高压下硅锗合金相演化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用同步辐射光源、金刚石对顶砧和多砧大压机设备分别研究了室温和高温条件下不同组分硅锗合金在高压下的压缩行为、相变反应和凝固等问题。
    高压原位同步辐射实验研究表明,Si_(50)Ge_(50) 合金在 0~8.7GPa 的压力范围内的状态方程可表示为: -(ΔV/V)-192789P-902072×10~(-1)P~2+2.4213×10~(-1)P~3-2.062×10~(-2)P~4
    氩弧炉熔炼的 Si_(50)Ge_(50) 合金样品因存在一定量的缺陷,在 0~1.5GPa压力范围内,体积压缩变化明显,且包含非弹性压缩形变;压力升高时,在 1.5~8.7GPa 范围内,体积变化率随压力变化较小,产生结构强化。
    通过对比实验发现,Si_(50)Ge_(50) 合金在金刚石对顶砧中金刚石立方结构到β-Sn 结构的转变压力低于多砧压机中的值。主要原因是金刚石对顶砧实验样品中存在的剪切应力促进金刚石立方结构到β-Sn 结构的转变。 通过研究 Si_(100-x)Ge_x 合金样品金刚石立方结构至β-Sn 结构相变时的压力值 PT 与成分 X 的关系,发现 Si_(100-x)Ge_x 合金随 Si 含量的增加 PT 值增大,但 PT与成分 X 并不符合简单的线性关系。 利用多砧压机设备结合同步辐射 X 射线衍射方法,进行了不同压力下硅锗合金的高压凝固实验。确定在 9GPa 至 9.5GPa 压力之间存在一个临界值,压力高于此临界值时,熔态硅锗合金凝固过程中首先固化为β-Sn 结构相,然后β-Sn 结构相转化为 ST-12 结构。压力低于此临界值时,熔态硅锗合金凝固时,直接固化为金刚石立方结构相。 关键词 硅锗合金;同步辐射;压致相变;高压凝固
Compression behavior, phase transition and solidification of various component Si-Ge alloys at room and high temperature under high pressure were studied by synchrotron radiation source, diamond anvil cell and multi-anvil press apparatus.
    The effect of pressure on compression behavior of Si_(50)Ge_(50) alloy has been studied by in situ synchrotron radiation high pressure technique. The equation of state for Si_(50)Ge_(50) alloy in the range of 0 to 8.7GPa pressure can be expressed as: -(ΔV/V)-192789P-902072×10~(-1)P~2+2.4213×10~(-1)P~3-2.062×10~(-2)P~4
    Volume compression changes were obvious and containing non-elasticitic deformation in the range of 0 to 1.5GPa because of the existence of defects in the samples melted in an argon arc furnace. With increasing pressure, volume change rate varied slowly to pressure, and structure strengthening was generated in the range of 1.5 to 8.7GPa.
    The critical pressure PT at which the cubic diamond structure in Si_(50)Ge_(50) alloy transited toβ-Sn structure within a diamond anvil cell was lower then that in the multi-anvil press. The main reason is that the shear stress existing in the diamond anvil cell favored the phase transition from cubic diamond structure toβ-Sn structure.
    PT value increased with the Si content in Si_(100-x)Ge_x alloys. But PT was not in a simple linear relationship with X.
    Solidification experiments of Si-Ge alloys under various pressures were carried out using the multi-anvil press and the synchrotron radiation X ray technique. An critical pressure, around 9 to 9.5GPa was determined. Higher than this pressure, the Si-Ge melt solidified into β-Sn structure first, and then transited to ST-12 structure. Lower than this pressure, the Si-Ge melt solidified into cubic diamond structure directly.
