生物多糖功能化碳纳米管载体制备及固定化酶应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)是现代纳米材料中性能独特、优越且应用前景广泛的新型材料。它是由卷成筒状的石墨层组成,长度一般为微米级,直径可达到100nm。它有着非凡的机械、电子、热力学性能以及生物相容性,使它在生物医药及催化载体应用方面存在巨大的潜力。但是由于碳纳米管之间具有极强的疏水作用,在溶剂中碳纳米管易团聚,很难分散,从而限制了其应用。因此研究碳纳米管功能化,使其在溶液中分散性好且溶解度高,并实现功能化纳米管在蛋白吸附方面应用,是目前碳纳米管表面化学研究的一个热点。
     本论文研究制备一种水溶性高,分散稳定的功能化纳米管,通过红外、紫外、圆二、拉曼、XRD、XPS、热重、核磁,对功能化碳纳米管进行了表征;对功能化碳纳米管吸附蛋白后的复合体及对功能化碳纳米管与蛋白之间的相互作用进行了深入分析;对其固定化酶后的应用进行了讨论;对其在十六烷基双亲分子辅助下实现水相和有机相双相高浓度溶解及两相转移进行了细致研究,并将制备的功能化碳纳米管复合物进行酶固定化应用。具体工作总结如下:
     首先定位改性-环糊精合成氨基环糊精衍生物,然后与纳米管上活化的羧基进行酰胺键共价合成,制备高水溶性,高分散稳定性的新型氨基环糊精功能化纳米管。然后利用新的功能化纳米管对牛血清蛋白进行吸附,测得最大的吸附量。通过相互作用的紫外吸收光谱计算、圆二色性谱和红外光谱的定性定量分析,来推测载体与蛋白之间的相互作用机理以及分析在作用过程中对蛋白二级结构的影响。
     建立一种两相萃取体系,并选择在糖基双亲分子——十六烷基胺麦芽糖的辅助下,制备可以在水相和有机相均可以高浓度,均一分散的新型功能化纳米管复合物。对萃取体系中,有机相中醇的比例与作用、两相萃取时双亲分子与纳米管之间的最适萃取比例、两相溶剂的最佳比例及反萃取条件都进行优化和选择。在已建立的萃取体系中实现功能化纳米管复合物的制备及性能表征,并吸附酶实现在有机催化中的应用。还将萃取体系扩展到氧化纳米管,通过不同氧化程度纳米管的萃取分析及利用FTIR和XRD对萃取模型进行机理性推理,考察氧化纳米管复合物的特性及温度对于复合物之间氢键的影响。
     利用自己制备的新型功能化纳米管对生物大分子有着较高的吸附量,且很好地保持生物分子活性的优势,将这种纳米管载体应用于酶固定化。考察固定化酶的最大固定量及酶的活性保持情况,并比较酶固定化前后的催化能力。选用离子液体和有机溶剂的混合溶剂作为反应溶剂,利用脂肪酶的界面效应,提高反应速度和对映体选择性并在两相中实现固定化酶的方便有效分离,实现工业应用中的连续反应。同时对于两相体系中的界面效应进行机理性研究。此外,将功能化纳米管萃取复合物作为载体用于固定化酶,实现了固定化酶的双相溶解并应用于有机相酶催化。
A novel amino-cyclodextrin was synthesized, and it was covalentlyattached to multiwalled carbon nanotubes (MWNTs). The functionalizedMWNTs (f-MWNTs) have very good aqueous dispersibility. Bovine serumalbumin (BSA) was adsorbed onto f-MWNTs through noncovalent interactions,including the hydrophobic interaction of the residues of BSA with the wall ofMWNT and the guest-host interaction of the residues with the cyclodextrin (CD)moieties of f-MWNTs. The Ultraviolet–visible (UV-vis) absorption of thef-MWNT-BSA hybrid was measured with UV-vis spectrometer; the absorbancecan be described well with the Beer Lambert law. The X-ray diffraction patternshave indicated that the crystalline form of BSA has been changed after theadsorption of BSA on f-MWNTs. The circular dichroism spectra have shownthat a high percentage of-helical content can be retained for BSA adsorbed on f-MWNTs. The results also indicate that the change of secondary structure ofBSA is mainly due to the hydrophobic interaction of the residues of BSA withthe wall of f-MWNT, while the secondary structure is much less affected by theinteraction of the CD moieties with BSA.
