以下随着改性PEEK的含量的增加而增大。其长期使用温度为186.7℃。
     5、根据DMA、SEM、FT-IR测试结果,初步提出了PEEK和改性PEEK增韧环氧树脂的增韧机理。以分散相颗粒的桥联和钉锚作用为主导,基体屈服共同作用的增韧机理。由于改性PEEK极性基团进入固化交联网络而成为网络结点,起到了较好的应力分散和承受应力的作用,增韧效果更好。
Recently, Epoxy resins (EP) have attracted growing attention because of their outstanding advantages on strength, modulus, thermal stability, and heat, moisture and chemical resistance, making them widely used in many applications as resins matrixs. However, Epoxy resins suffer from their high joint density and brittleness of the cured resins, which limited them applications in many high-tech fields. Thus, it is necessary to investigate the toughening EP for their theoretical and practical researches. In this dissertation, the methods and mechanisms of toughening EP have been reviewed, and a view to toughen epoxy resins by poly(ether ether ketone) (PEEK) which was modified by chemical method had been proposed based on experimental results. Main contents and conclusions of this dissertation are as follows:
     (1) SPEEK with different degree of sulfonation was synthesized by using sulfonation reactions of PEEK and concentrated sulfuric acid. The results indicated SPEEK exhibit excellent thermal stability, displaying less than 3 wt% weight loss at 400℃. The degree of sulfonation of SPEEK increases with the enhancement of the reaction temperature and time. Compared with PEEK, the crystallinity of SPEEK was identified to decrease. It was found that the modified-PEEK with -SO_3H and -CH_2N(CH_3)_2 groups could be obtained by the chlorinemethylation and the amination modification.
     According to the experimental data, the dynamics parameters of PEEK sulfonation reaction was calculated. The activation energy of sulfonation reaction Ea was 35.48 kJ/mol, and constant k was 2266.5 exp (4267.5/T).
     (2) By using DSC, the processing of the curing for the modified PEEK/EP system was ascertained to be 80℃/2h+125℃/2h+180℃/3h. The activation energy E of the solidification reactions of modified-PEEK/EP system is 63.82 kJ/mol, and the order of reaction n and the dynamic equation of the solidification reaction dα/dt are 0.964 and 1.792×10~7 exp(-7676.2/T )( 1-α)~(0.964), respectively. Furthermore, the curing reaction mechanism of was the modified PEEK/EP system discussed.
     (3)The mechanical properties of modified-PEEK/EP system were examined. The modified-PEEK/EP system exhibits superior stability with less change of viscosity and longer gelation time at the room temperature, and sensitive to temperature with better high temperature reaction activity at the high temperature. All these properties of modified-PEEK/EP system can satisfy the requirement of practical applications. The modified-PEEK/EP solidification system displays higher toughness, tensile strength, bending strength, elasticity coefficient and fracture elongation ratio compared wtih EP. The maximum of tensile strength, bending strength, impact intensity and fracture elongation ratio get about 71 MPa, 142.3 MPa, 23.1 kJ/m2 and 4.13%, respectively. Compared with the pure epoxy resin, modified-PEEK/EP system displays superior mechanical properties. The maximum of fracture toughness K_(IC) is up to 2.169 MPa.m~(1/2), which is 2.1 times of pure EP solidification system.
     (4)The results of DMA analysis indicated that modified PEEK improved the thermal properties of the resin system. The glass transition temperature Tg and the onset temperature T_(onset) of resin system increased with the enhancement of modified-PEEK content, and storage modulus E' elevated with the increase of modified PEEK content below Tg. The long-term application temperature of the modified resins was up to 186.7℃.
     (5) According to the results of DMA, SEM and FT-IR, the toughening mechanism of PEEK and modified-PEEK toughening EP were discussed initially. The toughening of PEEK and modified-PEEK toughening EP rely on the cooperation effect of bridge-link anchor of the dispersed phase, piaying the leading role and the effect of shearing-bending of the matrix in the secondary position. The toughening effect of modified PEEK exhibit more effective, which are ascribed to the contribution of the polar groups of modified-PEEK. Entrance of the polar groups of modified-PEEK into the solidification joint network, becoming the network points, played an important role of dispersing and enduring stress.
