复合膜生物反应器地下水脱氮技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是我国华北地区重要的饮用水水源,特别是华北农村生活饮用水几乎全部来自地下水。然而,由于不合理的使用化肥、污水灌溉及污水渗漏等原因,地下水受到了不同程度的硝酸盐污染,并存在日益恶化的趋势。饮用硝酸盐含量超标的地下水容易导致高铁血红蛋白症,三个月以下的婴儿受此危害最大;此外,亚硝酸盐还能使人致癌。
     去除地下水中硝酸盐的方法主要有离子交换、反渗透和生物反硝化脱氮等。虽然离子交换和反渗透脱除硝酸盐的效果很好,但会附产再生废液或浓缩液,需要以较高的费用作进一步处置。生物反硝化是脱除地下水中硝酸盐最经济有效的方法,然而以制取饮用水为目的的地下水常规异养反硝化工艺存在两个弊端:(1)反硝化过程中投加的有机碳源会有部分残留在出水中;(2)反硝化菌会引起出水的微生物污染。
     本课题将细胞固定化技术与膜分离技术有机地结合在一起,研究开发了三种复合膜生物反应器,分别为两室、三室以及多室复合膜生物反应器。在复合膜生物反应器中,微孔滤膜和膜状固定化细胞构成的复合膜把地下水(简称水室)和反硝化碳源(简称碳室)分隔开,硝酸盐和乙醇分别从水室和碳室扩散进入固定化细胞中,其中的反硝化菌利用乙醇作为电子供体,将硝酸盐还原为氮气。一方面平板状固定化细胞把要处理的地下水与反硝化所需的有机碳源分隔开,可以避免出水被反硝化残留碳源所污染;另一方面覆盖在固定化细胞表面的微孔滤膜,可以防止从固定化细胞中脱落下来的细菌对出水造成微生物污染。
     本研究首先将两室复合膜生物反应器(DCMBR)用于地下水反硝化脱氮,初步探索了膜分离技术与细胞固定化技术相结合进行地下水反硝化脱氮的可行性及复合膜生物反应器控制出水中有机物污染的效果。然后,通过正交实验及单因素实验对固定化细胞的制备条件及反硝化脱氮的主要影响因素进行优化。结果表明,复合膜生物反应器中平板状固定化细胞适宜的制备条件是厚度为4mm,15%PVA溶液中细菌包埋量为2%(湿重,W/V);地下水反硝化脱氮适宜的碳氮比、温度和pH值分别为6:1、30℃、7-8;适宜的反硝化碳源是乙醇;复合膜生物反应器脱氮速率与N03-N初始浓度成正比,地下水中的溶解氧对固定化细胞反硝化脱氮的影响比对游离细胞小。
     然后在两室复合膜生物反应器研究的基础上,开发了更加高效的三室复合膜生物反应器(TCMBR)及多室复合膜生物反应器(MCMBR),并对其反硝化特性进行研究。TCMBR的研究结果表明,相同初始硝酸盐浓度下脱氮速率低于DCMBR,但单位容积的产水率却比DCMBR高。对于MCMBR,进水N03-N浓度在100 mg.L1以内时,进水最大负荷可达4.97 gN.m2.d-1,MCMBR连续运行6个多月,脱氮活性没有下降,显示了长期运行的稳定性。出水中的N03--N、NO2--N、CODMn以及主要生物学指标均符合生活饮用水卫生标准。
     扩散研究表明固定化细胞对扩散会产生显著的阻碍作用,硝酸盐及乙醇在空白PVA膜中的扩散系数分别为0.707×10-9m2.s-1和0.640×10-9m2.s-1,分别为其在纯水中扩散系数的37.2%和58.2%。同时,包埋的微生物量、冷冻一解冻次数及PVA溶液浓度的增加均会不同程度地增大扩散阻力,微孔滤膜的使用也会使扩散阻力增大,进而使扩散系数减小。PVA浓度为15%、微生物包埋量为20 g.L-1时制备的厚度约为4mm的固定化细胞用于反硝化脱氮时,反硝化脱氮过程主要受内扩散控制。
     对处理后出水中有机物的分子量分布及荧光特性进行分析,结果显示出水中主要以小于1000Dalton的小分子物质为主,且主要为腐殖酸类物质。处理后出水无生物毒性。
     为了揭示复合膜生物反应器反硝化过程中微生物的多样性,从接种污泥、驯化污泥、固定化细胞膜生物反应器连续运行2个月和6个月的四个不同阶段提取污泥样品,通过提取总DNA,进行PCR-DGGE分析。微生物群落的DGGE指纹图谱分析表明,接种污泥与不同阶段的固定化细胞中既存在着共同的微生物种属也有各自特异的种属。克隆得到10个优势条带,测序和系统发育分析表明,其中两株分别属于Diaphorobacter属和Bacillus属,具有反硝化功能,而其它8株菌则基本可以判定为新菌种;相同的微生物种群在不同阶段中的优势地位不同,各自特有的微生物群落是在培养驯化过程中逐步演替而来,整体的变化趋势是微生物多样性趋向单一化。
Groundwater is the most important source of drinking water in northern China; in some rural areas, it is the only readily available source of drinking water. As a result of excessive use of urea and/or other nitrogen fertilizers, wastewater irrigation and leakage, nitrate contamination of the groundwater has become a common issue. Once consumed, nitrate may be converted to nitrite which is responsible for methemoglobinemia (the blue baby syndrome) in infants and other health problems including cancer.