     Phase transfer of multi-walled carbon nanotubes (MWNTs) from anaqueous phase into an organic phase is achieved. The transfer utilizes thehydrogen-bonding interactions between the disaccharide group of a sugar-basedamphiphile and oxygenated functional groups on the surface of MWNTs. Thedispersion of carbon nanotubes in a wide range of organic solvents is enabled,which represents the first example of solubilization of carbon nanotubes inorganic solvents via hydrogen bonding interactions.
     The immobilized lipase was utilized for the resolution of the modelcompound (R, S)-1-Phenyl ethanol in heptane, the ionic liquid [Bmim]PF6aswell as the heptane/[Bmim]PF6mixture. In the reaction media, the enzymaticactivity by the immobilized lipase is much higher than that by the free lipase. Incomparison to the catalysis in the ionic liquid and heptane, when using themixture of heptane/[Bmim]PF6as the reaction medium, the catalysis by theimmobilized lipase at the heptane-ionic liquid interface exhibited a highercatalysis activity. This is due to two aspects: the continuous diffusion ofsubstrate from the heptane phase to the ionic liquid phase; the simultaneousextraction of product from the ionic liquid phase. In addition, the interfacial enzymatic catalysis facilitates the reuse of the immobilized lipase and the ionicliquid.
引文
[1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [2] Iijima S, Ichihashi T. Single-shell carbon nanotubes of1-nm diameter [J]. Nature,1993,363(17):604-605.
    [3] Ebbesen TW, Carbon nanotubes [J]. Physics Today,1996,49(6):26-32.
    [4] Dresselhaus MS, Dresselhaus G, Saito R, Physics of carbon nanotubes [J]. Carbon,1995,33:884-891.
    [5] Wong EW, Sheehan PE, Lieber CM. Nanobeam Mechanics Elasticity Strength andToughness of Nanorods and Nanotubes [J]. Science1997,277(5334):1971-1975.
    [6] Yu MF, Files B S, Arepalli S, Ruoff RS. Tensile Loading of Ropes of Single Wall CarbonNanotubes and Their Mechanical Properties [J]. Physical Review Letter,2000,84(24):5552-5555.
    [7] Ebbesen TW, Jlezec H, Hiura H. Conductivity of individual carbon nanotubes [J]. Nature,1996,382:54-56.
    [8] Kasumov AY, Deblock R, Deblock R, Kociak M. Supercurrents through single-walled carbonnanotubes [J]. Science,1999,284:1508-1511.
    [9] Kenneth B, Teol K, Carbon Nanotubes as Cold Cathode [J]. Nature,2005,437:968-971.
    [10] Ishigami M, Cumings J, Zettl A, Chen S. A simple method for the continuous production ofcarbon nanotubes [J]. Chem Phys Lett,2000,319(5-6):457-459.
    [11] Tian YJ, Zhang Y L, Yu Q, Wang XZ, Hu Z, Zhang YF, Xie KC. Effect of catalysis on coal tonanotube in thermal plasma [J]. Catalysis Today,2004,89(1-2):234-236.
    [12] Cassell AM, Raymakers JA, Kong J, Dai HJ. Large Scale CVD Synthesis of Single-WalledCarbon Nanotubes [J]. Phys Chem B,1999,103:6484-6492.
    [13] Su M, Zheng B, Liu J A scalable CVD method for the synthesis of single-walled carbonnanotubes with high catalyst productivity [J]. Chem Phys Lett,2000,322:321-326.
    [14] Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE. Controlled production of single-wallcarbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts [J]. ChemPhys Lett,2000,317:497-503.
    [15] Andreas T, Lee R, Pavel N, Dai Hongjie, Pierre P, Jerome R, Xu Chunhui, Lee Y H, Kim SG.Crystalline ropes of metallic carbon nanotubes [J]. Science,1996,273:484-487.
    [16] PMA jayan. Nanotubes from Carbon [J]. Chem Rev,1999,99(7):1787–1800.
    [17] G S Duesberg, W Blau, HJ Byrne, J Muster, M Burghard, S Roth. Chromatography of carbonnanotubes [J]. Synth Met,1999,103(1–3):2484–2485.
    [18] K Yamamoto, S Akita, Y Nakayama. Orientation of carbon nanotubes using electrophoresis[J]. J Appl Phys,1996,35(7B):917-918.
    [19] JM Bonard, T Stora, J P Salvetat, F Meier, T St ckli, C Düsch, L Forró, W A de Heer, AChatelain. Purification and size-selection of carbon nanotubes [J]. Adv Mater,1997,9(10):827-831.
