耐盐异养硝化—好氧反硝化菌的筛选方法与脱氮机制及其生物强化短程硝化系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了一种新的富集驯化耐盐异养硝化-好氧反硝化菌的方法。采用高C/N、逐渐降低DO、菌体对数生长期转接以及增加培养液中海水比例的方式完成了耐盐异养硝化菌的富集和驯化,并分离出38株异养硝化-好氧反硝化菌。经复筛得到1株高效耐盐异养硝化-好氧反硝化菌,命名为qy37。通过对菌株qy37的形态观察、生理生化试验和16S rDNA序列分析,确定其为假单胞菌属(Pseudomonas)。
     对菌株qy37的异养硝化作用和好氧反硝化作用的机制进行了比较。在以NH4Cl为氮源的异养硝化系统内,该菌32 h内使NH4+-N由138.52 mg/L降至7.88mg/L, COD由2408.39 mg/L降至1177.49 mg/L, NH2OH最大积累量为9.42 mg/L, NO2--N最大积累量仅为0.02 mg/L,推测该菌将NH2OH直接转化为N2O和N2从系统中脱除。在以NaNO2为氮源的好氧反硝化系统内,该菌24 h内使NO2--N由109.25 mg/L降至2.59 mg/L, NH2OH最大积累量为3.28 mg/L。好氧反硝化系统与异养硝化系统相比菌体生长量高,TN去除率低,COD消耗量低,NH2OH积累量低,并且检测到NO3--N的积累。认为好氧反硝化在菌体生长和能量利用方面比异养硝化更有效率。
     对异养硝化-好氧反硝化混合系统进行了研究。在异养硝化-好氧反硝化混合系统内,16 h NH4+-N去除速率比异养硝化系统提高了37.31%。混合系统的NH2OH积累量低于异养硝化系统和好氧反硝化系统,但N2O产出量高于二者。这些研究可为异养硝化-好氧反硝化菌在污水处理工程中的应用提供参考。
     对异养硝化-好氧反硝化菌应用于短程硝化系统的可行性进行了研究。采用生物强化技术将4株高效异养硝化-好氧反硝化菌投入耐盐短程硝化污泥中,考察了其对含海水污水的SBR短程硝化系统的强化效果,并比较了强化系统与原系统的差异性。结果表明,强化系统的NO2--N最大积累量比原系统降低34.92%,而且到达NO2--N最大积累量的时间比原系统提前2 h。强化系统的TN和COD在硝化段中后期持续降低,硝化结束时其TN和COD去除率比原系统高出15.24%和5.39%, NH4+-N去除率和亚硝化率比原系统高出6.85%和14.47%。强化系统的pH比原系统高0.46,而ORP低25.84 mV。认为强化系统的性能提升是强化菌的异养硝化作用和好氧反硝化作用引起的。当受到70%海水盐度冲击时,强化系统的稳定性高于原系统,强化菌的加入有效的抑制了系统从短程硝化向全程硝化转变的趋势。在强化系统与原系统运行的各阶段,强化菌种的数量发生了变化,且随着系统排泥强化菌大量流失。本研究为异养硝化-好氧反硝化菌应用于短程脱氮系统的可行性提供理论参考。
A new method for enrichment and domestication of heterotrophic nitrification-aerobic denitrification bacteria was studied. The enrichment and domestication was accomplished by adopting high C/N ratio, gradually reducing DO, inoculating domestic bacteria to new culture medium in log phase and increasing the proportion of sea water for culture medium, and 38 strains were screened in this process. Furthermore, a train qy37 of heterotrophic nitrifying bacteria were isolated from enrichment and domestication system. In the light of its morphological and physiological characters as well as its sequence analysis of the 16S rDNA, strain qy37 was identified as Pseudomonas sp.
     The mechanism of heterotrophic nitrification and aerobic denitrification was compared. The characterization in nitrogen removal of a heterotrophic nitrification-aerobic denitrification bacteria qy37 was studied. A strain coded as qy37 which had simultaneous heterotrophic nitrifying and aerobic denitrifying ability was screened. In the light of its morphological and physiological characters as well as their sequence analysis of the 16S rDNA, strain qy37 was identified as Pseudomonas sp. In heterotrophic nitrifying system utilized ammonium chloride as nitrogen source, the concentration of NH4+-N reduced from 138.52 mg/L to 7.88 mg/L and COD reduced from 2408.39 to 1177.49mg/L by strain qy37 in 32 hours, the maximum accumulation of NH2OH and NO2--N were 9.42 mg/L and 0.02 mg/L respectively, it was speculated that NH20H was transformed to N2O and N2 directly by strain qy37. In aerobic denitrifying system utilized sodium nitrite as nitrogen source, the concentration of NO2--N reduced from 109.25 mg/L to 2.59 mg/L by strain qy37 in 24 hours, and the maximum accumulation of NH2OH was 3.28mg/L. Compared with heterotrophic nitrifying system, aerobic denitrifying system had a higher bacterial growth whereas the lower removal rate of TN and COD, as well as the accumulation of NH2OH. NO3--N was also detected In aerobic denitrifying system. It is considered that the upgrowth of bacterium and utilization of energy in aerobic denitrifying system were more efficient than that in heterotrophic nitrifying system.
