耐盐菌的分离筛选、生理特性和降解医药废水能力及其诱变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高盐医药废水种类很多,并且成分复杂,某些废水含有许多难以降解的杂环芳烃等有机物。目前研究表明杂环芳烃如喹啉及其衍生物具有致癌、致畸、致突变性,对自然界生物安全和人类健康构成巨大威胁,因而杂环芳烃等有机物降解菌的筛选一直是国内外微生物降解的一个重要方面。这些废水中不仅含高浓度有机污染物,还含大量的盐分(如Na~+,Cl~-,Ca~(2+),Mg~(2+)等离子),是废水处理领域中的技术难题,常规的生物法很难有效地处理该类废水。为了解决难降解有机废水中高盐含量对传统生物处理系统的抑制问题,本文以含有高浓度氯离子(大于30 000mg/L)的医药废水(COD浓度大于10 000mg/L)为研究基质筛选出既耐高盐又可以高效降解有机污染物的两株菌株,分别命名为HB1和HB2,根据菌株生理生化特性作初步鉴定。然后分别研究了两株菌的基础生物学特征及在不同环境因素的条件下降解主要成分为杂环芳烃的医药废水的能力;最后为了进一步提高COD去除率,紫外诱变处理耐盐菌HB2,将突变菌株UVHB2-1、UVHB2-2投加到制药废水中,同原出发菌株的投加作对比,考察紫外诱变对COD去除率的影响,并且筛选出COD去除率明显提高的优势突变菌。实验结果表明:(1)分离到两株耐盐菌株,初步鉴定分别为盐杆菌属和节杆菌属,在含有0.5-10%NaCl的液体基本培养基中生长良好,菌株HB1最适生长温度为20℃-30℃;菌株HB2最适生长温度为35℃-40℃;两菌株最适pH值都在7.5;(2)菌株降解医药废水COD的实验表明,废水初始COD、pH值、温度、接种量以及处理时间均对其降解能力有较大的影响。COD初始浓度为11 880mg/L,接种量为6mL,pH为7.5,盐浓度为5%,温度为35℃,培养时间为4天的条件下,HB2的COD去除率最高可达到39.9%;COD初始浓度为11 880mg/L,接种量为6mL,pH为7.5,盐浓度为5%,温度为30℃,培养时间为4天的条件下,HB1的COD去除率最高可达到34.7%。(3)经过紫外诱变处理筛选出一株优势突变菌UVHB2-1,处理医药废水的效果有明显提高,降解率可达68.2%,而且遗传性稳定,同时仍具有耐盐性能。
There is many kinds of medical wastewater with complicated organic composition such as Heterocyclic aromatic which is difficult to be degraded.At present studies show that Heterocyclic aromatic and its derivative may be carcinogenicity,teratogenicity and mutagenicity,which is dangerous to nature and human.So it is important to screen Heterocyclic aromatic-degraded microbiology. Because there is also high salinity(ions such as Na~+,Cl~-,Ca~(2+),Mg~(2+)),it is difficult to be treated by conventional biochemical processes.To solve the problem of inhibitory effect of high salinity on traditional biological wastewater treatment system,the objective of this paper was to screen and use halophytic strains to treat medical wastewater.Firstly,salt-tolerant strains with high biodegradation capability were screened and identified primarily.Secondly,morphology,biochemical properties and removal efficiencies of medical wastewater with Heterocyclic aromatic by strains in different conditions were studied.One of salt-tolerant strains known as HB2 was treated by using the method of UV radiation in order to improve removal efficiencies. The main results are as follows:(1) Two novel NaCl-tolerant bacterial strains(HB1 and HB2) isolated and identified primarily as Halo-bacterium salinarium and Arthrobacter Conn and Dimmick.Results showed that bacterial strain HB1and HB2 could grow in the media contained 0.5-5%NaCl;And they grew well in the media with pH 7.5,the best temperature is20℃-30℃for HB1 and is 35℃-40℃for HB2;(2)Studies on COD of medical wastewater removal efficiencies of two strains show that some factors have influence in removal efficiencies:with primary concentration 11 880mg/L,salt concentration 5%and inoculation 6mL,COD removal efficiency was high up to about 39.9%when degradation time,pH,temperature were 4d,7.5,35℃for HB2;while the COD removal efficiency was about 34.7%when degradation time,pH,temperature were 4d,7.5,30℃for HB1.(3) HB2 was mutated with ultraviolent radiation(UV).we got a mutant UV HB2-1 COD whose removal efficiency was increased obviously up to about 68.2%,which maintained salt-tolerance and genetic stability.
