脱硫细菌H-412固定化及脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物脱硫(BDS)是一种新型的环保型生物技术。BDS可在常温常压下利用需氧菌或厌氧菌选择性地脱除石油及其产品中的有机硫,专一切开C-S键而不破坏C-C键,从而保留了油品的热值。生物脱硫技术具有操作简单、SO2排放量和能耗较低、投资和操作费用较少等特点。生物脱硫成为21世纪极具发展潜力的脱硫技术之一。
     细菌固定化可以解决游离细菌生物脱硫中遇到的油水分离困难,细菌重复利用率低,耐酸碱性差和耐冲击负荷低等问题,该技术的关键是载体选择和固定化方法。
     本研究对一株从被石油污染的土壤中分离得到以DBT为唯一硫源生长的脱硫菌H-412的固定化进行了研究。确定了该菌在海藻酸钠、硅藻土和聚乙烯醇复合载体上的适宜共固定化条件。结果表明,以3%海藻酸钠、4%PVA、0.5%硅藻土作为固定化载体,1%氯化钙-硼酸饱和溶液作为交联剂,制备的固定化菌具有较好的脱硫活性、机械强度、传质性能和重复利用性。
     DBT和2-HBP对DBT的降解率有抑制作用,但固定化细菌相对于游离细菌受DBT和2-HBP浓度的影响小得多。当固定化小球中的细菌含量对小于5%时,固定化H-412菌的脱硫能力随细菌含量增加而提高,当含量大于5%时,脱硫能力随细菌含量增加而下降,细菌含量为5%时,脱硫效率达到最大值64.3%。
     固定化H-412菌在油相中的脱硫能力明显高于游离细菌,当油水比达到2:3时,固定化细菌在48h后对DBT的降解率仍在60%以上,而游离细菌的脱硫能力明显下降,当油水比达到2:3时,降解率已不到20%。固定化H-412菌可以多次循环使用,经过7次使用后对DBT的降解率仍可以到达65%。与游离细菌相比,固定化H-412菌对PH值的敏感性降低,稳定性得到了很大的提高。
Biodesulfurization (BDS) is a newly high developing and environmentally benign biotechnology. BDS, in which anaerobic bacteria or aerobic bacteria are used in the selective removal of sulfur from petroleum and its distillates, is C-S-band-targeted but C-C-band-targeted fashion so that it can keep the caloric value of fuel. BDS technology has many advantages, such as easy manipulation, low-SO2 emission and energy consumption, low cost and so on.
     Biodesulfurization is hotspot in actual study, immobilized method can solve the problem that dissociative bacteria faced, such as separate oil-water difficult, bacteria reuse and lifespan short, the ability of bear acid、alkali and impact bad, etc. But the key in this technology is select carrier and method.
     The author study on biodesulfurization used immobilized bacteria H-412. The optimal immobilization desulfurization bacteria H-412 conditions of sodium alginate, polyvinylalcohol and SiO2 were obtained. The suit conditions of immobilization are as follows: The experiment results indicated that the immobilized cell had the optimum desulfurization effect under the conditions of 4oC saturated boracic acid including 1 % CaCl2 as cross-linking agent, 3 % SA, 4% PVA and 0.5 % diatomite as carrier, the content bacteria is 5%.
     The desulfurating performance of immobilized bacteria H-412 is better than free bacteria in oil desulfurization. When ratio of oil to water is up to 2/3, after 48h reaction, the degradation rate of immobilized bacteria H-412 remains above 60%, but degradation rate of bacteria low 20%. The immobilized bacteria H-412 can repeatedly use several times, after seven times circulation the immobilized bacteria remain has 65% desulfurization ratio. Compaer whit free bacteria, immobilized bacteria have low sensitivity and hight stability.