     The heterotrophic nitrification- aerobic denitrification system was studied. In heterotrophic nitrification- aerobic denitrification system, the removal rate of NH4+-N improved 37.31% in 16 hours than that in heterotrophic nitrifying system, the accumulation of NH2OH was less but N2O was higher than that in both heterotrophic nitrifying system and aerobic denitrifying system. These results should be useful for practical application of heterotrophic nitrification- aerobic denitrification bacteria in sewage disposal.
     The feasibility of heterotrophic nitrification- aerobic denitrification bacteria applied in shortcut nitrification system was studied. Four heterotrophic nitrification-aerobic denitrification strains mixed with halotolerant activated sludge was added into SBR in order to test their bioaugmentation ability for shortcut nitrification system, which was treating for sewage containing sea water, and the difference between bioaugmentation system and original system was compared. The results showed that the maximum accumulation of NO2--N in bioaugmentation system was 34.92% lower than that in original system, and the time of maximum accumulation of NO2--N was 2 hours earlier than that in original system. The TN and COD was continuously decreasing in the later phase of nitrification in bioaugmentation system, and finally the removal rate of TN and COD were 15.24% and 5.39% higher than that in original system respectively, as well as the removal rate of NH4+-N and the nitrosation rate were 6.85% and 14.47% higher than that in original system. And the pH was 0.46 higher than that in original system, whereas the ORP was 25.84 mV lower. It was considered that the function of heterotrophic nitrification-aerobic denitrification bacteria should strengthen the performance of bioaugmentation system. When the seawater content raised to 70%, the stability of bioaugmentation system was better than that in original system, and the current that transforming shortcut nitrification to complete nitrification was restrained by heterotrophic nitrification- aerobic denitrification bacteria effectively. The number of heterotrophic nitrification-aerobic denitrification bacteria was changed when bioaugmentation system and original system ran in different phase and the bacteria had a great loss with the discharge of activated sludge. These results may provide a theoretical reference about the feasibility that the heterotrophic nitrification-aerobic denitrification bacteria applied in shortcut nitrification system.
引文
[1]冯本秀,赖子尼,余煜,齐素芳.固定化微生物技术去除水体中氨氮的研究进展.安全与环境工程.2005.12.(3)196-200.
    [2]孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社,2003:33-35.
    [3]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.科学出版社,2004.
    [4]B.Halling, S.E.Gensen. The Removal of Nitrogen Compoundsfrom Wastewater.Elsevier Science Publishers,1993.
    [5]任南琪,马放.污染控制微生物学.哈尔滨工业大学出版社,2002.
    [6]G.Tchobanoglous,F.L.Burton. Advanced Wastewater Treatment. Wastewater. Engineering, Treatment,Disposal,and Reuse.McGraw-Hill.Inc.Singapore.1991:711-726.
    [7]郑兴灿,李亚新,污水除磷脱氮技术.北京:中国建筑工业出版社,1998:7-9.
    [8]叶剑峰等.废水生物脱氮处理新技术.北京:化学工业出版社,2006:12-13.
    [9]吴剑,齐鄂荣,程晓如,黄明海.废水生物脱氮技术的研究发展[J],武汉人学学报(工学版),2002,35(1):76-79.
    [10]沈耀良,王宝贞,废水生物处理新技术理论与应用[M].中国环境科学出版社,1999,195-214.
    [11]J.G.Kuenen,L.A.Robertson. Combined nitrification-denitrification process.EMS Microbiol. Rev.1994,15(2):109-117.
    [12]A.A.A.Mulder,Van de Graaf,L.A Robertson.Anaerobic ammoniumoxidation discovered in a denitrifying fluidized bed reactor.FEMS Microbiol.Ecol.,1995,16:177-183.
    [13]L.Kuai,W.Verstrartr. Autotrophic denitrification with elemental sulphur insmall-scale wastewater treatment facilities.Environ.Tech.,1999,20:201-209.
    [14]M.Mike Jetten,Susanne logemann,Gerard Muyzer et al. Novel principle in the microbial conversion of nitrogen compounds.Antonie van Leeuwenhoek,1997,71:75-93.2000,1(6): 11-19.
    [15]I.Mchmidt,O.Sliekers,M.Schmid,et al. New concepts of microbial treatmentprocesses for the nitrogen removal in wastewater.Fems Microbiology Reviews,2003,27:481-492.
    [16]姚樱,张文,马民新型生物脱氮工艺的研究进展.环境科学与技术,2005,28(12):138-140.
    [17]周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备.
    [18]Hellinga C,Schellena J C,Mulder J W,et al.The SHARON process:an innovativemethod for nitrogen removal from ammonium rich wastewater[J].Wat.Sci.Tech,1998,37(9):135-142.