引文
[1]Binder.Use of SBR's to treat Pestieide waste water[C].Presented at the Notre Dame/Miles hazardous waste Conference University of Notre Dame,South Bend,Ind.1992.
    [2]张勇,祁恩成,张守诚等.黄姜—皂素废水综合处理技术的探讨[J].环境科学与技术,2004,27(8):124-125.
    [3]刘大银,毕亚凡,李庆新等.皂素生产废水综合治理技术研究(Ⅰ)——实用治理技术框架[J].武汉化工学院学报,2003,25(4):33-36
    [4]刘锋,吴建华,马向华等.上流式厌氧生物滤池处理高含盐废水的试验研究[J].苏州科技学院学报(工程技术版),2003,16(2):34-35.
    [5]王晓霞,吴生,乌锡康.铁炭—生化法处理高含盐染料废水的研究[J].环境化学,2002,21(6):594-598.
    [6]马国斌,储金宇,张波.活性污泥法+接触氧化法工艺处理高盐度环氧丙烷生产废水的试验研究[J].四川环境,2004,23(6):1-3.
    [7]Lawton G W.Effect of high sodium chloride concentration on trickling filter slimes[J].Sewage and Industrial Wasters,1957,29(11):1228-1236
    [8]BelkinS,BrennerA.Biolo treatment of a high salinity chemical industry waste water[J].Wat.Sci.Tech 1993,31(9):61-72.
    [9]WenCG.Effect of salinity on removal confficient of receiving waters[J].Wat.Sei.Teeh.1984:16(1):139-154.
    [10]ZasadowskiA,WysockiA.Some toxicological aspects of polycyclic aromatic hydrocarbons PAHs effects[J].Rocz Panstw Zald Hig,2002,53(1):33-45.
    [11]Fetzner S,TshisuakaB,LingensF,et al.Bacterial degradation of Quinoline and derivatives-pathways and their biocatalysts[J].Angew Chem Int Ed,1998,37:576-2597.
    [12]李咏梅,顾国维,赵健夫.焦化废水中几种含氮杂环有机物在A1-A2-O系统中的降解特性研究[J].环境科学学报,2002,22(1):34-39.
    [13]刘铁汉,周培瑾.嗜盐微生物[J].微生物学通报,1999,26(3):232.
    [14]田新玉.极端嗜盐细菌和耐盐细菌的区分[J].微生物学报,1990,30(4):314-317.
    [15]刘岳峰.嗜盐微生物的应用现状与展望[J].微生物学通报,1992,(2):108-111.
    [16]万波,李安明,赵海等.一株厌氧嗜盐菌的鉴定[J].微生物学通报,1997,24(3):131-133.
    [17]Oxen A.Ventosa A Grant W D.Proposed minimal standaras fox description of new taxa in the order Halobacterials[J].International.journal of systematic Bacteriology 1997,47(1):233-238.
    [18]王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究微生物学报[J].微生物学报,2000,40(2):115-120.
    [19]陶卫平.嗜盐菌的嗜盐机制[J]生物学通报,1996(36)1:23-24
    [20](德国)H.G..施莱杰.普通微生物学[J]上海:复旦大学出版社,1990,384-385
    [21]Oren A,Heldal M,Norland S.X-ray microanalysis of intracellular halophilic eubacterium Haloanaerobium praevalens[J].Can.J.Mierobiolions in the anaerobic1997,43:588-592
    [22]Bremer E,Kramer R.Coping with osmotic challenges:osmoregulation through solutes and release of compatible in bacteria[M].Washington,D.C:ASM Press,2000,pp:79-97.
    [23]Sleator R D,Hill C.Bacterial osmoadaptation:the role of osmolytes in bacterial stress and viralence[J].FEMS Microbio.Rev.,2002,26:49-71.
    [24]Knshner D.J.The Halobacteriaceae.In The bacteria.A treatise on structure and function.V Ill.Archaebacteria.Orlando[C].Fla:Academic Press_,1985,pp:171-214.
    [25]Oren A.Anaerobic heterotrophic bacteria growing at extremely high salt concentrations[C].InTrends in microbial ecology.Spanish Society for Microbiology,1993.pp:539-542.
    [26]Anton J,Rosellb-Mora R,crvstallizer ponds from solar Rodri'guez-Valera F,et al.Extremely halophilic bacteria in salterns[J].Appl.Environ.Microbiol.2000,66:3052-3057.