     The high NO3--N concentration can be reduced by ion exchange (Ⅸ), reverse osmosis (RO) and biological denitrification. AlthoughⅨor RO treatment may be effective, it however will result in a concentrate stream of waste by-product that requires further treatment or final disposal at a high cost. Biological denitrification is the most cost-effective process for nitrate removal in groundwater. However, the unresolved issues of poor retention of both the microbial biomass and the electron donor have delayed their full-scale applications.
     To overcome such stated disadvantages of the groundwater denitrification processes, research was conducted in our lab to develop three types of composite membrane bioreactors which integrates immobilized cells technique with membrane separation technology for groundwater denitrification, including double-compartments composite membrane bioreactor (DCMBR), three-compartments composite membrane bioreactor (TCMBR) and multiple-compartments composite membrane bioreactor (MCMBR). The groundwater compartment (water compartment for short) and carbon source compartment (carbon compartment for short) were separated by the composite membrane consisting of a microporous membrane facing the influent and an immobilized cells membrane facing the ethanol solution. Molecules of nitrate and ethanol diffused from the respective compartments into the immobilized cells membrane where nitrate was reduced to gaseous nitrogen (N2) by the denitrifying bacteria present there with ethanol as carbon source. On the one hand, the tabulate immobilized cells can prevent product water contaminated by carbon source through separating groundwater and carbon source; On the other hand, the microporous membrane attached to one side of immobilized cells to separate product water from an immobilized cells or to provide effective retention of the biomass.
     The main objectives of this research were therefore to investigate the possibility of DCMBR for groundwater denitrification and the efficiency of controlling contamination of the product water by added organic carbon source. The optimal preparation conditions of immobilized cells and denitrification conditions were obtained by orthogonal and single factor experiments, respectively. The results showed that the optimum conditions of immobilized cells preparation were 4 mm thickness, embedding denitrifying bacteria in 15% PVA solution was 20g (wet weight per litter.; The optimum carbon to nitrogen ratio, temperature and pH were 6:1,30℃and 7-8, respectively. And ethanol was a proper carbon source.The denitrification rate of DCMBR was proportional to the initial concentration of NO3--N. The effect of dissolved oxygen in groundwater on the denitrification of immobilized cells was little than that of free cells.
     The three-compartments composite membrane bioreactor (TCMBR) and multiple-compartments composite membrane bioreactor (MCMBR) were developed and their characteristics of denitrification for groundwater were investigated. The results showed that the denitrification rate of TCMBR was low than that of DCMBR, but the producing water quantity per reactor volume was higher than that of DCMBR. For the MCMBR, the maximum influent loading reached up to 4.97 gN·m2·d-1 as the influent nitrate nitrogen concentration was lower than 100 mg·L-1. The MCMBR demonstrated the excellent operational stability without decreasing of denitrificaton activity after running over 6 months. The quality of the product water was fit to standards for drinking water quality.
     The study showed that the immobilized cells could obviously block the diffusion process. The diffusion coefficients of nitrate and ethanol were 0.707×10-9m2·s-1 and 0.640×10-9m2·s-1 in PVA gel without bacteria respectively, which were 37.2% and 58.2% of their diffusion coefficients in the pure water. And embedding cells in PVA gel, number of freezing and thawing, PVA solution concentration and use of microporous membrane would affect the diffusion coefficient. The groundwater denitrification rate was controlled by the internal mass transfer as the immobilized cells was prepared with 15% PVA contain 20 g·L-1 bacteria, and the immobilized cells was 4 mm thickness.
     The determination of molecular weight distribution and fluorescence properties of the dissolved organic matter (DOM) in product water showed that the small moleculars below 1000 Da were the main part in the product water using fluorescence excitation-matrix(EEM) spectroscopy. Most of the small molecular were humus without biotoxicity in product water.