引文
[1]王德中.环氧树脂生产与应用.北京:化学工业出版社,2001
    [2]孙曼灵.环氧树脂应用原理与技术.北京:机械上业出版社,2002
    [3]赵玉庭,姚希曾.复合材料聚合物基体.武汉:武汉工业大学出版社,1996
    [4]N. Chikhi, S. Fellahi, ,M. Bakar. Modification of epoxy resin using reactive liquid (ATBN) rubber. European Polymer Journal, 2002, 38(2): 251-264
    [5]A. Ozturk, C. Kaynak ,T. Tincer. Effects of liquid rubber modification on the behaviour of epoxy resin. European Polymer Journal, 2001, 37(12) :2353-2363
    [6]vitsukazu Ochi, Takahide Morishita, Shinobu Kokufu ,et al. Network chain orientation in the toughening process of the elastomer modified mesogenic epoxy resin. Polymer, 2001, 42 (24): 9687-9695
    [7]C. Kaynak, E. Sipahi-Saglam,G. Akovali. A fractographic study on toughening of epoxy resin using ground tyre rubber. Polymer, 2001, 42(9):4393-4399
    [8]J. He, D. Raghavan, D. Hoffman, et al. The influence of elastomer concentration on toughness in dispersions containing preformed acrylic elastomeric particles in an epoxy matrix. Polymer, 1999, 40(8):1923-1933
    [9]Laurent Jayle, Clive B. Bucknall, Ivana K. Partridge, et al. Ternary blends of epoxy, rubber and polycarbonate: phase behaviour, mechanical properties and chemical interactions. Polymer, 1996, 37 (10):1897-1905
    [10]A. H. Rezaifard, K. A. Hodd, D. A. Tod ,et al Toughening epoxy resins with poly (methyl methacrylate)-grafter-natural rubber, and its use in adhesive formulations. International Journal of Adhesion and Adhesives, 1994, 14(2):153-159
    [11]Takao Iijima, Naoto Yoshioka, Masao Tomoi.Effect of cross-link density on modification of epoxy resins with reactive acrylic elastomers. European Polymer Journal, 1992, 28 (6): 573-581
    [12]W. F. Yang,Y. Z.We.A study on the toughening mechanism of rubber-modified polyfumctional epoxy-resins. Materials Chemistry and Physics, 1986, 15(6):505-510
    [13]A. J. Kinloch, S. J. Shaw, D. A. Tod, et al. Deformation and fracture behaviour of a rubber-toughened epoxy:1.Microstructure and fracture studies. Polymer, 1983, 24(10): 1341-1354
    [14]Alan C. Meeks. Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins. Polymer, 1974, 15(10):675-681
    [15]罗延龄,薛丹敏.活性端基液体橡胶增韧环氧树脂研究概况.石化技术与应用,2001,19(5):316-320
    [16]张彦中,沈超.液体端羧基丁腈(CTBN)增韧环氧树脂的研究.材料工程,1995,5:17-19
    [17]冯海波,卿宁.聚氨酯互穿网络结构聚合物研究进展及其应用.皮革化工,2004,21(3):4-9
    [18]孙涛,官建国,余剑英等.端氨基聚氨醋的合成及增韧环氧树脂的研究.高分子材料科学与工程,2005,21(1):117-120,124.
    [19]朱永群,胡巧玲.同步互穿和顺序互穿对PU/EP IPN性能及微结构的影响.高分子材料科学与工程,1999,15(6):148-150
    [20]夏建陵,商士斌,谢晖,等.丙烯酸改性松香基环氧/聚氨酯IPN的研究.热固性树脂,2004,19(3):9-13
    [21]陈同蕙,孙仁慈,穆力,等.聚碳酸酯型聚氨酯——环氧树脂IPN的性能及结构形态.聚氨酯工业,1999,14(1):12-16
    [22]胡巧玲,朱永群,付晏彬,等.光固化型聚氨酯环氧树脂IPN的制备与表征.高分子材料科学与工程,1999,15(5):172-175
    [23]郑耀臣,陈芳,夏晓平,等.环氧-聚丙烯酸酯互穿网络防腐蚀涂料的研制.腐蚀与防护,2002,23(8):367-368,343
    [24]张玲,韦亚兵,李军.半互穿网络法增韧环氧树脂胶粘剂的研究.现代化工,2003,23(12):32-34
    [25]韦亚兵,张玲,李军.互穿网络法增韧环氧树脂胶粘剂的研究.中国胶粘剂,2002,11(1):6-8
    [26]赵洪池,高俊刚,李燕芳,等.双酚F环氧/聚甲基丙烯酸甲酯互穿网络的研究.热固性树脂,2004,19(4):1-4
    [27]杨亚辉,吴曼琼.聚脲基氨酯增强增韧环氧树脂研究.合成树脂及塑料,2001,18(1):12-14
    [28]Ying Li, Sufen Mao. First total synthesis and absolute configuration of marine cembrane diterpenoid(+)- 11,12-epoxysarcophytol A. Journal of Applied Polymer Science, 2000, 41(13):2181-2195.