    [19]Kuallp,Verstraete W. Ammonium removal by the oxygen-limited autotrophicnitrification denitrification system.Appl.Environ.Microliol,1998,64,4500-450.
    [20]J.P.Voets. Removal of nitrogen from highly nitrogenous wastewater.JWPCF.1975,47:395-398.
    [21]S.Sutherson,J.J. Ganczarczk.Inhibition of nitrite oxidation during nitrificationsome observations.Wat.Poll.Rse.,1986,21:257-256.
    [22]O.Turk,D.S.Mavininc.Preliminary assessment of shotcut in nitrogen removalfrom wastwater.Can. J.Civ.Eng.1986,13:600-605.
    [23]Abeling U, Seyfried C F.Armembic-aerobic treatment of high strength ammonium wastewater nitrogen.Removal vin.Nitrite[J].Wat. Sci.Tech,1992,26(5-6); 1007~1015.
    [24]徐冬梅,聂梅生,金承基.亚硝酸盐型硝化实验研究[J].给水排水,1999,25(7):37-39.
    [25]Surmacz-Gorska,J.,Cichon,A.and Miksch,K. Nitrogen removal fromwastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification.Wat.Sci.Tech. 1997,36(10):73-78.
    [26]H.A.Painter, Microbial transformations of inorganic nitrogen.Prog.Wat.Tech.1977,8(4-5): 3-29.
    [27]C.Glass,J.Silverstein. Denitrification kinetics of high nitrate concentrationwater:pH effect on inhibition and nitrite accumulation.Wat.Res.1998,32(3):831-839.
    [28]徐冬梅,聂梅生,金承基.亚硝酸型硝化的试验研究.给水排水.1999,25(7):37-39.
    [29]S.Delgado, F.Diaz, R.Villarroel, et al.Nitrification in a hollow-fibremembrane bioreactor. Desalination,2002,146(1-3):445-449.
    [30]P.Ilies, D.S.Mavinic. The effect of decreased ambient temperature on thebiological nitrification and denitrification of a high ammonia landfill leachate, Water Research, 2001,35(8):2065-207.
    [31]C.Hellinga,J.C.Schellen,J.W.Mulder, et al.The SHARON process:aninnovative method for nitrogen removal from ammonium-rich wastewater.Wat.Sci.Tech.1998,37(9):135-142.
    [32]O.Turk, D.S.Mavininc. Preliminary assessment of shotcut in nitrogen removalfrom wastwater.Can. J.Civ.Eng.1986,13:600-605.
    [33]G Ruiz,D Jeison,R Chamy. Nitrification with high nitrite accumulation for thetreatment of wastewater with high ammonia concentration.Water Research.2003,37(5):1-5.
    [34]H.J.Laanbroek, P.L.E.Bodelier,vS.Gerards. Oxgen consumption kinetics of nitrosomonas europaea and nitrobacter ham burgensis grown in mixedcontinuous cultures at different oxygen concentrations. Arch Microbiol,1994,16,1156-1162.
    [35]孙晓杰,徐迪民,于德爽.海水冲厕污水的短程硝化试验研究[J].中国给水排水,2007,23(3):40-46.
    [36]彭永臻,叶柳,王淑莹.盐度抑制结合模糊控制快速实现短程生物脱氮装置[P].中国专利:CN 200710118476.5,2008-06-04.
    [37]O.E.Albertson and H.D.Stensel. Aerated anoxic biological NdeN process.Wat.Sci. Tech., 1994,29(7):167-176.
    [38]O.G.T.Cinar,Daigger. Evaluation of IAWQ Activated Sludge Model No.2 usingsteady-state data from four full-scale wastewater treatment plant. Wat.Envi.Res.1998,70:1216.
    [39]G.T.Daigger and H.X.Littleton. Characterization of simultaneous nutrientremoval in staged,closed-loop bioreactors.Wat.Envi.Res.2000,72:330.
    [40]Holley Kaempfer Steller.Simultaneous nitrification and denitrification in activated sludge floc.Ph.D.thesis,University of Missouri-Rolla.USA.2003.
    [41]L A.Robertson,Van Neil E W J. Simultaneous Nitrification and Denitrification inAerobic Chemostat Cultures of Thiosphaera Pantotropha.Applied Environmental Microbiology, 1988,54(1):2812-2818.
    [42]E W J Van Neil. Nitrification by Heterotrophic Denitrifiers and Its Relationship toAutotrophic Nitrification. Ph.D Thesis.Delft University of Technology,Delft,1991.78-80.
    [43]J Thomas,Gorear.Production of NO2-and N2O by Nitrifying Bacteria at Reduced Concentration of Oxygen. Appl.Environ.Microbio.1980,9:1324-1332.
    [44]武汉大学,复旦大学生物系微生物学教研室编.微生物学.第二版.北京:高等教育出版社,1980,342.
    [45]Alexander M. Nitrification In soil. Microbiology. New York,1977,251-271.