     In order to investigate the microbial diversity during denitrification process of MCMBR, four microbial samples were taken to total microbial DNA extraction and polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis from the initial inoculation sludge, acclimation sludge and immobilized cells running for two and six months. The DGGE profile analysis showed that the same and different species existed in inoculation sludge and immobilized cells in different stage. Sequencing and phylogenetic analysis of 10 dominant bands in the DGGE profile indicated that 2 of strains belonged to Diaphorobacter sp. and Bacillus sp. with function of denitrification and other 8 strains were new strains. The dominant status of same microbial species in different stage was different and special microbial community was due to the succession of long term. The total change trend of microbial diversity tended to simplifying.
引文
[1]Alabdula'aly A. I. Nitrate concentrations in RIYADH, SAUDI ARABIA drinking water supplies[J]. Environmental Monitoring and Assessment,1997,47(3):315-324.
    [2]孙景云,左犀.地下水饮用水源地的保护[J].环境保护,1996(5):20-24.
    [3]孙彭力,王慧君.氮素化肥的环境污染[J].环境污染与防治,1995,17(1):38-41.
    [4]Zhou M., Wang W., Chi M. Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor[J]. Bioresource Technology,2009, In Press, Corrected Proof.
    [5]Mansell B. O., Schroeder E. D. Biological denitrification in a continuous flow membrane reactor[J]. Water Research,1999,33(8):1845-1850.
    [6]Ergas S. J., Rheinheimer D. E. Drinking water denitrification using a membrane bioreactor[J]. Water Research,2004,38(14-15):3225-3232.
    [7]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [8]Almasri M. N., Kaluarachchi J. J. Implications of on-ground nitrogen loading and soil transformations on ground water quality management.[J]. Journal of the American Water Resources Association(JAWRA),2004,40(1):165-186.
    [9]Nolan B. T., Ruddy B. C., Hitt K. J., et al. Risk of nitrate in groundwaters of the United States-A national perspective[J]. Environmental Science & Technology,1997, 31(8):2229-2236.
    [10]牛健南.硝酸盐的去除[J].中国给水排水,1995,11(4):51-52.
    [11]Xu F. X., Lu Y. S. On nitrate contamination of groundwater and setting water conservation areas in China [J]. Pollution Control Technology 1999,12(1):20-23.
    [12]Galloway J. N., Aber J. D., Erisman J. W., et al. The nitrogen cascade[J]. Bioscience, 2003,53:341-356.
    [13]Huang C., Wang H., Chiu P. Nitrate reduction by metallic iron[J]. Water Research,1998, 32(8):2257-2264.
    [14]Darbi A. Bilogical Removal of Nitrate from Drinking Water[D]. University of Regina, 2003.
    [15]Tomohide W., Hisashi M., Masao K. Denitrification and neutralization treatment by diret feeding of an acid wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process[J]. Water Research,2001,35(17):4102-4110.
    [16]Spalding R. F., Exner M. E. Occurrence of nitrate in groundwater—A review[J]. Journal of Environmental Quality,1993,22:392-402.
    [17]Bolger P., Stevens M. Contamination of Australian groundwater systems with nitrate[M]. Land and Water Resources Research and Development Corporation,1999.
    [18]Zhang W. L., Tian Z. X., Zhang N., et al. Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in North China[J]. Plant Nutrition and Fertilizer Science,1995, 1(2):80-87.
    [19]刘成,卢涛,齐成山.地下水中的硝酸盐污染及其去除技术[J].城市公用事业,2007,21(1):17-19.
    [20]董章杭,李季,孙丽梅.集约化蔬菜种植区化肥施用对地下水硝酸盐污染影响的研究——以“中国蔬菜之乡”山东省寿光市为例[J].农业环境科学学报,2005,24(6):1139-1144.
    [21]刘光栋,吴文良,刘仲兰,等.华北农业高产粮区地下水面源污染特征及环境影响研究——以山东省桓台县为例[J].中国生态农业学报,2005,13(2):125-129.
    [22]赵同科,张成军,杜连凤,等.环渤海七省(市)地下水硝酸盐含量调查[J].农业环境科学学报,2007,26(2):779-783.
    [23]康志萍.膜分离技术的发展趋势[J].环境技术,2005,23(4):36-38.
    [24]胡敦劫,禹保卫.反渗透技术的基本原理及发展趋势[J].化工之友,2007(9):16-17.
    [25]Cevaal J. N., Suratt W. B., Burke J. E. Nitrate removal and water quality improvements with reverse osmosis for Brighton, Colorado[J]. Desalination,1995,103(1-2):101-111.
    [26]Bohdziewicz J., Bodzek M., Wqsik E. The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater [J]. Desalination,1999, 121:139-147.
    [27]Hell F., Lahnsteiner J., Frischherz H., et al. Experience with full-scale electrodialysis for nitrate and hardness removal[J]. Desalination,1998,117(1-3):173-180.