    [27]Hagemann,M.,Schoor,A.,Mikkat,S.et al.,The biochemistry and genetics of the synthesis of osmoprotective compounds in cyanobacteria[M].Boca Raton:CRC Press LLC,1999,pp:177-186.
    [28]Wood J M.Osmosensing by bacteria:signals and membrane-based sensors[J].Microbiol.Mol.Biol.Rev.,1999,63:230-262.
    [29]Renan G Stephanie R,Sylvie B,et al.Glutamine,Glutamate,and a-Glucosylglycerate Are the Major Osmotic Solutes Accumulated by Erwinia chrysanthemi Strain 3937[J].Appl Environ Microbiol.,2004,70:6535-6541.
    [30]Dagmar K,Ece K,Kathryn J P,et al.Role for Osmoadaptation and Biofilm Formation within Glycine Betaine Transport in Microbial Communities[J].Vibrio cholerae Appl.Environ.Microbiol.,2005,71:3840-3847.
    [31]Mackay M A,Norton R S,Borowitzka L J.Organic osmoregulatory solutes in cyanobacteria[J].J.Gen.Microbiol.,1984,130:2177-2191.
    [32]Ventosa A,Nieto J J,oren A.Biology of moderately halophilic aerobic bacteria[s].Microbiol Mol.Biol.Rev.,1998,62:504-544.
    [33]Muldaopadlayay A,He Z,Aim E J,et al.Salt Stress in Desulfovibrio vulgaris Hildenborough;an Integrated Genomics Approach[J].J.Bateriol.,2006,188:4068-4078.
    [34]Vargas C,Jebbar M,Carrasco R,et al.Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens[J].J.App.1 Microbiol.,2006,100:98-107.
    [35]洪青,张国顺,张忠辉等.中度嗜盐菌的渗透调节.微生物学通报[J].微生物学 报,2003,31(5):71-75
    [36]Csonka,L.N,Hanson,A.D.Prokaryotic osmoregulation:genetic and physiology[J].Annu.Rev.Mierobiol.,1991,45:569-606.
    [37]Castillo R F,Varags C,Joaquin J N.cubacteria[J].J.Gen.Mierobiology.,Characterization of a plan mid from moderately halophililic 1992,138:1133-1137
    [38]Javed,A.Q.Malik,K.A.Evidence for a plas midassociated diazotrovh KlebsieUa sp.[J]Biotee.Letter,confering salt-tolerance in plant-root 1990,12(10):783-788.
    [39]Hasnain S,Thomas C M.bacterial.Plas.mid..1996 Two related roiling circle replication plasmids from salt-tolerant[J]1996,36:191-199.
    [40]Pfeifer F,Weidinger G,Goebel W.Characterization of plas mids in halobacteria[J].J.Baeteriol.,1981,145:369-374.
    [41]Rosario F C,Varags C,Joaquin J N.eubacteria[J].J.Gen.Microbiology.,Characterization of a plasmid from moderately halophilie 1992,138:1133-1137.
    [42]Sluis C,Der V Enhancing and accelerating flavour formation by salt-tolerant yeasts in Japanesesoy-sauee processes[J].Trends in Food Science&Technology,2001,12(9):322-327.
    [43]Nina G C.Hypersaline waters in saltems-natural ecological niches for halophilie black yeasts[J].Microbiology Ecology,2000,32(3):235-240.
    [44]Magda S G Luisa N,Candida L.Outlines for the defirti-tion of halotolerance/halophily in yeasts:Candida versatilis(halophila) CBS4019 as the archetype[J].FEMS Yeast Research.,2003,3(4):347-362.
    [45]Galina K.Exponential growth phase cells of the osmotolerant yeast Debaryomyce.s haasenii are extremely resistant to dehydration stress[J].Process Biochemistry,2001,36(12):1163-1166.
    [46]Olga K,Serge P,Hana,S.The Zygosaccharomyces rouxii strain CBS732 contains only one copy of the HOG and the SOD genes[J].Journal of Biotechnology,2001,88(2):151?I58.
    [47]Silva M q Lucas C.Physiological studies on long-term adaptation to salt stress in the extremely halototerant yeast Candida versatilis CBS 4019(syn.C.halophila)[J].FEMS Yeast Research,2003(3):247-260.
    [48]张逸飞,顾挺,王国祥等.一株苯胺降解菌的分离鉴定及其降解特性[J].环境污染与防治,2008,30(2):12-16.
    [49]牟伯中,苏荣国,王修林等.微生物对芳香烃的降解作用[J].环境与开发,2008,15(4):16-19.