    [46]Papen H, R. A. Most Probable Number (MPN) method for the estimation of cell numbers of heterotrophic nitrifying bacteria in soil. Plant and soil,1998,199:123-130.
    [47]Takayuki N, Taro Y, Hirosugu M, et al. Conditions for nitrification and denitrification by an immobilized hetero-trophic nitrifying bacterium Alcaligenes faecalis OKK17. Journal of Fermentation and Bioengineering,1998,86(4):351-356.
    [48]Jetten MSM, Logemann S, Muyzer G, et al. Novel principles in the microbial conversion of nitrogen compounds, Antonie van Leeuwenhoek,1997,71:75-93,1997.
    [49]Pedersen H, Dunkin KA, Firestone MK. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by N-15 tracer and pool dilution techniques. Biogeochemistry,1999,44(2):135-150.
    [50]D.Castignetti.R.Yanong,R.Gramzinski.Substratr. Diversity of an Active Heterotrophic Nitrifier, an Alcaligenes sp., Can.J Microbiol.,1985,31(5):441-445.
    [51]Brierley EDR, Wood M. Heterotrophic nitrification in an acid forest soil:isolation and characterisation of a nitrify-ing bacterium. Soil Biology & Biochemistry,2001,33(10): 1403-1409.
    [52]Joo HS, Hirai M, Shoda M. Nitrification and denitrification in high strength ammonium by Alcaligenes faecalis. Biotechnology Letters,2005,27(11):773-778.
    [53]Kesik M, Blagodatsky S, Papen H, et al. Effect of pH, temperature and substrate on N2O, NO and CO2 production by Alcaligenes faecalis. Journal of Applied Micro-biology,2006,101(3): 655-667.
    [54]Joo HS, HiraiM, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification aerobic denitrification by Alcaligenes faecalis No.4. Journal of Bioscience and Bioengineering,2005,100(2):184-191.
    [55]陈赵芳,尹立红,浦跃朴,等.一株异养硝化菌的筛选及其脱氮条件.东南大学学报(自然科学版),2007,37(3):486-490.
    [56]Kim JK, Park KJ, Cho KS, et al. Aerobic nitrification-denitrification by heterotrophic Bacillus strains. Bio-resource Technology,2005,96(17):1897-1906.
    [57]Takayuki N, Taro Y, Hirosugu M, et al. Conditions for nitrification and denitrification by an immobilized heterotrophic nitrifying bacterium. Alcaligenes faecalis OKK17. Journal of Fermentation and Bioengineering,1998,86(4):351-356.
    [58]Patureau D, Bernet N, Delgenes JP, et al. Effect of dissolved oxygen and carbon nitrogen loads on denitrification by an aerobic consortium. Applied Microbiology and Biotechnology, 2000,54(4):535-542.
    [59]Joo HS, Hirai M,Shoda M. Nitrification and denitrification in high strength ammonium by Alcaligenes faecalis[J].Biotechnology Letters,2005,27(11):773-778.
    [60]Hu TL,Kung KT. Study of heterotrophic nitrifying bacteria from wastewater treatment systems treating acrylonitrile,butadiene and styrene resin wastewater[J].Water Science and Technology 2000,42(3-4):315-321.
    [61]陈赵芳,尹立红,浦跃朴等.一株异养硝化菌的筛选及其脱氮条件[J].东南大学学报(自然科学版),2007,37(3):486-490.
    [62]Su JJ,Yeh KS, Tsheng PW. A strain of Pseudomonas sp.isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan[J].Current Microbiology,2006,53(1):77-81.
    [63]Kim JK,Park KJ,Cho KS,et al.Aerobic nitrification-denitrification by heterotrophic Bacillus strains[J].Bioresource Technology,2005,96(17):1897-1906.
    [64]何霞,赵彬,吕剑等.异养硝化细菌Bacillus sp.LY脱氮性能研究[J].环境科学,2007,28(6):1404-1408.
    [65]Blagodatsky SA,Kesik M,Papen H,et al. Production of NO and N2O by the heterotrophic nitrifier Alcaligenes faecalis subsp. parafaecalis under varying conditions of oxygen saturation[J].Geomicrobiology Journal,2006,23(3-4):165-176.
    [66]曹喜涛,常志州,黄红英等.1株高温异养硝化细菌的分离鉴定和特性研究[J].安徽农业科学2006,34(19):4833-4834.
    [67]林燕,何义亮,李春杰等.MBR同步硝化反硝化及异养硝化试验研究[J].环境科学与技术,2006,29(1):7-9.
    [68]C.Helmer,S.Sabinekunst. Simultaneous nitrification/denitrification in anerobic biofilm system.Wat.Sci.Tech.,1998,37(4-5):183-187.
    [69]Anshuman A,Khardenavis,Atya Kapley,et al.Simultaneous nitrification and denitrification by diverse Diaphorobacter sp[J]. Appl Microbiol Biotechnol,2007,77:403-409.