    [28]任建新.膜分离技术及其应用[M].北京:化学工业出版社,2002.
    [29]刘广立,赵广英.膜技术在水和废水处理中的应用.北京:化学工业出版社[M].2003.
    [30]冯俊生,朱宏,李玲.饮用水除盐技术的研究与进展[J].环境科学与技术,2007,30(z1):209-211.
    [31]Salem K., Sandeaux J., Molenat J., et al. Elimination of nitrate from drinking water by electrochemical membrane processes[J]. Desalination,1995,101(2):123-131.
    [32]韩晓宝,方媛媛.反渗透和电除盐系统技术探讨[J].山西电力,2006(2):70-72.
    [33]Midkiff W. S., Weber W. J., Jr. Operating characteristics of strong-base anion exchange reactors[J]. Eng. Bull. Purdue Univ., Eng. Ext. Ser.,1970,137(2):593-604.
    [34]Bae B.-U., Jung Y.-H., Han W.-W., et al. Improved brine recycling during nitrate removal using ion exchange[J]. Water Research,2002,36:3330-3340.
    [35]Yamaguchi T., Harada H., Hisano T., et al. Process behavior of UASB reactor treating a wastewater containing high strength sulfate[J]. Water Research,1999,33(14):3182-3190.
    [36]A 520E macroporous strong base anion exchange resin[J]. Purolite Ion Exchange Resins:1-8.
    [37]Hoek J. P., Hoek W. F., Klapwijk A. Nitrate removal from ground water—use of a nitrate selective resin and a low concentrated regenerant[J]. Water, Air,& Soil Pollution, 1988,37(1):41-53.
    [38]Bae B. U., Kim C. H., Kim Y. I. Treatment of spent brine from a nitrate exchange process using combined biological denitrification and sulfate precipitation[J]. Water Science and Technology,2004,49(5-6):413-419.
    [39]Su C., Puls R. W. Nitrate Reduction by Zerovalent Iron:  Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate[J]. Environmental Science & Technology,2004,38(9):2715-2720.
    [40]Rodriguez-Maroto J. M., Garcia-Herruzo F., Garcia-Rubio A., et al. Kinetics of the chemical reduction of nitrate by zero-valent iron[J]. Chemosphere,2009,74(6):804-809.
    [41]郝志伟,李亮,马鲁铭.零价铁还原法脱除地下水中硝酸盐的研究[J].中国给水排水,2008,24(17):36-39.
    [42]Yang G. C. C., Lee H.-L. Chemical reduction of nitrate by nanosized iron:kinetics and pathways[J]. Water Research,2005,39(5):884-894.
    [43]Kielemoes J., De Boever P., Verstraete W. Influence of denitrification on the corrosion of iron and stainless steel powder[J]. Environmental Science & Technology,2000, 34(4):663-671.
    [44]Choe S., Liljestrand H. M., Khim J. Nitrate reduction by zero-valent iron under different pH regimes[J]. Applied Geochemistry,2004,19(3):335-342.
    [45]李海莹,王薇,金朝晖,等.纳米铁的制备及其对污染地下水的脱硝研究[J].南开大学学报:自然科学版,2006,39(1):8-13.
    [46]Prusse U., Hahnlein M., Daum J. Improving the catalytic nitrate reduction[J]. Catalysis Today,2000,55(1/2):79-90.
    [47]Nitrate removal:Multi-zone ion exchange with less waste[J]. Filtration & Separation, 2009,46(2):37-39.
    [48]张燕,陈英旭,刘宏远.地下水硝酸盐污染的控制对策及去除技术[J].农业环境保护,2002,2I(2):183-184.
    [49]陆彩霞,顾平.氢自养反硝化去除饮用水中硝酸盐的试验研究[J].环境科学,2008,29(3):671-676.
    [50]Prosnansky M., Sakakibara Y, Kuroda M. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration[J]. Water Research,2002, 36(19):4801-4810.
    [51]Sakakibara Y., Nakayama T. A novel multi-electrode system for electrolytic and biological water treatments:electric charge transfer and application to denitrification[J]. Water Research,2001,35(3):768-778.
    [52]王海燕,曲久辉,雷鹏举.电化学氢自养与硫自养集成去除饮用水中的硝酸盐[J].环境科学学报,2002,22(6):711-715.
    [53]Sierra-Alvarez R., Beristain-Cardoso R., Salazar M., et al. Chemolithotrophic denitrification with elemental sulfur for groundwater treatment[J]. Water Research,2007, 41(6):1253-1262.
    [54]Gomez M. A., Gonzalez-Lopez J., Hontoria-Garcia E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter[J]. Journal of Hazardous Materials,2000,80(1-3):69-80.