    [29]Lange F. F. Model for the toughness of epoxy-robber particulate filled epoxide resins. PhilMag, 1970, 27(22):983-985
    [30]梁伟荣,王惠民.热致液晶聚合物增韧环氧树脂的研究.玻璃钢/复合材料,1997,(4):3-4
    [31]Jun Yeob Lee,Tvong Sik Jang. IR study of hydrogen bonding in novel liquid crystalline epoxy/GEBA blends. Polymer Bulletin, 1997,38(4):439
    [32]陈立新,王汝敏,常鹏善.液晶环氧/二元胺/CYD-128体系固化行为的研究—性能及增韧机理.热固性树脂,2001,16(3):1-4
    [33]常鹏善,左瑞霖,王汝敏,等.一种液晶环氧增韧环氧树脂的研究.高分子学报,2002,(5):682-684
    [34]R Punchaipetch,V. Ambrogi, M.Giamberini,et al. Epoxy+Liquid Crystalline Epoxy Coreacted Networks:Ⅱ.Mechanical Properties. Polymer, 2002, 43:839-848
    [35]Bao long Zhang, Guang Liang Tang, Ke Yu Shi,et al .A study on the properties of epoxy resin toughened by a liquid crystal-type oligomer. Journal of Applied Polymer Science, 1999, 71(1):177-184
    [36]熊佳,黄英,王琦洁,等.环氧树脂增韧研究进展.塑料,2004,33(3):58-61
    [37]赵莉.热致液晶聚合物增韧环氧树脂的途径和机理.绝缘材料,2004,3:62-64
    [38]时刻,黄英,廖梓,等.环氧树脂增韧改性的研究现状.现代塑料加工应用,2005,17(4):62-64
    [39]郑亚萍,宁荣昌.环氧树脂基纳米复合材料的研究进展.化工新型材料,1999,28(3):17-23
    [40]B. B. Johnsen, A. J. Kinloch, R. D. Mohammed, et al. Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer, 2007, 48(2):530-541
    [41]Xiaohua Zhang, Weijian Xu, Xinnian Xia, et al. Toughening of cycloaliphatic epoxy resin by nanosize silicon dioxide. Materials Letters, 2006, 60(28):3319-3323
    [42]董元彩,孟卫.环氧树脂/二氧化钛纳米复合材料的制备及性能.塑料工业,1999,27(6):37-38
    [43]Soo-Jin Park, Dong-Ⅱ Seo, Jae-Rock Lee. Surface Modification of Montmorillonite on Surface Acid-Base Characteristics of Clay and Thermal Stability of Epoxy/Clay Nanocomposites. Journal of Colloid and Interface Science, 2002, 251:160-165
    [44]Loic Le Pluart, Jannick Duchet, Henry Sautereau. Epoxy/montmorillonite nanocomposites: influence of organophilic treatment on reactivity, morphology and fracture properties. Polymer, 2005, 46:12267-12278
    [45]Aijuan Gu, Guozheng Liang.Thermal degradation behaviour and kinetic analysis of Epoxy/ montmorillonite nanocomposites. Polymer Degradation and Stability, 2003, 80:383-391
    [46]Qingming Jia, Maosheng Zheng, Hongxiang Chen,et al. Morphologies and properties Of polyurethane/epoxy resin interpenetrating network nanocomposites modified with organoclay. Materials Letters, 2006, 60:1306-1309
    [47]Isil Isik, Ulku Yilmazer, Goknur Bayram.Impact modified epoxy/montmorillonite nano composites: synthesis and characterization. Polymer, 2003, 44:6371-6377
    [48]Baochun Guo, Demin Jia, Changgeng Cal. Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. European Polymer Journal, 2004, 40: 1743-1748
    [49]N. Salahuddin, A. Moet, A. Hiltner, et al. Nanoscale highly filled epoxy nanocomposite. European Polymer Journal, 2002, 38:1477-1482
    [50]X. Kornmann, H.Lindberg, L.A.Berglund.Synthesis of epoxy-clay nanocomposites:influence of the nature of the clay on structure. Polymer, 2001, 42:1303-1310