    [70]林燕,孔海南,何义亮等.膜生物反应器异养硝化菌的分离及硝化特性.中国环境科学.2005,25(4):394-398.
    [71]杨宗政,王鑫,庞金钊等.异养硝化菌的分离及其强化活性污泥脱氮效果[J].中国给水排水,2006,22(21):67-70.
    [72]Krul J.M. Dissimilatory nitrate and nitrite reduction under aerobic conditions by an aerobically and anaerobically grown Alcaligenes sp.and by actived sludge. J.Appl. Bacteriol.1976,40,245~260.
    [73]Meiberg J.B.M.,Bruinenberg P.M.and Harder W.. Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomiccrobium in the absence and presence ofnitrate:evidence for"aerobic denitrification". J.Gen.Microbiol,1980,120:453~463.
    [74]Klangduen Pochana,Jurg Keller. Study of factors Affecting Simultaneous Nitrification and Denitrification(SND).Wat.Sci.Tech.,1999,39(6):61~68.
    [75]Randall C.W.,Barnard J.L.and Stensel H.D. Design and retrofit of wastewatertreatment plants for biological nutrient removal.Water Quality ManagementLibrary,Vol.5,Technomic Publishing Company,Inc,Lancaster,PA,1992.
    [76]罗固源,杨红薇.NBIAS系统中的好氧反硝化.重庆环境科学,2001,23(1):43-45,49.
    [77]谢曙光,张晓建,王占生.地表水处理中的好氧反硝化.2002,18(3):7-9.
    [78]赵宗升,李炳伟,刘鸿亮.高氨氮渗滤液处理的好氧反硝化工艺研究.中国环境科学,2002,22(5):412-415.
    [79]梁刘艳,汪萍.废水脱氮中好氧反硝化现象的研究.工业用水与废水,2004,35(2):33~35.
    [80]丁爱中,傅家谟,盛国英.好氧生物反硝化反应的实验证据.科学通报,2000,459(增刊):2779~2782.
    [81]Robertson L.A.,Kuenen J.G.et al..Nitrogen removal from water and waste.In Microbial control of pollution,Cambridge University Press,1992:227-267.
    [82]A.B.Gupta.Thiosphaera Pantotropha:a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobicdenitrification.Enzyme.Microb. Technol., 1997,21:589~595.
    [83]Robertson L.A., Van Niel E.W.J.,Torremans R.A.M.et al. Simultaneousnitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha.App. Envir. Microbiol.,1988,54(11):2812~2818.
    [84]D.Patureau,N.Bernet,T.Bouchez,et al.Biological nitrogen removal in a single aerobicreactor by association of a nitrifying ecosystem to an aerobic denitrifiers, Microvirgula aerodenitrificans. J.Mol.Cata.B:Enzymatic,1998,5:435~439.
    [85]D.Patureau,N.Bernet,et al. Combined nitrification and denitrification in a single aeratedreactor using the aerobic denitrification Comamonas sp. Stain SGLY2.Wat.Res.,1997,31 (6):1363~1370.
    [86]Mike S.M.Jetten,Susanne Logemann,Gerard Muyzer et al. Novel principal in themicrobial conversion of nitrogen compounds.Antonie van Leeuwenhoek,1997,71:75~93.
    [87]Bell LC,Richardson DJ,Ferguson SJ. Periplasmic and membrane-bound nitrate reductase in Thiosphaera pantothropa[J]. FEBS Lett,1990,265:85-87.
    [88]Bell LC,Berks BC,Richardson DJ,et al.Insertion of transportation Tn5 into a structural gene of themembrane-bound nitrate reudctase of Thiosphaera pantothropa results in anaerobic over expression of Periplasmic nitrate reductase activity[J]. Gen Microbial,1993,139:3205-3214.
    [89]Farver O,Kroneck P M H,Zumft W G,et al.Allosteric control of internal electron transfer in cytochrome cdl nitrite reductase[J].PNAS,2003,100:7622-7625.
    [90]Zajicek R S,Allen J W,Richardson D J, et al. Paracoccus pan-totrophus NapC can reductively activate cytochrome cdl nitrite reductase[J]. FEBS LETT,2004,565:48-52.
    [91]Ye R.W,Averill B.A,Tiedje J.M.Denitrification:Production and consumption of nitricoxide[J]. Environ Microbiol,1994,60:281-286.
    [92]Carr GJ,Page M.D,Fergtlson S.J,et al.The energy-conserving nitric-oxide-reductase system in Paracoccus denitrifican Distrbution, from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification[J].Eur.J.Biochem,1989,179:686-692.
    [93]Car G.J,Feruson S.J. The nitric oxide reductase of Paracoccus denitrificans[J]. Biochem, 1990,269:423-430.
    [94]Heiss B,Frunzke K,W Zumft.Formation of N=N bond from nitric oxide by a membrane-bound cytochrome be complex of Nitrate-respiring(denilrifying)Psedomonoas stuteri[J]. Bacteriol, 1989,171:3288-3297.