引文
1 E. Kasper.硅锗的性质.余金中.北京:国防工业出版社,2002:57-58
    2 张维连,孙军生,张恩怀. Si_xGe_(1-x) 合金晶体生长. 人工晶体学报,1997,29(5):97-98
    3 R.W. Olesinski, G.J. Abbaschian. The Ge-Si (Germanium-Silicon) system . Bull. Alloy Phase Diagrams(USA).1984,5:180-183
    4 S. Minomura, H.G. Drichamer. Pressure induced phase transitions in silicon, germanium and some III–V compounds. Journal of Physics and Chemistry of Solids. 1962,23(5):451-456
    5 J.C. Jamieson. Crystal Structrues at High pressures of Metallic Modifications of Silicon and Germanium. Science. 1963,139:762-764
    6 J.Z. Hu, I.L. Spain. Phase of silicon at high pressure. Solid state comm.unications. 1984,51(5):263-266
    7 J. Z. Hu, L. D. Merkle, C. S. Menoni, et al. Crystal data for high-pressure phases of silicon. Phyical Review B. 1986,34(7):4679-4684
    8 M. Hanfland, U. Schwarz, K. Syassen, et al. Crystal Structure of the High-pressure Phase Silicon Ⅵ. Physical Review Letters. 1999,82(6):1197-1200
    9 S. J. Duclos, Y. K. Vohra, A. L. Ruoff. Experimental study of the crystal stability and equation of state of Si to 248 GPa. Physical Review B.1990,41(17):12021-12028
    10 S. P. Lewis, M. L. Cohen. Prediction of an orthorhombic phase of germanium. Solid State Communications. 1994,89(6):483-486
    11 M.T. Yin, Marvin L.Cohen. Microscopic Theory of the Phase Transformation and Lattice Dynamics of Si. Physical Review Letters. 1980,45(12):1004-1007
    12 K.J. Chang, M.L. Cohen. Structural and electronic propertyes of the high-pressure hexagonalphases of Si. Physical Review B. 1984,30(9):5376-5378
    13 R.J. Needs, R.M. Martin. Transition from β-tin to simple hexagonal silicon under pressure. Physical Review B. 1984,30(9):5390-5392
    14 K.J. Chang, M.L. Cohen. Solid-Solid phase transitions and soft phonon modes in highly condensed Si. Physical Review B. 1985,31(12):7819-7826
    15 K.J. Chang, M.L. Cohen. First-principles study of the structural properties of Ge. 1986,34(12):8581-8590
    16 S.P. Lewis, M.L. Cohen. Theoretical study of Raman modes in high-pressure phases of Si, Ge and Sn. Physical Review B. 1993,48(6):3646-3653
    17 T.R.R. Mcdonald, R. Sard and E. Gregory. Superconducting gallium antimonide. Science.1965,147(3664):1441
    18 I.T. Belash, E.G. Ponyatovsky. Phase transformation in the Zn-Sb system at pressures up to 90 Kbar. High Tem. High Press. 1975,7(5):523-526
    19 I.T. Belash, E.G. Ponyatovsky. Phase diagram of CdSb semiconductive compound to 80 Kbar. High Tem. High Press. 1974,6(2):241-244
    20 F.P. Bundy, J.S. Kasper. A New Dense Form of Solid Germanium. Science. 1963, 139(3552):340
    21 K. Samwar. Amorphisation in solid metallic systems. Phys. Rept.1988,161(1):1-41
    22 R.B. Schwarz, W.L. Johnson. Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals. Phys. Rev Lett..1983,51(5):415-418
    23 汪卫华. 金属/硅系成分调制多层膜的界面固相反应. 中国科学院物理研究所博士论文. 1993
    24 H. Schroder, K. Samwer, U. Koster.. Micromechanism for Metallic-Glass Formation by Solid-State Reactions. Physical Review Letters. 1985,54(3):197-200
    25 M.A. Hollanders, B.J. Thijsse, E.J. Mittemeijer. Amorphization along interfaces and grain boundaries in polycrystalline multilayers: An x-ray-diffraction study of Ni/Ti multilayers. Physical Review B. 1990,42(9):5481-5494
    26 B.M. Clemens, W.L. Johnson, R.B. Schwarz. A study of amorphous alloys of Au with group III A elements (Y and La) formed by a solid-state diffusion reaction. J. Non-Crystal Solids. 1984,61-62(1):129-134