    [51]肖泳.聚合物/粘土纳米复合材料最新进展.工程塑料应用,1998,26(8):28-30
    [52]Soo Jin Park, Dong Ⅱ Seo ,Nah Changwoon. Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/red mud nanocomposites. Journal of Colloid and Interface Science, 2002, 1:225-229
    [53]吕彦梅,唐华杰,候馨.刚性增韧材料.塑料科技,1999, 129(1):33-37
    [54]Wetzel Bernd,Haupert Frank, Zhang Mingqiu. Epoxy nanocomposites with high mechanical and triological performance. Composites Science and Technology, 2003, 63(14):2055-2067
    [55]R J DAY, P A LOVELL,A A WAZZAN. Toughened carbon/epoxy composites made by using core/shell particles. Composites Science and Technology, 2001, (61):41-56
    [56]蓝立文,陈立新.核壳聚合物增韧环氧树脂的进展.环氧树脂,2002,23(6):1-5
    [57]张保龙,王淑芳,黄吉甫,等.PVC与核壳结构聚丙烯酸酯及环氧树脂的共混增韧.高等学 校化学学报,1993,4:578-581
    [58]范宏,王建黎.PBA/PMMA型核壳弹性粒子增韧环氧树脂研究.高分子材料科学与工程,2001,17(1):121-124
    [59]李已明,王晓敏,自功健,等.以具有核壳结构的聚丙烯酸酯颗粒增韧环氧树脂胶粘剂.粘接,1993,14(1):1-4
    [60]张凯,郝晓东,黄渝鸿,等.用核壳型聚合物粒子增韧改性环氧树脂.化工新型材料,2003,31(12):14-17
    [61]Yan Cheng. Numerical and experimental studies on the behavior of rubbre-toughened epoxy inbulkspecirrenand laminated composites. Materials Science, 2002, 37(5):921-927.
    [62]Andreas Harting,Monika Sebaid,Mallte Kleemeier. Cross-linking of cationically polymerised epoxides by nanoparticles. Polymer, 2005, 46:2029-2039
    [63]张龙彬,朱光明.环氧树脂增韧的研究进展.塑料科技,2004,164(6):57-61.
    [64]Trong-Ming Don, Chao-Hsien Yeh. Structures and properties of polycarbonate-modiified epoxies from two different blending processes. Journal of Applied Polymer Science, 1999, 74(10):2510-2521
    [65]Kishi H, Shi Y B, Huang J,et al. Shear ductility and tough-enability study of highly cross- linked epoxy polyethersul-phone. Journal of Materials Science, 1997, 32(3):761-771.
    [66]K. Mimura, H. Ito, H. Fujioka.Improvement of thermal and mechanical properties by control of morphologies in PES modified epoxy resins. Polymer, 2000, 41 (12):4451-4459
    [67]Keizo Yamanaka, Takashi Inoue. Structrue development in epoxy resin modified with poly (ethersulphone). Polymer, 1989, (30): 662-667
    [68]Bong Sup Kim, Takashi Inoue. Dynamic mechanical and Fourier-transform infra-red analyses on the verylate stage of the cure process in thermoset/thermoplasticblends: trifunctional epoxy/ poly (ether sulfone). Polymer, .1995, (36): 1985-1989
    [69]Bong Sup Kim, Tsuneo Chiba, Takashi Inoue. Morphology development via reaction-induced phase separation in epoxy/poly(ether sulfone) blends: morphology control using poly(ether sulfone) with functional end-groups. Polymer, 1995, 36(1): 43-47
    [70]Clive B. Bucknall,Ivana K. Partridge Phase separation in epoxy resins containing polyether- sulphone. Polymer, 1983, 24(5): 639-644
    [71]王惠民,梁伟荣.聚醚砜/环氧树脂复合体系的研究.高分子材料科学与工程,1999,15(5):155-157