引文
[1] Rafael V.D., Eduardo T. et al Will Biochemical Catalysis Impact the Petroleum Refining Industry, Energy & Fuels 2002, 16: p1239-1250
    [2] Beverly L M., Biodesulfurization, Current Opinion in Microbiology, 1999, 2:p257-264
    [3] 姜成英,微生物催化脱除柴油中含硫化合物的研究:[博士学位论文],北京;中国科学院, 2001
    [4] 高敦仁,国外高硫重质油加工经验及我国的对策探讨,石油化工技术经济,1999,3:p7-10
    [5] Song C.S., Ma X.L.,New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Applied Catalysis B: Environmental, 2003, 41: p207–238
    [6] 时雨荃,石油的生物催化法脱硫,化学工业与工程,1998,15(5):55~60
    [7] Rafael V D, Eduardo T.Will Biochemical Catalysis Impact the Petroleum Refining Industry, Energy & Fuels 2002, 16: 1239~1250
    [8] 颜延昭,生物技术在石油化工脱硫中的应用,甘肃化工,1998,1:15~18
    [9] 邓良伟,唐一等,生物脱硫机理及其研究进展,上海环境科学,1998,17(5): 35~39
    [10] 胡国延,世纪之交的炼油工业,扬子石油化工,1998,13(2):52~56
    [11] Matsui T,Hirasawa K,Koizumi K,et al, Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp, Biotech Lett,2001,23: 1715~1718
    [12] Monticello D J, Biodesulfurization and the upgrading of petroleum distillates, Current Opinion in Biotechnology,2000,11: 540~546
    [13] Kabe T, Ishihara A, Tajima H, Hydrodesulfurization of sulfur-containing polyaromatic compounds in light oil, Ind.Eng.Chem.Res.1992,31:1577~1580
    [14] 杜长海,马智,贺岩峰,生物催化石油脱硫技术的进展,化工进展,2002,21(8): 569-572
    [15] Koki K, Identification of microbial products from dibenzothiophene and its proposed oxidation pathway, Agr.Biol.Chem,1973,37(1): 45~50
    [16] Kilbane J J, Desulfurization of coal: The Microbial solution, Trends in Biotechnology, 1989,7:97~101
    [17] Malik K A, Microbial degradation of dibenzothiophene, Proceedings FifthInternational Fermentation Symposium, Berlin, Abstract 1976,239(3):421~426
    [18] Ohishiro T, Suzuki K, Izumi Y, Regulation of dibenzothiophene degrading enzyme activity of Rhodococcus erythropolis D-l, Journal of fermention and bioengineering,1996,81(2): 121~124
    [19] Stephen M A, Bruce M S, Gerrit V, Evaluation of sulfate-reducing bacteria for desulfuring bitumen or its fractions, Fuel, 1997,76(3): 223~227
    [20] Sung R, Je H C, Yong K C, Desulfurization of dibenzothiophene and diesel oils by a newly Isolated Gordona Strain CYKS1, Applied and Environmental Microbiology,1998,64(6): 2327~2331
    [21] Wang M D, Li W, Wang D H, Shi Y, The behavior of desulfurization of dibenzothiophene by Corynebacterium sp ZD-1 in aqueous phase, Energy and environmental-A world of challenges and opportunities, Proceedings, 2003,513~519
    [22] Kertesz M A, Wietek C, Desulfurization and desulfonation: applications of sulfur-controlled gene expression in bacteria, Appl Microbiol Biotechnol, 2001,57:460~466
    [23] Ohshiro T, Hirata T, Izumi Y, Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon, Appl Microbiol Biotechnol,1995,44 : 249~252
    [24] Ping W, Steven K, Kinetic Analyses of Desulfurization of Dibenzothiophene by Rhodococcus erythropolis in Batch and Fed-Batch Cultures, Applied and Environmental Microbiology, 1996,62(5): 1670~1675
    [25] Chang J H, Yong K C, Hee W, Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2, FEMS Microbiology Letters, 2000,182:309~312
    [26] Izumi Y, Ohshiro T, Ogino H, Hine Y, Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1, Applied and Environmental Microbiology, 1994,60(1): 223~226
    [27] Folsom B R, Schieche D R, Digrazia P M, Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19.Applied and Environmental Microbiology, 1999,65(11):4967~4972