    [55]张燕,陈余道,渠光华.乙醇对地下水中硝酸盐去除作用的研究[J].环境科学与技术,2008,31(12):72-76.
    [56]Robinson-Lora M. A., Brennan R. A. The use of crab-shell chitin for biological denitrification:Batch and column tests[J]. Bioresource Technology,2009, 100(2):534-541.
    [57]王允,张旭,张大奕,等.用于地下水原位生物脱氮的缓释碳源材料性能研究[J].环境科学,2008,29(8):2183-2188.
    [58]Gibert O., Pomierny S., Rowe I., et al. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB)[J]. Bioresource Technology,2008,99(16):7587-7596.
    [59]Rocca C. D., Belgiorno V., Meri S. Heterotrophic/autotrophic denitrification (HAD) of drinking water:prospective use for permeable reactive barrier[J]. Desalination,2007, 210(1-3):194-204.
    [60]周海红,王建龙.利用可生物降解聚合物同时作为反硝化微生物的碳源和附着载体研究[J].中国生物工程杂志,2006,26(2):95-98.
    [61]Ovez B., Ozgen S., Yuksel M. Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source[J]. Process Biochemistry, 2006,41(7):1539-1544.
    [62]周海红,赵璇,王建龙.利用可生物降解聚合物去除饮用水源水中硝酸盐[J].清华大学学报:自然科学版,2006,46(3):434-436.
    [63]Fabbricino M., Petta L. Drinking water denitrification in membrane bioreactor/membrane contactor systems[J]. Desalination,2007,210(1-3):163-174.
    [64]McAdam E. J., Judd S. J. Denitrification from drinking water using a membrane bioreactor:Chemical and biochemical feasibility[J]. Water Research,2007, 41(18):4242-4250.
    [65]Fonseca A. D., Crespo J. G., Almeida J. S., et al. Drinking water denitrification using a novel ion-exchange membrane bioreactor[J]. Environmental Science & Technology, 2000,34(8):1557-1562.
    [66]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002.
    [67]居乃琥.固定化细胞技术研究和应用的现状与展望(二)[J].工业微生物,1989(2):25-33.
    [68]朱启忠.生物固定化技术及应用[M].北京:化学工业出版社,2009.
    [69]张晨,张培玉,孙梦.细胞固定化技术在含氮废水处理中的应用研究-综述[J].生物技术通讯,2010(2):295-298.
    [70]黄霞,俞毓馨.固定化细胞技术在废水处理中的应用[J].环境科学,1993,14(1):41-48.
    [71]蒋宇红,黄霞.几种固定化细胞载体的比较[J].环境科学,1993,14(2):11-15.
    [72]Vogelsang C., Husby A., Ostgaard K. Functional stability of temperature-compensated nitrification in domestic wastewater treatment obtained with PVA-SbQ/alginate gel entrapment[J]. Water Research,1997,31(7):1659-1664.
    [73]Yang P. Y., Zhang Z. Q., Jeong B. G. Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process[J]. Water Research,1997,31(10):2617-2625.
    [74]严小军.细胞固定化的方法及应用[J].海洋科学,1993(3):22-25.
    [75]李超敏,韩梅,张良,等.细胞固定化技术——海藻酸钠包埋法的研究进展[J].安徽农业科学,2006,34(7):1281-1282,1284.
    [76]Cao G.-m., Zhao Q.-x., Sun X.-b., et al. Integrated nitrogen removal in a shell-and-tube co-immobilized cell bioreactor[J]. Process Biochemistry,2004,39(10):1269-1273.
    [77]骆艳娥,李华.固定化细胞生物反应器的应用及研究进展[J].微生物学杂志,2002,22(2):36-38,50.
    [78]秦华明,朱明军,梁世中.分子生物学在生物强化处理环境污染物中的应用[J].上海环境科学.2003,22(6):435-438.
    [79]张倩茹,周启星,陈锡时,等.微生物分子生态学技术在污水处理系统中的应用[J].生态学杂志.2003,22(3):49-53.
    [80]Muyzer G., de W. E. C., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol,1993,59(3):695-700.
    [81]Zhang T., Fang H. H. P. Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities[J]. Biotechnology Letters,2000, 22(5):399-405.
    [82]冯佩英,秦越DGGE/TGGE技术在微生物基因分类鉴定中的应用[J].国外医学临床生物化学与检验学分册,2005,26(2):95-97.
    [83]Petersen D. J., Dahllof I. Improvements for comparative analysis of changes in diversity of microbial communities using internal standards in PCR-DGGE[J]. FEMS Microbiol Ecol,2005,53(3):339-348.