    [50]艾芳芳,曲媛媛,周集体等.菲降解菌株的分离鉴定及特性研究[J].环境科学,2008,29(4):1069-1071
    [51]李全霞,范丙全,龚明波等.降解芘的分枝杆菌M11的分离鉴定和降解特性[J].环境科学,2008,29(3):764-768
    [52]贾燕,尹华,叶锦韶等.假单胞菌N7的萘降解特性及其降解途径研究[J].环境科 学,2008,29(3):756-761
    [53]于萍萍,张进忠,林存刚.多环芳烃在环境中污染的微生物降解的研究进展[J].资源环境与发展,2006(3):35-39
    [54]孙丽娟,李咏梅,顾国维.含氮杂环化合物的生物降解研究进展[J].四川环境,2005,24(1):61-64
    [55]郑广宏.含氮杂环有机化合物缺氧生物降解特性及机理研究[J].同济大学学报,2003(3):32-35
    [56]刘世亮,骆永明,曹志洪等.多环芳烃污染土壤的微生物与植物联合修复研究进展[J].土壤,2005(5)257-265
    [57]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002,18-124
    [58]金志刚,张彤,朱怀兰等.污染物生物降解.上海:华东理工大学出版社,1997:41-46
    [59]韩力平,王建龙,刘恒等.固定化细胞流化床反应器处理难降解有机物喹啉的试验研究[J].环境科学,2001,22(3):78-80
    [60]宋秀兰.固定化胶质红环菌在好氧条件下降解吲哚的研究[J].环境科学学报,2001,21(4):510-512
    [61]刘佐才,全向春,韩利平等.喹啉的生物降解动力学[J].物理化学学报,2000,6(7):663-666
    [62]张晓健,雷晓玲,何苗等.好氧生物处理对焦化废水中有机物的去除[J].环境保护,1994,8:7-10
    [63]李咏梅,顾国维,赵建夫等.焦化废水中几种含氮杂环化合物缺氧降解机理.同济大学学报,2001:29(6):720-723
    [64]陈艳丽,章非娟.焦化废水生物脱氮反硝化段菌相分析.中国给水排水,1996,12(4):30-32
    [65]王红旗,齐永强,吴班等.土壤中石油污染物微生物降解过程中各石油烃组分的演变规律.环境科学学报,2003,23(6):834-836
    [66]张英,李伟,王妙冬等.专一性降解含硫杂环化合物菌株的分离和筛选[J].高校化学工程学报,2006,6(3):392-397
    [67]Woodard C R,Irvine R L.Biological treatment of hyper saline wastewater by a biofilm of halophilie bacteria[J].Water Env.Res.1994,66:230-235.
    [68]Wbolard C R Irvine RL.Treatment of hypersaline wastewater in the sequencing batch reactor[J].Water Research.1995,29(4):1159-1168.
    [69]Kargi F,Uygur A.Biological treatment of saline waste water in an aerated Percolator unit utilizing halophilie bacteria[J].Environ.Technol.1996,17(3):25-30.
    [70]KargiF,UygurA.Effect of liquid phase aeration on Performance of rotating biodisc on tactor treating saline wastewater[J].Environ.Teehnol.,1997,18:623-30.
    [71]KargiF.EmPirieal models for biological treatment of saline wastewater in rotating hiodise contactor[J].process Biochemistry 2002,38(3):399-403.
    [72]KagiF.DincerA R.Enhancement of biological treatment performance of saline wastewater by halophilic bacteria[J].Bioprocess Eng.1996,15:51-58.
    [73]KargiF.DineerA R.Effect of salte on contration on biological treatment of saline wastewater by fed-batch operation[J].Enzyme Microbial.Technol.1996,19:529-537.
    [74]Karg,Dineer,AR.Saline wastewater treatment by haloPhilcsupplemented activated sludge culture in an aerated rotating hiodisce on tactor[J].Enzyme and Microbial Technology.1998,22(6):427-433.
    [75]Peyton B M.Kinetics of Phenol hiodegradadon in high soludons[J].Water Research,2002,36(19):4811-4820.
    [76]魏呐,王祥河,李风凯等.复合高效微生物处理高含盐石油开采废水.城市环境与城市生态,2003,16(6):10-13.
    [77]ShinGT,HangYD.Production of carotenoids by Rhodotorularubra from sauerkraut brine[J].Lehensm.Wiss.Technol.1996,29:570-572.