    [28] Shan G, Xing J, Luo M, Liu H, Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization, Biotechnology Letters, 2003, 25:1977~1981
    [29] Franco B, Milva P, Fabio F, Growth of Rhodosporidium toruloides Strain DBVPG 6662 on dibenzothiophene crystals and orimulsion, Applied and Environmental Microbiology, 2003,69(8): 4689~4696
    [30] Gou Z, Luo M F, Li X, Desulfurization metabolite of Rhodococcus erythropolisLSSE8-1 and its related desulfurizational gene fragments, Chinese Science Bulletin,2003,48(24): 2703~2709
    [31] Maghsoudia S, Kheirolomooma A, Vossoughib M, Selective desulfurization of dibenzothiophene by newly isolated Corynebacterium sp. strain P32C1, Biochemical Engineering Journal,2000,5:11~16
    [32] Kayser K J, Cleveland L, Park H S, Kwak J H, Isolation and characterization of a moderate thermophile, Mycobacterium phleiGTIS10, capable of dibenzothiophene desulfurization, Appl Microbiol Biotechnol,2002(59):737~745
    [33] Lanzarini G, Pifferi P G, Setti L, Biodesulfurization of dibenzothiophene and heavy oil fractions by anaerobic bacteria, Gas, oil, coal and environmental biotechnology, Institute of Gas Technology Ⅲ, Chicago, 1991, 467~474
    [34] Lee M K, Senius J D, Grossman M J, Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene, Applied and Environmental Microbiology,1995,12: 4362~4366
    [35] Konishi J, Ishii Y, Okada H, Thermophilic carbon-sulfur-bond-targeted Biodesulfurization, Applied and Environmental Microbiology, 1997, 63(8): 3164~3169
    [36] Marzona M, Pessione E, Martino S D, Benzothiophene and dibenzothiophene as the sole sulfur source in Acinetobacter: growth kinetics and oxidation products, Fuel Processing Technology, 1997,52:199~205
    [37] Okada H, Nomura K, Nakahara T, Analyses of Substrate Specificity of the Desulfurizing Bacterium Mycobacterium sp. G3, Journal of Bioscience and Bioengineering,2002,93(2):228~233
    [38] Furuya T, Kirimura K, Kino K, Usami S, Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1, FEMS Microbiology Letters,2001,204:129~133
    [39] Kirmura K, Furuya T, Nishii Y, Ishii Y, Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B, Journal of Bioscience and Bioengineering,2001,91(3): 262~266
    [40] Li F L, Xu P, Ma C Q, Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B, FEMS Microbiology Letters, 2003,223: 301~307
    [41] Jonathan D V H, Phillip M F, Julia M F, Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage, Applied and Environmental Microbiology, 2004,70(3): 1487~1493
    [42] Kohtaro K, Toshiki F, Rika S, Ishii Y, Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds byRhodococcus sp. Strain WU-K2R, Applied and Environmental Microbiology, 2002,68(8):3867~3872
    [43] Tanaka Y, Matsui T, Konishi J, Maruhashi K, Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain, Appl Microbiol Biotechnol, 2002,59:325~328
    [44] Matsui T, Hirasawa K, Konishi J, Tanaka Y, Microbial desulfurization of alkylated dibenzothiophene and alkylated benzothiophene by recombinant Rhodococcus sp. strain T09, Appl Microbiol Biotechnol, 2001, 56:196~200
    [45] Omori T, Monna L, Saiki Y, Kodama T, Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1, Applied and Environmental Microbiology, 1992, 58: 911~915
    [46] Kobayashi M, Onaka T, Ishii Y, Konishi J, Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain, FEMS Microbiology Letters, 2000,187:123~126