    [84]DE Oliveira A. J. F. C., Cristina S. D. L., lasbel K. S., et al. Influence of support material on the immobilization of biomass for the degradation of linear alkylbenzene sulfonate in anaerobic reactors[J]. Journal of Environmental management,2009,90(2):1261-1268.
    [85]Ren L., Wu Y., Ren N., et al. Microbial community structure in an integrated A/O reactor treating diluted livestock wastewater during start-up period[J]. Journal of Environmental Sciences,2010,22(5):656-662.
    [86]杨仕美,张翼霄,高光军,等.不同碳源富集的石油烃降解菌群结构的分析[J].海洋科学,2009(8):87-92.
    [87]吴卿,赵新华.应用PCR—DGGE研究饮用水中微生物的多样性[J].南开大学学报:自然科学版.2007,40(3).-92-96,
    [88]肖勇,杨朝晖,曾光明,等PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器(SBBR)中的细菌多样性[J].环境科学,2007,28(5).-1095-1101,
    [89]任南琪,赵阳国,王爱杰,等PCR-SSCP技术分析碱度影响下硫酸盐还原反应器中微生物群落动态[J].中国科学C辑生命科学,2006,36(1):51-58.
    [90]谢冰,董亮.芦苇人工湿地底泥微生物群落结构的PCR—SSCP技术研究[J].农业系统科学与综合研究.2007,23(2).-205-211,
    [91]左剑恶,邢薇,孙寓姣.利用分子生物技术对厌氧颗粒污泥中微生物种群结构的研究[J].农业工程学报,2006,22(增刊1):96-100.
    [92]邢薇,左剑恶,孙寓姣,等.利用FISH和DGGE对产甲烷颗粒污泥中微生物种群的研究[J].环境科学.2006,27(11):2268-2272.
    [93]刘光栋,吴文良.高产农田土壤硝态氮淋失与地下水污染动态研究[J].中国生态农业学报,2003,11(1):91-93.
    [94]李明悦,朱静华,廉晓娟,等.天津市水体硝酸盐污染现状与分析[J].天津农业科学,2008,14(1):43-46.
    [95]Nuhoglu A., Pekdemir T., Yildiz E., et al. Drinking water denitrification by a membrane bio-reactor[J]. Water Research,2002,36(5):1155-1166.
    [96]World Heath Organization (WHO). Guidelines for Drinking Water Quality,3rd ed., Geneva:WHO,2004.
    [97]Kapoor A., Viraraghavan T. Nitrate removal from drinking water-review[J]. Journal of Environmental Engineering,1997,123(4):371-380.
    [98]中华人民共和国卫生部,生活饮用水卫生标准(GB5749—2006),北京:国家标准化管理委员会出版,2006.
    [99]Samatya S., Kabay N., Yuksel U., et al. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins[J]. Reactive and Functional Polymers,2006, 66(11):1206-1214.
    [100]SOARES M. I. M. Biological denitrification of groundwater[J]. Water, Air, and Soil Pollution,2000,123:183-193.
    [101]Greenleea L. F., Lawler D. F., Freemana B. D., et al. Reverse osmosis desalination: Water sources, technology, and today's challenges[J]. Water Research,2009, 43:2317-2348.
    [102]Mateju V., Cizinska S., Krejci J., et al. Biological water denitrification--A review[J]. Enzyme and Microbial Technology,1992,14(3):170-183.
    [103]McAdam E. J., Judd S. J. A review of membrane bioreactor potential for nitrate removal from drinking water[J]. Desalination,2006,196(1-3):135-148.
    [104]Green M., RE. L., Schnizer M., et al. Denitrification of drinking water-a bioenergetic evaluation[J]. Water SA,1994,20(3):223-230.
    [105]APHA, Standard Meathods for the Exzamination of Water and Wastewater,20th ed. Washington, D C:American Public Health Association,1998.
    [106]曹国民,赵庆祥,孙贤波,等.氨氮、硝酸盐氮和亚硝酸盐氮在PVA凝胶膜中的扩散性能[J].环境科学,2002,23(2):65-68.
    [107]McAdam E. J., Pawlett M., Judd S. J. Fate and impact of organics in an immersed membrane bioreactor applied to brine denitrification and ion exchange regeneration[J]. Water Research,2010,44(1):69-76.
    [108]Qasim S. R. Wastewater treatment plants:planning, design, and operation[M].2nd ed: Lancaster, Pennsylvania:Technomic Publishing Company, Inc,1999.
    [109]Fernandez-Nava Y., Maranon E., Soons J., et al. Denitrification of high nitrate concentration wastewater using alternative carbon sources[J]. Journal of Hazardous Materials,2010,173(1-3):682-688.
    [110]Cameron S. G., Schipper L. A. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds[J]. Ecological Engineering,2010, 36(11):1588-1595.