    [95]Heikkila M P,Honisch U,Wunsch P, et al. Role of the tat transport system in nitrous oxide reductase translocation and cytochrome cdl biosynthesus in Psudomonas stutzeri [J].Journal of Bacteriology,2001,183:1663-1671.
    [96]Patureau D,Zumstein E,Delgenes J P,et al. Aerobic denitrification isolation from diverse natural and managed ecosystems[J].Microbiol Ecol,2000,39:145-152.
    [97]Lukow T,Diekmann H. Aerobic denitrification by a newly heterotrophic bacterium strain TL1[J]. Biotechnol Lett,1997,11(19):1157-1159.
    [98]Chen F,Xia Q,Ju L K.Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD(P)H fluorescence[J].Appl and Environ Microbiol,2003,69(11):6715-6722.
    [99]Kesserli P,Kiss I,Bihari Z,et al.Biological denitrification in a continuous-flow pilot bioreactor containing immobilized Pseudomonas butannovora cells[J].Bioreso Technol,2003,87:75-80.
    [100]Kim Y J,Yoshizawa M,Takenaka S,et al.Isolation and culture conditions of a Klebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously with controlled iron and molybdate ion concentrations[J].Biosci Biotechnol Biochem,2002,66(5):996-1001.
    [101]郑平.环境微生物学.浙江:浙江大学出版社,2003.
    [102]Wehrfritz J-M, Reilly A. Purification of hydroxylamine oxidase from Thiosphaera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett.,1993,335:246~250.
    [103]Selvaratnam C. Appl Microbiol Biotechnol.1997,47(2):236~240.
    [104]Ahring B K. Appl Environm Microbiol,1992,58(11):3677~3682.
    [105]王平,吴晓芙,李科林等.应用有效微生物群处理富营养化源水实验研究[J].环境科学研究,2004,17(3):39-43.
    [106]薛刚,姬鄂豫.有效微生物和絮凝剂处理酒精生产废水[J].工业水处理,2003,23(2):31-33.
    [107]王国平,黄晓菊,李寿泉等.应用EM技术处理生活污水的研究[J].徐州建设职业技术学院学报,2002,2(3):33-35.
    [108]田娜,朱亮.高效复合菌的富集培养实验研究[J].环境科学与技术,2004,27(2):15-16.
    [109]于德爽,李津,陆婕.短程与全程硝化反硝化过程中N2O产量比较[J].中国给水排水,2008,24(7):66-69.
    [110]Pierson J A, Pavlostathis S G. Real-time monitoring and control of sequencing batch reactors for secondary treatment of a poulty processing wastewater [J]. Water Environment Research,2000,72(5):585-592.
    [111]Shapovalova AA, Khijniak TV, Tourova TP, et al. Sorokin. Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gamma-proteobacteria from hypersaline soda lakes[J]. Extremophiles,2008,12:619-625.
    [112]Burton J, Chen C, Xu Z, et al. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia [J]. Soil Biology and Biochemistry,2007, 39(2):426-433.
    [113]Su JJ, Yeh KS, Tseng PW. A strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan[J]. Current Microbiology,2006,53:77-81.
    [114]Joo HS, Hirai M, Shoda M. Piggery wastewater treatment using Alcaligenes faecalis strain No.4 with heterotrophic nitrification and aerobic denitrification[J]. Water Research, 2006,40 (16):3029-3036.
    [115]Ellington MJK, Fosdike WLJ, Sawers RG, et al. Regulation of the nap operon encoding the periplasmic nitrate reductase of Paracoccus pantotrophus, delineation of DNA sequences required for redox control[J]. Arch Microbiol,2006,184 (5):298-304.
    [116]Robertson LA, Van NEWJ, Torremans RA, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha[J]. Appl & Environ Microbiol,1988,54(11):2812~2818.
    [117]Jetten MSM, Logemann S, Muyzer G, et al. Novel principles in the microbial conversion of nitrogen compounds[J]. Antonie van Leeuwenhoek,1997,71:75-53.
    [118]Steven WE, Drysdale GD, Bux F. Evaluation of nitrification by heterotrophic bacteria in biological nutrient removal processes [J]. South African Journal of Science,2002,98 (5-6):222-224.
    [119]李玲玲.高盐度废水生物处理特性研究[D].青岛.中国海洋大学.2006,pp.45-67.
    [120]Joo HS, Hirai M, Shodal M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No.4[J]. Journal of Bioscience and Bioengineering,2005,100 (2):184-191.
    [121]张培玉,郭艳丽,于德爽,等.一株轻度嗜盐反硝化细菌的分离鉴定和反硝化特性初探[J].微生物学通报,2009,36(4):581-586.
    [122]Frette L, Gejlsbjerg B, Peter W. Aerobic denitrifiers isolated from an alternating activated sludge system [J]. FEMS Microbiol Ecol,1997,24(4):363-370.