    [72]汪小华,刘润山.聚酰亚胺改性环氧树脂研究进展.热固性树脂,2004,19(2):34-39
    [73]蔡辉,闫逢元,陈建敏,等.聚酰亚胺的改性研究.材料科学与工程学报,2003,21(1):95-98
    [74]颜红侠,黄英.聚酰亚胺先进复合材料的研究进展.化工新型材料,2002,30(1):6-10
    [75]Hourston D J, Lane J M, The toughening of epoxy resins with thermoplastics: Trifunctional epoxy resin-polyetherimide blends. Polymer, 1992, 33(7):1379-1383
    [76]Clive B. Bucknall, Adrian H. Gilbert.Toughening tetrafunctional epoxy resins using poly-etherimide. Polymer, 1989, 30(2):213-217
    [77]陈鸣才.硝化聚酰亚胺/多官能团环氧树脂的相容性及断裂行为.厦门大学学报(自然科学版),1997,36(6):885-890
    [78]Chen, M. C., Hourston, D. J., Schafer, et al. Miscibility and fracture behaviour of epoxy resin-nitrated polyetherimide blends. Polymer, 1995, 36(17), 3287-3293
    [79]许一婷,邱志平.PEI及其改性物增韧环氧树脂研究.热固性树脂,2000,15(3):25-30
    [80]Jyongsik Jang, Seunghan Shin. Toughness improvement of tetrafunctional epoxy resin by using hydrolysed poly(ether imide). Polymer, 1995, 36(6):1199-1207
    [81]甘文君,余英丰,李善君.热塑性PEI改性TGDDM环氧树脂的相分离研究.工程塑料应用,2003,31(1):5-8
    [82]甘文君,李华,李善君.温度效应对氟链封端聚醚酰亚胺改性环氧树脂相分离的影响.高等学校化学学报,2004,25(11):2161-2165
    [83]Hourston Douglas J,Lane J M. PreparationofPEI/EP composites. Polymer, 1992, 33: 1397-1402
    [84]郭宝春,贾德民,傅伟文.聚醚酰亚胺对氰酸酯树脂/环氧树脂共混物的增韧作用.材料研究学报,2002,16(1):98-104
    [85]李善君,金坚勇,余英丰,等.新型聚醚酰亚胺改性环氧树脂结构粘合剂.热固性树脂,2001,16(4):8-11
    [86]左彦东,齐雪莹,于磊.新兴环保材料聚砜的性能及用途.黑龙江环境通报,2003,2:109-110
    [87]郭卫红,沈学宇,陈涛,等.聚砜微观结构及热性能研究.塑料工业,1997,4:92-94
    [88]I.Martinez, M. D. Martin, A. Eceiza, et al. Phase separation in polysulfone-modified epoxy mixtures: Relationships between curing conditions, morphology and ultimate behavior. Polymer,2000, 41(3):1027-1035
    [89]M.I. Giannotti, M.J. Galante, P,A, Oyanguren ,et al. Role of intrinsic flaws upon flexural behaviour of a thermoplastic modifie depoxy resin. Polymer Testing, 2003, 22:429-437
    [90]孙佳宁,谢续明,黄鹏程.聚砜改性环氧树脂共混体系相结构的控制.材料研究学报,1998,12(3):272-276
    [91]孙佳宁,谢续明.环氧树脂共混物相结构的调控方法研究.高等学校化学学报,1998,19(11):1857-1860
    [92]Varley R J., Hodgkin J H, Simon G P.Toughening of a trifunctional epoxy system Part Ⅵ. Structure property relationships of the thermoplastic toughened system. Polymer, 2001, 42: 3847-3858
    [93]孙志杰,殷立新,亢雅君.环氧聚砜共混体系粘弹特征研究.航空学报,2000,21:103-105
    [94]杨卉,谢续明.环氧树脂/聚砜共混体系相结构的调控研究—环氧预聚物分子量的影响.高分子学报,2000,2:215-218
    [95]闫华,刘吉平.聚碳酸酯合金的研究现状.塑料工业,2004,32(6):5-7
    [96]熊翰波,李复生,魏东炜,等.聚碳酸酯共聚改性的研究进展.塑料工业,2003,31(8):4-8
    [97]杜振霞,饶国瑛,南爱玲.聚碳酸酯分子量及其分布、热稳定性研究.高分子材料科学与工程,2001,17(2):53-56
    [98]Trong-Ming Don,Chao-Hsien Yeh, J P.Bell. Structures and properties of polycarbonate-modified epoxies from two different blending processes. Journal of Applied Polymer Science, 1999, 74(10): 2510-2521
    [99]Trong-Ming Don, J P Bell. Fourier transform infrared analysis of polycarbonate/epoxy mixtures cured with an aromatic amine. Journal of Applied Polymer Science, 1998, 69(12): 2395-2407.