    [111]Cai J., Zheng P., Mahmood Q. Influence of transient pH and substrate shocks on simultaneous anaerobic sulfide and nitrate removal[J]. Journal of Hazardous Materials, 2010,174(1-3):162-166.
    [112]曹国民,赵庆祥,孙贤波,等.固定化细胞膜的制备及其特性研究[J].中国环境科学,2001,21(3):207-211.
    [113]陈绍铭,郑福寿.水生微生物实验法[M].北京:海洋出版社,1985.
    [114]杜蕴慧,刘勇弟.利用反硝化过程处理有机废水[J].环境导报,1997(3):16-20.
    [115]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社环境科学与工程出版中心,2002.
    [116]Cao G.-m., Zhao Q.-x., Sun X.-b., et al. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J]. Enzyme and Microbial Technology,2002,30(1):49-55.
    [117]Uemoto H., Saiki H. Behavior of immobilized nitrosomonas europaea and paracoccus denitrificans in tubular gel for nitrogen removal in wastewater[J]. Progress Biotechnology,1996,11:695-702.
    [118]闫博.高效反硝化菌的分离及其在水体中脱氮规律的研究[D].化学工程,2002.
    [119]马娟,彭永臻,王丽,等.温度对反硝化过程的影响以及pH值变化规律[J].中国环境科学,2008,28(11):1004-1008.
    [120]Almeida J. S., Reis M. A. M., Carrondo M. J. T. Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens[J]. Biotechnology and Bioengineering,1995,46(5):476-484.
    [121]胡婷,黄少斌,邓康.碳源类型和温度对BAF脱氮性能影响研究[J].工业用水与废水,2009,40(6):22-27.
    [122]Shrimali M., Singh K. P. New methods of nitrate removal from water[J]. Environmental Pollution,2001,112(3):351-359.
    [123]李慧颖,黄少斌,范利荣.一株好氧反硝化菌的反硝化性能研究[J].环境科学与技术,2009,32(8):9-12.
    [124]谭佑铭.反硝化菌固定化技术及饮用水脱氮研究[D].劳动卫生与环境卫生学,2002.
    [125]Gomez M. A., Hontoria E., Gonzalez-Lopez J. Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter[J]. Journal of Hazardous Materials,2002,90(3):267-278.
    [126]Almeida J. S., Julio S. M., Reis M. A. M., et al. Nitrite Inhibition of Denitrification by Pseudomonas fluorescens[J]. Biotechnology and Bioengineering,1995,46(3):194-201.
    [127]Sanders D. A., Veenstra J. N., Blair C. D. Evaluation of a full-scale biological denitrification for the treatment of drinking water.[J]. Oklahoma Water 2004, Stillwater,Oklahoma State University, November18-19, US Environmental Institute., 2004
    [128]Xia S. Q., Zhong F. H., Zhang Y. H., et al. Bio-reduction of nitrate from groundwater using a hydrogen-based membrane biofilm reactor[J]. Journal of Environmental Sciences,2010,22(2):257-262.
    [129]生活饮用水标准检验方法,微生物指标.2006.
    [130]Lewandowsk Z. Denitrification by packed bed reactors in the presence of chromium[J]. Water Research,1985,19:589-596.
    [131]Fan A. M., Steinberg V. E. Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity[J]. Regulatory Toxicology and Pharmacology,1996,23(1):35-43.
    [132]Foglar L., Briski F. Wastewater denitrification process--the influence of methanol and kinetic analysis[J]. Process Biochemistry,2003,39(1):95-103.
    [133]Nilsson 1., Ohlson S. Columnar denitrification of water by immobilized pseudomonas denitrificans cells [J]. European J Appl Microbiol Biotechnol,1982,14:86-90.
    [134]Jovetica S., Beeftink H. H., Tramper J., et al. Diffusion of (de)acylated antibiotic A40926 in alginate and carrageenan beads with or without cells and/or soybean meal[J]. Enzyme Microb. Technol.,2001,28(6):510-514.
    [135]De Backer L., Willaert R. G, Baron G. V. Modeling of immobilized bioprocesses[J]. Immobilised Living Cell Systems,1996:47-66.
    [136]Willaert R. G, De Backer L., Baron G. V. Mass transfer in immobilized cell systems[J]. Immobilised Living Cell Systems,1996:21-45.
    [137]Ha J., Engler C. R., Lee S. J. Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads[J]. Biotechnology and Bioengineering,2008,100(4):698-706.
    [138]Mignot L., Junter G A. Diffusion in immobilized-cell agar layers:influence of microbial burden and cell morphology on the diffusion coefficients of L-malic acid and glucose[J]. Applied Microbiology and Biotechnology,1990,32(4):418-423.