    [20] Konstantin B Shelimov, Rinat O Esenaliev, Andrew G Rinzler, Chad B Huffman, Richard ESmalley. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration [J].Chem Phys Lett,1998,282:429-434.
    [21] Erik Dujardin, Thomas W Ebbesen, Ajit Krishnan, Michael M J Treacy. Purification ofSingle-Shell Nanotubes [J]. Adv Mater,1998,10(8):611-613.
    [22] SC Tsang, YK Chen, PJF Harris, MLH Green. A simple chemical method of opening andfilling carbon nanotubes [J]. Nature,1994,372:159-162.
    [23] JF Colomer, P Piedigrosso, A Fonseca, JB Nagy. Different purification methods of carbonnanotubes produced by catalytic synthesis [J]. Synth Met,1999,103:2482-2483.
    [24] L Vaccarini, C Goze, R Aznar, V Micholet, C Journet, P Dernier. Purification procedure ofcarbon nanotubes [J]. Synth Metals,1999,103(1-3):2492-2493.
    [25] Biro LP, Khanh NQ, Vertesy Z, Horvath ZE, Osvath Z, Koos A, Gyulai J, Kocsonya A, KonyaZ, Zhang XB, Van Tendeloo G, Fonseca A, Nagy JB. Catalyst traces and other impurities inchemically purified carbon nanotubes grown by CVD [J]. Mat Sci Eng C,2002,19:9-13.
    [26] Sekar C, Subramanian C. Nanotubes and their by-products [J]. Vacuum,1997,47(11):1289-1292.
    [27] Bandow S, Asaka S, Zhao X. Magnetic Properties of Carbon Nanotubes [J]. Appl Phys A,1998,67:24-27.
    [28] Tsang S C, Harris PIF, Green MLH.Thinning and opening of carbon nanotubes by oxidationusing carbon dioxide [J]. Nature,1993,362:520-522.
    [29] Jeong T, Kim W Y, Hahn Y B. Iron–hydrocarbon cluster Fe13(C2H2)6[J]. Chem Phys Lett,2001,344:287-291.
    [30] S Banerjee, T Hemraj-Benny, SS Wong. Interactions of Lanthanide Complexes with OxidizedSingle-Walled Carbon Nanotubes [J]. Chem Mater,2004,16:1855-1863.
    [31] Liu YH, Lu F, Wang J. Disposable carbon nanotube modified screen-printed biosensor foramperometric detection of organophosphorus pesticides and nerve agents [J].Electro-analysis,2004,16:145-152.
    [32] Peng HQ, LB Alemany, JL Margrave, VN Khabashesku. Sidewall Carboxylic AcidFunctionalization of Single-Walled Carbon Nanotubes [J]. J Am Chem Soc,2003,125:15174-15182.
    [33] Chen J, Hamon MA, Hu H, Chen Y, Rao A M, Eklund PC, Haddon R C. Solution Properties ofSingle-Walled Carbon Nanotubes [J]. Science,1998,282:95-96.
    [34] Banerjee S, Wong S S. Functionalization of Carbon Nanotubes with a Metal-ContainingMolecular Complex [J]. Nano Lett,2002,2:49-53.
    [35] Banerjee S, Wong SS. Rational Sidewall Functionalization and Purification of Single-WalledCarbon Nanotubes by Solution-Phase Ozonolysis [J]. J Phys Chem B,2002,106:12144-12151.
    [36] Zhu WH, Minami N, Kazaoui S, Kim Y J. Fluorescent chromophore functionalizedsingle-wall carbon nanotubes with minimal alteration to their characteristic one-dimensionalelectronic states [J]. J Mater Chem,2003,13:2196-2201.
    [37] Zhu W H, Minami N, Kazaoui S, Kim Y J. π-Chromophore-functionalized MWNTs bycovalent bonding: substantial change in the optical spectra proving strong electronicinteraction [J]. J Mater Chem,2004,14:1924-1926.
    [38] Weijie, Shelby Taylor, Kefu Fu, Yi Lin, Donghui Zhang, Timothy W Hanks, Apparao M Rao,Ya-Ping Sun. Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation [J].Nano Letters,2002,2(4):311–314.
    [39] GD Withey, AD Lazareck, MB Tzolov, A Yin, P Aich, JI Yeh, JM Xu. Ultra-high redoxenzyme signal transduction using highly ordered carbon nanotube array electrodes [J].Biosensors and Bioelectronics,2006,21:1560-1565.