    [47] Magda C, Jaume G, Albert B, Dagradation and desulfurization of dibenzothiophene sulfone and other sulfur compounds by Agrobacterium MC501 and a mixed culture, Enzyme and Microbiol Technology, 1996, 19:214~219
    [48] Sung R, Je H C, Yong K C, Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona Strain, CYKS1, Applied and Environmental Microbiology,1998,64(6): 2327~2331
    [49] Kilbane J J,Biodesulfurization: future prospects in coal cleaning, Proceedings 7th Annual International Pittsburgh Coal Conference,1990,373~381
    [50] Ohishiro T, Suzuki K, Izumi Y, Regulation of dibenzothiophene degrading enzyme activity of Rhodococcus erythropolis D-l, Journal of fermention and bioengineering, 1996,81(2):121~124
    [51] Matsui T ,Hirasawa K, Koizumi K, Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp,Biotech Lett,2001,23:1715~1718
    [52] Watanabe K,Noda K,Ohta Y,et al , Desulfurization of light oil by a novel recombinant strain from Pseudomonas aeruginosa, Biotech Lett,2002,24:897~903
    [53] Galan B, Diaz E, Garcia J L, Enhancing desulphurization by engineering a flavin reductase encoding gene casstte in recombinant biocatalysis, Environ Microbiol,2000,2 :687~694
    [54] Reichmuth D S ,Hittle J L ,Blance H W, Biodesulfurization of debenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene, Biotechnol Bioeng,2000,67:72~79
    [55] Coco W M, Levinson W E, Crist M J ,DNA shuffling method for generating highly recombined genes and evolved enzymes, Nature biotechnology, 2001,19:354~359
    [56] Matsui T, Noda K, Tanaka Y, Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate, Current Microbiol,2002,45:240~244
    [57] Honda H, Sugitama H, Saito H, High cell density culture of Rhodcoccus rhodochrous by pH2stat feeding and dibenzothiophene degradation, J Ferment Bioeng,1998,85(3) :334~338
    [58] Noda K, Watanabe K, Maruhashi K, Cloning of a rhodococcal promoter using a transposon for dibenzothiophene biodesulfurization, BiotechLett,2002,24:1875~1882
    [59] Tanaka Y, Yoshikawa O, Maruhashi K, The cbs mutant stain of Rhodococcus erythropolis KA22521 expresses high levels of Dsz enzymes in the presence of sulfate, Arch Microbiol ,2002,178 :351~357
    [60] Schneider K C, Lantz S E, Rivera R, et al, Random insertion of suicide vector DNA as a tool for strain improvement in the biodesulfurization biocatalyst Rhodococcus erythropolis strain IGTS8, In :Presented at the 99th General Meeting of the American Society for Microbioloyg, Chicago, IL, May 302June 3 ,1999
    [61] Gray K A ,Mrachko G, Squires C H, Biodesulfurization of fossil fuels, Current opinion in Microbiology,2003,6:229~235
    [62] Nakayama N, Matsubara T, Ohshiro T, A novel enzyme, 2′2hydroxybipheny, sulfinate desulfinase (DszB), from dibenzothiophene2desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene over expression and enzyme characterization, Biochim Biophys Acta,2002,1598:122~130
    [63] Purdy R F, Jepo J F. [J].Curr Mirobiol ,1993,27:219-222
    [64] Omori T,Ohshiro T. [J].Appl Environ Microbiol,1994,60:223-226
    [65] Ohshiro T, Hirata T, Izumi Y. [J].FEMS Microbiology letters,1996,142(1):65-70
    [66] Kayser K J, Cleveland L, Park H S, et al. [J].Appl Microbiol Biotechnol,2002,59:737-745
    [67] Tanaka Y, Matsui T, Konishi J, et al. [J].Appl Microbiol Biotechnol,2002,59: 325-328
    [68] Okada H, Nomura N, Nakahara T. [J].Biotechnol Lett,2001,23:2047-2050