    [100]容敏智,曾汉民.PC/EP单向纤维复合材料的力学性能与界面优化.高分子材料科学与工程,1999,15(2):20-23
    [101]容敏智,曾汉民.聚碳酸酯改性环氧树脂的结构与性能.材料研究学报,1994,8(2):169-175
    [102]郝冬梅,王新灵,唐小真.反应性聚碳酸酯/环氧树脂体系的反应活性与性能研究.高分子材料科学与工程,2002,18(1):107-110
    [103]Laurent Jayle, Clive B. Bucknall, Ivana K. Partridge,et al. Ternary blends of epoxy, rubber and polycarbonate: phase behaviour, mechanical properties and chemical interactions. Polymer, 1996, 37(10):1897-1905
    [104]刘俊先,王汝敏.聚醚酮增韧酚醛树脂基复合材料的研究.热固性树脂,2004,(2):12-13
    [105]王荣国,谢怀勤,刘文博.连续玻璃纤维增强聚醚砜和聚醚酮的力学性能研究.纤维复合材料,1995,37:37-41
    [106]陈连周,高峡,赛锡高,等.一种新型甲基芳杂环聚醚酮的合成及表征.高分子材料科学与工程,2000,3:158-159
    [107]王晓洁,张炜,谢群炜.热塑性树脂改性环氧基体配方研究.宇航材料工艺,1999,2:21-23
    [108]金林生.综述环氧树脂的强韧化.热固性树脂,1995,2:52
    [109]Zhikai Zhong, Sixun Zheng,Jinyu Huang, et al. Phase behaviour and mechanical properties of epoxy resin containing phenolphthalein poly(ether ether ketone). Polymer, 1998,39(5): 1075-1080
    [110]Bejoy Francis, Geert Vanden Poel, Fabrice Posada, et al. Cure kinetics and morphology of blends of epoxy resin with poly (ether ether ketone) containing pendant tertiary butyl groups. Polymer, 2003, 44(13):3687-3699
    [111]S.W.Ha, R.Hauert, K.H.Ernst, E.Wintermantel.Surface analysis of chemically-etched and plasma-treated polyetheretherketone for biomedical applications. Surface and Coatings Technology, 1997, 97:293-299
    [112]D.R. McKenzie, K. Newton-McGee, P. Ruch,et al. Modification of polymers by plasma- based ion implantation forbiomedical applications. Surface and CoatingsTechnology, 2004,186:239-244
    [113]P. Laurens, B. Sadras, F. Decobert,at el. Modifications of polyether-etherketone surface after 193 nm and 248 nm excimer laser radiation. Applied Surface Science, 1999,138:93-96
    [114]P. Laurens, M. Ould Bouali, F. Meducin, B. Sadras. Characterization of modifications of polymer surfaces after excimer laser treatments below the ablation threshold. Applied Surface Science, 2000, 154:211-216
    [115]钟明强,益小苏,Jacobs O.短碳纤维增强注塑聚醚醚酮复合材料微观结构与力学性能研究.复合材料学报,2002,19(1):12-16
    [116]C. Y. Barlow, J. A. Peacock ,A. H. Windle. Relationships between microstructures and fracture energies in carbon fibre/PEEK composites. Composites, 1990, 21(5): 383-388
    [117]K. Fujihara, Zheng-Ming Huang, S. Ramakrishna, et al, Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites. Composites Science and Technology, 2004, 64(16):2525-2534
    [118]Jan Sandier, Philipp Werner, Milo S.P. Shaffer,et al. Carbon-nanofibre-reinforced poly (ether ether ketone) composites. Composites: Part A , 2002, 33(8):1033-1039.