    27 C.C. Koch, O.B. Carvin, C.G. Mckamey et al. Preparation of ‘amorphous’ Ni60Nb40 by mechanical alloying. Appl. Phys. Lett.. 1983,43(11):1017-1019
    28 E. Hellstern, L. Schultz. Amorphization of transition metal Zr alloys by mechanical alloying. Appl. Phys. Lett.. 1986,48(2):124-126
    29 K. Omuro, H. Miura. Amorphization of M-Si (M=Ni, Co, Mo, Mn, and Cr) powders by ball milling using revolution-step-like-decreasing mode. Appl. Phys. Lett..1992,60(12):1433-1435
    30 A.R. Yavari, P.J. Desre, R. Benameur. Mechanically driven alloying of immiscible elements. Phys. Rev. Lett..1992,68(14):2235-2238
    31 R.B. Schwarz, C.C. Koch. Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Appl. Phys. Lett.. 1986,49(3):146-148
    32 B.M. Clements, J.J. Neumeier. Ion-beam-mixed iron boron films. J. Appl. Phys.. 1985,58(11):4061-4064
    33 K. Aoki, T. Masumoto. Solid state amorphization of intermetallic compounds by hydrogenation. J. Alloy and Compounds. 1993, 194(2): 251-261
    34 卢光熙,候增寿.金属学教程.上海:上海科学技术出版社,1985:54-55
    35 刘日平.合金原子团簇触发凝固及微重力条件下合金凝固研究.[中国科学院物理研究所博士论文].1998:1-6
    36 李超.金属学原理.哈尔滨:哈尔滨工业大学出版社,1996:35-49
    37 胡汉起.金属凝固.北京:冶金工业出版社,1985:75
    38 D. Li, D.M. Herlach. Direct Measurements of Free Crystal Growth in Deeply Undercooled Melts of Semiconducting Materials. Physics. Review. Letters.. 1996,77(9):1801-1804
    39 D. Li, K. Eckler, K.M. Herlach. Undercooling, crystal growth and grain structure of levitation melted pure Ge and Ge---Sn alloys. Acta Mater. 1996,44(6):2437-2443
    40 D. Li, K. Eckler, K. M.Herlach. Development of grain structures in highly undercooled germanium and copper. J.Crystal Growth. 1996,160:59-65
    41 沈 宁 福 , 汤 亚 为 , 关 绍 康 等 . 凝 固 理 论 进 展 与 快 速 凝 固 . 金 属 学 报 . 1996,32(7):673-684
    42 J.A. Xu, H.K. Mao, P.M. Bell. High-Pressure Ruby and Diamond Fluorescence Observations at 0.21 to 0.55 Terapascal. Science. 1986,232(4756):1404
    43 陈晋阳,郑海飞,曾贻善. 高压—现代科学的一门新技术. 科技导报, 2000(6):13-15
    44 王积方. 高压下物质性质的研究. 大学物理. 2001,20(8):1-6
    45 李克强, 赵忠贤, 靳常青. 高压在高温超导研究中的应用. 物理, 1998(5):267
    46 周尧和, 胡壮麒, 介万奇. 凝固技术. 北京: 机械工业出版社, 1998:470
    47 李冬剑. 高压下亚稳相相变机制. 中国科学院金属研究所博士论文, 1993
    48 王文魁. 非晶合金的高压变态. 物理学进展. 1984,4(4):525
    49 阿·依·巴迪舍夫(苏). 金属和合金在压力下结晶. 哈尔滨: 哈尔滨工业大学出版社, 1987:9-26
    50 F.X. Zhang, W.K. Wang. Microstructure of germanium quenched from the undercooled melt at high pressures. Appl. Phys. Lett..1995,67(5):617-619
    51 B.C. Giessen, G.E. Gordon. Micromechanism for Metallic Glass Formation by Solid-State Reaction. Science. 1968,159:973-975
    52 J.M. Prober. Formation of Quasictystals by Mechanism Alloying. J. Appl. Crystallogr.. 1975,8:405-414
    53 刘景, 赵菁, 车荣钲等. 高压下的同步辐射能量色散粉末衍射. 高压物理学报. 2000,14(4):247-252
    54 刘景, 赵菁, 车荣钲等. 同步辐射高压 EDXD 系统改建与研究进展. 科学通报. 2000,45(9):993-996
    55 W. Utsumi, K. Funakoshi and S. Urakawa. Spring-8 Beamlines for High Pressure Science with Multi-Anvil Apparatus. Rev. High Pressure Sci. Technol.. 1998,7:1484-1486
    56 M.F.A. Alias, N.N. Rammo and M.N. Makadsi. Lattice parameter and density of Ge-Si solid solutions. Renewable Energy. 2001, 24: 347-351
    57 W. Utsumi, K. Funakoshi and Y. Katayama. High-pressure science with a multi-anvil apparatus at Spring-8. Journal of Physics.: Condensed Matter. 2002,14:10497-10504
    58 W. Utsumi, K. Funakoshi and S. Urakawa. Spring-8 Beamlines for High Pressure Science with Multi-Anvil Apparatus. Rev. High Pressure Sci. Technol.. 1998,7:1484-1486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700