    [139]Westrin B. A., Axelsson A. Diffusion in gels containing immobilized cells:A critical review[J]. Biotechnol and Bioengineering,1991,38:439-446.
    [140]Mignot L., Junter G-A. Diffusion in immobilized-cell agar layers:influence of bacterial growth on the diffusivity of potassium chloride[J]. Applied Microbiology and Biotechnology,1990,33(2):167-171.
    [141]Bailey J. E., Ollis D. F. Biochemial engineering fundamentals.[M].2nd ed.Sangapore: Mc Graw-Hill Book Company,1994.
    [142]Estape D., Godia F., Sola C. Determination of glucose and ethanol effective diffusion coefficients in Ca-alginate gel[J]. Enzyme and Microbial Technology,1992, 14(5):396-401.
    [143]陈茂福,静吴.光学学报[J].2008,23(3):578.
    [144]Chang C.-N., Chao A., Lee F.-S., et al. Influence of moculear weight distribution of organic substances on the removal efficiency of DBPs in a conventional water treatment plant[J]. Water Science & Technology,2000,40(10-11):43-49.
    [145]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [146]Huo S., Xi B., Yu H., et al. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages[J]. Journal of Environmental Sciences,2008, 20(4):492-498.
    [147]Murphy K. R., Stedmon C. A., Waite T. D., et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry,2008,108(1-2):40-58.
    [148]Li W.-H., Sheng G.-P., Liu X.-W., et al. Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor[J]. Water Research,2008,42(12):3173-3181.
    [149]Chen W., Westerhoff P., Leenheer J. A., et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
    [150]Baker A. Fluorescence properties of some farm wastes:implications for water quality monitoring[J]. Water Research,2002,36(1):189-195.
    [151]Saadi I., Borisover M., Armon R., et al. Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements[J]. Chemosphere,2006, 63(3):530-539.
    [152]吕洪刚,欧阳二明,郑振华,等.三维荧光技术用于给水的水质测定[J].中国给水排水,2005,21(3):91-93.
    [153]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [154]张涵.城市供水水质标准及101项水质项目检测方法实用手册[M].天津:天津电子出版社,2005,1215-1224.
    [155]Coble P. G, Del Castillo C. E., Avril B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep Sea Research Part II: Topical Studies in Oceanography,1998,45(10-11):2195-2223.
    [156]Urban-Rich J., McCarty J. T., Shailer M. Effects of food concentration and diet on chromophoric dissolved organic matter accumulation and fluorescent composition during grazing experiments with the copepod Calanus finmarchicus[J].ICES Journal of Marine Science:Journal du Conseil,2004,61(4):542-551.
    [157]赵庆良,贾婷,魏亮亮,等.污水厂二级出水中THMs前体物卤代活性荧光光谱分析[J].中国环境科学,2009(11):1164-1170.
    [158]George R. A. Humic substances in soil, sediment, and water:geochemistry, isolation, and characterization [M]. Krieger Pub Co,1985.
    [159]Amann R. I., Ludwig W., Schleifer K. H.. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Review, 1995,59(1):143-169.
    [160]Dize B., Pedros-Alio C., Marsh T., et al. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques[J]. Applied and Environmental Microbiology,2001,67(7):2942-2951.
    [161]郑雪松,李道棠,杨虹.不同破壁方法对活性污泥总DNA提取效果的影响[J].上海交通大学学报,2004,38(5):815-818.
    [162]Sheffield V C., Cox D R., Lerman L S., et al. Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes[J]. Proc. Nati. Acad. Sci. USA, 1989,86(1):232-236.
    [163]Ralston J. S., Main A. R., Kilpatrick B. F., et al. Use of procainamide gels in the purification of human and horse serum cholinesterase[J]. Biochem J,1983, 211:243-250.
    [164]Ellman G. L. A new and rapid colorimetric determination of acetylcholinesterease activity[J]. Biochemical Pharmacology,1961,7:88-95.
    [165]Shi S. P., Zhang J. Y. Purification and some properties of cholinesterase from Nibea albiflora muscle[J]. Acta Biochimica et Biophysica Sinica,1981,13(1):9-16.
    [166]王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究[J].微生物学报,2000,20(2):115-120.
    [167]Khan S. T., Hiraishi A. Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge[J]. Journal of General and Applied Microbiology,2002,48:299-308.
    [168]毛跃建,张晓君,张宝让,等.专一性PCR和变性梯度胶电泳协助从焦化废水处理装置中分离优势功能菌Thauera属菌株[J].微生物学报.2008,48(12)。-1634-1641,
    [169]黄益,吕淑霞Beta proteobacterium sp.T1菌株产壳聚糖酶的分离纯化[J].生物技术,2008,18(1):69-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700