    [119]Qun-Ji Xue ,Qi-Hua Wang. Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC. Wear, 1997, 213 (2):54-58
    [120]G.S.Zhuang, G.X.Sui, H.Meng,et al. Mechanical properties of potassium titanate whiskers reinforced poly(ether ether ketone) composites using different compounding processes. Composites Science and Technology, 2007, 67(6): 1172-1181
    [121]M. S. Abu Bakar, P. Cheang, K. A. Khor. Tensile properties and microstructural analysis of Spheroidized hydroxyapatite-poly (etheretherketone) biocomposites. Materials Science and Engineering A, 2003, 345:55-63
    [122]Daoji Gan, Shiqiang Lu, Caisheng Song, et al. Physical properties of poly(etherketone ketone)/mica composites: effect of filler content. Materials Letters, 2001,48(5): 299-302
    [123]R.K.Goyal, A.N.Tiwari, U.P.Mulik,Y.S.Negi. Effect of aluminum nitride on thermo- mechanical properties of high performance PEEK. Composites Part A: Applied Science and Manufacturing, 2007, 38(9): 516-524
    [124]M.C. Kuo, C.M. Tsai, J.C. Huang,, M. Chen. PEEK composites reinforced by nano-sized SiO_2 and Al_2O_3 particulates. Materials Chemistry and Physics, 2005, 90:185-195
    [125]Bing Zhou, Xiangbo Ji, Ye Sheng, at el. Mechanical and thermal properties of poly-ether ether ketone reinforced with CaCO_3. European Polymer Journal, 2004, 40:2357-2363
    [126]Jong Hyun Yoo, Norman S. Eiss, Jr. Tribological behavior of blends of polyether ether ketone and polyether imide. Wear, 1993, 162:418-425
    [127]David L. Burris,W. Gregory Sawyer. A low friction and ultra low wear rate PEEK/PTFE composite. Wear, 2006, 261:410-418
    [128]Rosario E. S. Bretas, Donald G. Baird. Miscibility and mech,anical properties of poly(ether imide)/poly(ether ether ketone)/liquid crystalline polymer ternary blends. Polymer, 1992, 33 (24): 5233-5244
    [129]B.H.Stuart. A Fourier Transform Raman Behaviour of a Poly(ether ether ketone)/Poly(ether sulphone) blend]. Spectrochimica Acta Part A, 1997, 53:107-110
    [130]B.H.Stuart.Tribological Studies of Poly(ether ether ketone) Blends. ribological International, 1998, 31(11):647-651
    [131]Bishop M T, Karasz F E, Russo P S, et al. Solubility and properties of a poly(aryl ether ketone) in strong acids. Macromolecules, 1985, 18:86-93
    [132]A. Chambellan, T.Chevreau, S. Khabtou, et al. Acidic sites of steamed HY zeolites, active for benzene self-alkylation and hydrogenation. Zeolites, 1992, 13 (3): 306-314
    [133]宋文生,李磊,王宇新.磺化聚醚醚酮与聚砜共混膜导电与传质特性研究.膜科学与技术,2004,24(3):15-19
    [134]周兵.CaCO_3/PEEK复合材料的制备与性能研究.[博士学位论文],长春:吉林大学,2004
    [135]Christian Bailly,David J. Williams, Frank E. Karasz, et al.The sodium salts of sulphonated poly(aryl-ether-ether-ketone) (PEEK): Preparation and characterization. Polymer, 1987, 28(6):1009-1016
    [136]Lee J L,Choi H K, Shim M J,et al. Kinetic Studies of an Epoxy Cure Reaction by Isothermal DSC Analysis. Thermochimica Acta, 2000, 343:111-117.
    [137]Choi E J,Seo J C,Bae H K, et al. Synthesis and Curing of New Aromatic Azomethine Epoxies with Alkoxy Side Groups. European Polymer Journal, 2004, 40:256-265.
    [138]Assche G V, Hemelrijck A V, Rahier H,et al. Modulated Differential Scanning Calorimetry: Non-isothermal Cure,Vitrification,and Devitrification of Thermosetting System. Thermochimica Acta, 1996, 286:209-214.
    [139]Rocks J,Rintoul L, Vohwinkel F, et al. The Kinetic and Mechanism of Cure of an Amino -glycidyl Epoxy Resin by a Co-anhydride as Studied by FT-Raman Spectroscopy. Polymer, 2004, 45:6799-6811
    [140]刘静,赵敏,张荣珍,等.FTIR法研究环氧树脂固化反应动力学.功能高分子学报,2000,13:207-210
    [141]程义云,陈大柱,何平笙.环氧树脂/PAMAM体系的固化动力学研究.功能高分子学报,2004,17:661-665
    [142]易长海,尹业高,李建宗.环氧树脂潜伏性体系固化反应动力学研究.热固性树脂,2000,15(1):13-15
    [143]范永忠,孙康,吴人洁.热固性树脂固化的非模型反应动力学研究.高分子材料科学与工程,2001,17(1):60-63
    [144]朱铭诤.基于DMA技术的环氧树脂耐热性能研究.[硕士学位论文],武汉:武汉理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700