    [69] Li F L,Xu P, Feng J H.,etal. [J].Appl.Environ Microbio,2005,71(1):276-281
    [70] Jiang C Y, Liu H Z, Xie Y ,et al. [J].Chinese J Chem Eng,2002,4(10):420~426
    [71] Setti L,Lanzarini G, Pifferi P G. [J].Fuel Process Technol,1997,52:145-153 57
    [72] Chang J H ,Chang Y K, Ryu H W, et al. [J].FEMS Microbiology Letters, 2000, 182(2):309-312
    [73] Ishii Y, Konishi J, OkadaJ , et al. [J].Biochem Biophys Res Commun, 2002, 270: 81-88
    [74] Kim H Y, Kim T S., Kim B H. [J].Biotech. Let,1990,12:761-766
    [75] Kim T S, Kim H Y, Park D H. [J].FuelProcessing Technol,1995,43:87-95
    [76] Armstrong S M, Sankey B M, Voordouw G. [J].Biotechnol. Let, 1995, 17: 1133-1137
    [77] Armstrong S M, Sankey B M, Voordouw G. [J].Fuel, 1995,76:223-227
    [78] 罗明芳,刘会洲,邢建民等.利用海藻酸钙固定化德氏假单胞菌R-8进行油品脱硫的方法[P],中国专利:02117766.X,2003.11.26
    [79] 许平,李福利, 冯进辉等.利用固定化分枝杆菌细胞脱除汽油中有机硫的方法[P],中国专利:200310105537.6,2004.11.10
    [80] 刘健.燃料油微生物催化脱硫的研究[D],南开大学,2002,5
    [81] 侯影飞,孙瑛,杨金荣等. [J].石油学报,2004,20(1):75-80
    [82] 罗明芳.细胞固定化生物脱硫工艺过程研究[D],中国科学院过程工程研究所, 2003,7
    [83] Naito M ,Kawamoto T,Fujino K ,et al. [J].Appl Microbiol Biotechnol, 2001, 55: 374-378
    [84] 马挺. Rhodococcus erythropolis DS-3 脱硫机理的研究及脱硫工程菌株的构建[D],南开大学,2004,7
    [85] Shan G B, Xing J M, Zhang H Y, et al.[J]. Appl Environ Microbiol. 2005, 71(8): 4497-4502
    [86] Shan G B, Luo M F, Xing J M,etal. [J].Biotechnology Letters, 2003, 25: 1977- 1981
    [87] Datta R S, Martin E J, Frank J R. Fluidized bed bioreactor technology for biodesulfurization of hydrocarbons.[C].In:U.S.Department of Energy Biodesulfurization Coordination Meeting,1997
    [88] 阎海,王子键, 红串球菌脱硫酶的活性调节,化工冶金,1999,20(4):376~380
    [89] 戚以政,汪叔雄, 生化反应动力学和反应器,化学工业出版社,1999,139~140
    [90] Setti L. Rossi M. Lanzarini G. et al.The effect on n-alkanes n the degradation of dibenzothiophene and of organic sulfur compounds in heavy oil by a Pseudomonassp. Biotech. Lett. 1992, 14:515-520
    [91] 王伯英,乌锡康. 有机任命反应集第三册.北京,化学工业出版社,1984
    [92] 马翠卿, 许平, 分光光度法在微生物脱有机硫二苯并噻吩中的应用, 无锡轻工大学学报.1999, 18:70-73
    [93] Rhee S K, Chang Y K, and Chang, Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordon strain CYKS1, Appl.Environ.Microbiol, 1998,64:2327~2331
    [94] 顾方舟,卢圣栋, 生物技术的现状与未来.北京:北京医科大学中国协和医科大学联合出版社,1990, 196
    [95] Li M Z, Squires C H, Monticello D J, Childs J D. Genetic Analvsis of the dsz Promoter and Associated Regulatory Region of Rhodococcuc erythropolis IGTS8. J, Bacteriol,1996,178(22):6409~6418
    [96] Monticello D J, Process for the desulfurization and the desalting of a fossil fule. US patent,5496729,1996-03-05
    [97] ONAKA T, Desulfurization characteristic of thermophilic Paenibacillus sp.Strain All-2 against a symmetrically alkyalted dibenzothiophene, Journal Bioscience and Bioengineering, 2001,92(2):193~196
    [98] 候影飞,孙瑛等,石油脱硫菌 Pseudomonas stutzeri up-1 的固定化研究.石油学报, 2004,20(1):75~80
    [99] 郑洪河,海藻酸钠溶液的粘度性质和流变学特性. 河南师范大学学报(自然科学版),1997,25(2):51~55
    [100] 普利锋,赵刚,王建龙, 几种交联剂对 PVA 固定化活性污泥的活性比较.清华大学学报(自然科学版),2004,44(12):1603~1605
    [101] 翟晓萌,李道堂,海藻酸钠固定化包埋微生物处理有机污染源水.环境科学,2000,21(6):80~84
    [102] 陈庆森等,聚乙烯醇和海藻酸盐共固定化冰核活性细菌——黄单胞菌TS206 的研究. 微生物学报,2003,43:492~497.
    [103] 普利锋,赵刚,王建龙, 几种交联剂对 PVA 固定化活性污泥的活性比较[J].清华大学学报(自然科学版),2004,44(12):1603~1605
    [104] 邵立明,何品晶,傅钟等.固定化微生物处理含 H S 气体的实验研究[J].环境科学,1999,20(1):19~22.
    [105] 翟晓萌,李道堂,海藻酸钠固定化包埋微生物处理有机污染源水[J].环境科学,2000,21(6):80~84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700