    [123]Schmidt I, Sliekers O, Schmid M, et al. New concepts of microbial treatment process for the nitrogen removal in wastewater [J]. FEMS Microbiology Reviews,2003,27:481-492.
    [124]Islam A, Chen D, White R E. Heterotrophic and autotrophic nitrification in two acid pasture soils [J]. Soil Biology and Biochemistry,2007,39(4):972-975.
    [125]Burton J, Chen C, Xu Z, et al. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia [J]. Soil Biology and Biochemistry,2007,39(2): 426-433.
    [126]Katarzyna B, Irena W B. Carbon source in aerobic denitrification [J]. Biochemical Engineering Journal,2007,36:116-122.
    [127]Morita M, Uemoto H, Watanabe A. Nitrogen-removal bioreactor capable of simultaneous nitrification and denitrification for application to industrial wastewater treatment [J]. Biochem Eng J,2008,41:59-66.
    [128]Mia K, Seong Y J, Su J Y, et al. Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios [J]. Journal of Bioscience and Bioengineering,2008,106(5):498-502.
    [129]Joo H S, Hirai M, Shodal M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No.4 [J]. Journal of Bioscience and Bioengineering,2005,100 (2):184-191.
    [130]Lin Y, Kong H N, He Y L, et al. Simultaneous nitrification and denitrification in a membrane bioreactor and isolation of heterotrophic nitrifying bacteria [J]. Japanese Journal of Water Treatment Biology,2004,40(3):105-114.
    [131]Kim J K, Park K J, Cho K S,et al. Aerobic nitrification-denitrification by heterotrophic Bacillus strains [J]. Bioresource Technology,2005,3(29):1897-1906.
    [132]张光亚,陈美慈,闵航,等.一株异养硝化细菌的分离及系统发育分析[J].微生物学报,2003,43(2):156-161.
    [133]王宏宇,马放,杨开,等.两株异养硝化细菌的氨氮去除特性[J].中国环境科学,2009,29(1):47-52.
    [134]Su J J, Yeh K S, Tseng P W. A strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan [J]. Current Microbiology,2006,53:77-81.
    [135]Wehrfritz J M, Carter J P. Hydroxylamine oxidation in heterotrophic nitrate-reducing soil bacteria and purification of a hydroxylamine-cytochrome coxidoreductase from a Pseudomonas species [J]. Arch Microbiol,1997,166:421-424.
    [136]Wehrfritz J M, Reilly A, Spiro S, et al. Purification of hydroxylamine oxidase from Thiosphaera pantotropha, identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification[J]. FEBS Letters,1993,335(2):246-250.
    [137]Robertson L A, Torremans R A, Rob A M, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha [J]. Appl Environ Microbiol,1988,54(11):2812-2818.
    [138]Richardson D J, Wehrfritz J M, Keech A, et al. The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification [J]. Biochemical Society Transactions,1998,26(3):401-408.
    [139]Moir J W B, Wehrfritz J M. The biochemical characterization of novel non-heam-iron hydroxylamine oxidase from Paracoccus denitrificans GB17 [J]. Biochem J,1996,319: 823-827.
    [140]叶剑锋.废水脱氮处理新技术[M].北京:化学工业出版社,2006.50-51.
    [141]Vadivelu V M, Keller J, Yuan Z G.. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture [J]. Biotechnol Bioeng,2006,95(5):830-839.
    [142]张云霞,周集体,袁守志.高效亚硝酸型反硝化菌生长特性及脱氮研究[J].大连理工大学学报,2009,49(2):180-185.
    [143]Castro M, Braker G, Farias L, et al. Communities of nir Stype denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific [J]. Environmental Microbiology,2005,7(9):1298-1306.
    [144]张小玲,张卫东,张玲,等.好氧反硝化菌的选育及其初步应用[J].微生物学通报,2008,35(10):1556-1561.
    [145]蒋静艳,胡正华,黄耀.异养硝化/好氧反硝化菌的分离鉴定及其在不同培养条件下产N2O研究[J].环境科学,2009,30(7):2106-2111.
    [146]张宏宇,马放,苏俊峰,等.好氧反硝化菌株的鉴定及其反硝化特性研究[J].环境科学,2007,28(7):1548-1552.
    [147]Robertson L A, Cornelisse R, De V P, et al. Aerobic denitrification in various heterotrophic nitrifiers[J]. Antonie Van Leeuwenhoek,1989,56(4):289~299.
    [148]Robertson L A, Cornelisse R, Zeng R, et al. The effect of thiosulphate and other inhibitors of autotrophic nitrification on heterotrophic nitrifers [J]. Antonie Van Leeuwenhoek,1989,56 (4):301-309.
    [149]左薇.一株好氧反硝化菌的筛选鉴定及其脱氮特性分析[D].哈尔滨:哈尔滨工业大学,2006.54-56.
    [150]Fujiwara T, Fukumori Y. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512 [J]. J Bacteriol,1996,178(7): 1866-1871.