    [78]Choi M H,Park Y H.Growth of Pichiaguillierraorulii Ag,an osmo-tolerant yeast,in waste brine generated from kimchi production[J].Bioresource Technology,1999,70(3):231-236.
    [79]Dan N P.Comparative evaluation o yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients[J].Bioresource Technology,2003,87:51-56.
    [80]顾立锋,何健,张瑞福等.一株耐盐苯酚降解酵母菌的分离及降解特性研究[J].土壤学报,2004,41:756-760.
    [81]郭建博,周集体,王栋等.耐盐菌群对高含盐染料模拟废水的脱色实验研究[J].环境污染治理技术与设备,2005,6(12):31-36.
    [82]马向东,黄春华,周俊初.基因体外诱变[J].微生物学通报,2002,29(1):70-4
    [83]Baltz R H.Genetic manipulation of antibiotic2producing S t reptomyces[J].Trends in Microbiology,1998,6(2):76-83
    [84]Butler M J,Takano Bruheim E.P,et al.Deletion of scb A enhances antibiotic production in S t reptomyces livi dans[J].Appl Microbiol Biotechnol,2003.61:512-516
    [85]施巧琴,吴松刚.工业微生物育种学(第二版)[M].北京:科学出版社,2003:1~4,76-78
    [86]雷肇祖,钱志良,章健.工业菌种选育述评[J].工业微生物,2004,34(1):39-51
    [87]Parekh S,Vinci VA,St robel R J.Improvement of microbial st rains and fermentation processes[J].Appl Microbiol Biotechnol,2000,54:287-301
    [88]石磊,梁运章.物理因子对微生物诱变作用的研究进展.月内蒙古大学学(自然科学版).2006,37,(1):111-115
    [89]陈义光,李铭刚,徐丽华等.新型物理诱变方法及其在微生物诱变育种中的应用进展.长江大学学报(自科版)2005,2(5):46-48
    [90]施巧琴,吴松刚.工业微生物育种学(第二版)[M].北京:科学出版社,2003:1-4,76-78
    [91]吴德昌,放射医学[M],北京:军事医学科学出版社,2001
    [92]陈云琳,刘晓娟等.激光诱变微生物技术的研究进展[J].生物物理学报,2003,19(4):353-358
    [93]庞晓坤,曹德菊,花日茂等.物理因子诱变技术在废水生物处理中的应用研究.四川环境,2005,(5):68-71
    [94]安学丽,蔡一林,王久光等.化学诱变及其在农作物育种上应用.核农学报,2003,(3):239-242
    [95]魏明宝,魏丽芳,郑先君等.低能N~+注入葸降解菌诱变研究.河南化工,2006,23(7):11-13
    [96]田萍,姚秉华等.偶氮染料活性艳红降解菌诱变选育.西安理工大学学报2003,19(4):344-347.
    [97]田萍,朱海燕等.三苯甲烷类染料降解菌的诱变选育.纺织高校基础科学学报,2004,17(3):243-246.
    [98]任河山,王颖,赵化冰等.酚降解菌株的分离、鉴定和在含酚废水生物处理中的应用[J].环境科学,2008,29(2):482-487.
    [99]李尔炀,程洁红,史乐文等.耐盐菌的研究[J].江苏石油化工学院学报,2001,13(4):4-6.
    [100]R.E布坎南,N.E.吉布斯.伯杰细菌鉴定手册M.8版.中国科学院微生物研究所译.北京:科学出版社,1984:855-865.
    [101]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001:698-705.
    [102]信欣,鲍建国,刘慧等.耐盐(CaCl_2)皂素废水降解菌的分离及特性[J].应用与环境生物学报,2007,14(1):111-115.
    [103]刘王.高含盐废水处理技术探讨[J].给水排水,2001,27(11):54-56.
    [104]李光勇,张旭,李向阳等.高含盐石化废水生化处理的研究进展[J].华北石油设计,2003,4:27-29.
    [105]罗建中,刘鸿.紫外诱变优势菌处理含氯废水[J].上海环境科学,2000,19(11):529-531.
    [106]舒生辉,孙水裕,温康文.黄原酸盐高效降解菌的紫外诱变选育[J].广东工业大学环境科学与工程学院,2007,1(1):95-97.
    [107]王关林,姜丹,方宏筠等.高产细菌素菌株WJK84-1的诱变筛选及其对植物病原菌抑菌机理的研究[J].微生物学报,2004,22(1):23-28.
    [108]范秀容,李广武,沈萍等.微生物学实验指导.北京:高等教育出版社,1996,260-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700