    [151]Moir J W, Baratta D, Richardson D J, et al. The Purification of a cd1 type nitrite reductase from the aerobic denitrifier Thiophaera pantotropha [J]. Eur J Bichem,2003,212:377-385.
    [152]Schmidt I, Sliekers O, Schmid M, et al. New concepts of microbial treatment process for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews,2003,27:481-492.
    [153]Islam A, Chen D, White R E. Heterotrophic and autotrophic nitrification in two acid pasture soils [J]. Soil Biology and Biochemistry,2007,39(4):972-975.
    [154]Joo H S, Hirai M, Shoda M. Piggery wastewater treatment using Alcaligenes faecalis strain No.4 with heterotrophic nitrification and aerobic denitrification [J]. Water Research,2006, 40(16):3029-3036.
    [155]Chuang H P, Akiyoshi O, Hiroyuki I. Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition [J].Water Research,2007,41: 295-302.
    [156]高大文,彭永臻,郑庆柱.SBR工艺中短程硝化反硝化的过程控制[J].中国给水排水,2002,18(11):13-18.
    [157]Pierson J A, Pavlostathis S G. Real-time monitoring and control of sequencing batch reactors for secondary treatment of a poulty processing wastewater [J]. Water Environment Research,2000,72(5):585-592.
    [158]Aoi Y, Tsuneda S, Hirate A. Transition of bacterial spatial organization in a biofilm monitored by FISH and subsequent image analysis [J]. Water Science Technology,2004, 49(11-12):365-370.
    [159]Wehrfritz J M, Reilly A, Spiro S, et al. Purification of hydroxylamine oxidase from Thiosphaera pantotropha, identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification [J]. FEBS Letters,1993,335(2):246-250.
    [160]Richardson D J, Wehrfritz J M, Keech A, et al. The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification [J]. Biochemical Society Transactions,1998,26(3):401-408.
    [161]Moir J W B, Wehrfritz J M, et al. The biochemical characterization of novel non-heam-iron hydroxylamine oxidase from Paracoccus denitrificans GB17 [J]. Biochem J,1996,319: 823-827.
    [162]Ellington M J K, Sawers G, Sears H J,et al. Characterization of the expression and activity of the periplasmic nitrate reductase of Paracoccus pantotrophus in chemostat cultures [J]. Microbiology,2003,149:1533-1540.
    [163]Morita M, Uemoto H, Watanabe A. Nitrogen-removal bioreactor capable of simultaneous nitrification and denitrification for application to industrial wastewater treatment [J]. Biochem Eng J,2008,41:59-66.
    [164]Robertson L A, Niel E W, Torremans R M, et al. Simutaneous nitrification and denitrification in aerobic chemostat culture of Thiosphaera patotropha [J]. Appl Environ Microbiol,1988,54(11):2812-2818.
    [165]张小玲,李斌,杨永哲,等.低DO下的短程硝化及同步硝化反硝化[J].中国给水排水,2004,20(5):31-34.
    [166]彭赵旭,彭永臻,左金龙.全程硝化与短程硝化的特性对比研究[J].中国给水排水,2008,24(23):6-11.
    [167]苏俊峰,马放,高珊珊,等.一株好氧反硝化细菌的分离与鉴定验证[J].哈尔滨工业大学学报,2008,40(12):1919-1922.
    [168]Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Wat Res,2003,37(6):1371-1377.
    [169]叶剑锋.废水脱氮处理新技术[M].北京:化学工业出版社,2006.50-51.
    [170]Vadivelu V M, Keller J, Yuan Z G. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture [J]. Biotechnol Bioeng,2006,95(5):830-839.
    [171]高大文,彭永臻,郑庆柱.SBR工艺中短程硝化反硝化的过程控制[J].中国给水排水,2002,18(11):13-18.
    [172]Pierson J A, Pavlostathis S G. Real-time monitoring and control of sequencing batch reactors for secondary treatment of a poulty processing wastewater [J]. Water Environment Research,2000,72(5):585-592.
    [173]彭永臻,叶柳,王淑莹.盐度抑制结合模糊控制快速实现短程生物脱氮装置[P].中国专利:CN 200710118476.5,2008-06-04.
    [174]Hellinga C, Schellen A A J J, Mulder J W, et al. The SHARON process:an innovative method for nitrogen removal from a ammonium-rich wastewater [J]. Water Science Technology,1998,37(9):135-142.
    [175]Chuang H P, Akiyoshi O, Hiroyuki I. Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition [J].Water Research,2007,41: 295-302.
    [176]Vel M V, Jurg K, Zhiguo Y. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture [J]. Wat Res,2007,41:826-834.
    [177]孙晓杰,徐迪民,于德爽.海水冲厕污水的短程硝化试验研究[J].中国给水排水,2007,23(3):40-46.
    [178]孔庆鑫,李君文,王新为,等.一种新的好氧反硝化菌筛选方法的建立及新菌株的发现[J].应用与环境生物学报,2005,11(2):222-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700