    [40] Keith A Williams1, Peter T M Veenhuizen1, Beatriz G de la Torre, Ramon Eritja, CeesDekker. Nanotechnology: Carbon nanotubes with DNA recognition [J]. Nature,2002,420:761-761.
    [41] Weijie Huang, Shiral Fernando, Lawrence F. Allard, Ya-Ping Sun. Solubilization ofSingle-Walled Carbon Nanotubes with Diamine-Terminated Oligomeric Poly(ethyleneGlycol) in Different Functionalization Reactions [J]. Nano Letters,2003,3(4):565–568.
    [42] Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry [J]. Chem Rev,1998,98:1744-1754.
    [43] Liu Y, Zhang Y M, Qia D. Molecular recognition study on a supermolecular system Inclusioncomplexation of modified cyclodextrins with amino acids:Enhanced enantioselectivity forL/D-leucine [J]. J Org Chem, l997,62(6): l826-l830.
    [44] Peter RC, Salek JS, Sikorski T. Cooperative binding by aggregatedmono-6-(alkylamino)-betaeyclodextrins [J]. J. Am. Soc.,1990,112(10):3860-3868.
    [45] Viizitu D, Walkinshaw CS, Gorin BI. Erratum:Enthalpies of form ation of hexaethylethane,oetamethylhexane, and tri-tert-butylmethane Extremelystrained hydrocarbons [J]. J OrgChem,1997,62(25):8760-8766.
    [46] Zhong N, Byun HS. An improved synthesis of6-O-monotosyl-6-deoxy--cyclodextrin [J].Tetrahedron Lett,1998,39:2919-2920.
    [47] Youhei Inoue, Masahiko Miyauchi, Hiroki Nakajima, Yoshinori Takashima, HiroyasuYamaguchi, Akira Harada. Self-Threading of a Poly (ethylene glycol) Chain in aCyclodextrin-Ring: Control of the Exchange Dynamics by Chain Length [J]. J Am ChemSoc2006,128:8994-8995.
    [48] Karuppiah N, Sharma A. Cyclodextrins as protein folding aids [J]. Biochem Biophys ResCommun,1995,211:60-66.
    [49] Villalonga R, Ferna′ndez M, Fragoso A, Cao R, Di Pierro P, Mariniello L, Porta R.Transglutaminase-catalyzed synthesis of trypsin-cyclodextrin conjugates kinetics andstability properties [J]. Biotechnol Bioeng,2003,81:732-737.
    [50] Yazdanparast R, Khodagholi F Arch. Kinetic aspects of alkaline phosphatase refolding in thepresence of alpha-cyclodextrin [J]. Biochem Biophys,2006,446:11-19.
    [51] Gellman SH, Rozema D. Method for refolding misfolded enzymes with detergent andcyclodextrin [M] US Patent,1996:5563057.
    [52] Ferna′ndez M, Villalonga ML, Fragoso A, Cao R, Villalonga R. Effect of-cyclodextrin-polysucrose polymer on the stability properties of soluble trypsin [J]. EnzymeMicrob Technol,2004,34:78-82.
    [53] Ferna′ndez M, Villalonga M L, Caballero J, Fragoso A, Cao R, Villalonga R. Effects ofbeta-cyclodextrin-dextran polymer on stability properties of trypsin [J]. Biotech Bioeng,2003,83:744-747.
    [54] Wang Zhimin, Chen Yongming., Supramolecular Hydrogels Hybridized with Single-WalledCarbon Nanotubes [J]. Macromolecules2007,40:3402-3407.
    [55] Liu Yu, Yu Zhi-Lin, Zhang Ying-Ming, Dong-Sheng Guo, Yu-Ping Liu. SupramolecularArchitectures of-Cyclodextrin-Modified Chitosan and Pyrene Derivatives Mediated byCarbon Nanotubes and Their DNA Condensation [J]. J Am Chem Soc2008,130:10431–10439.
    [56] Tomoki Ogoshi, Yoshinori Takashima, Hiroyasu Yamaguchi, Akira Harada.Chemically-Responsive Sol-Gel Transition of Supramolecular Single-Walled CarbonNanotubes (MWNTs) Hydrogel Made by Hybrids of MWNTs and Cyclodextrins [J]. J AmChem Soc2007,129:4878-4879.
    [57] Chen Jian, Mark J. Dyer, Min-Feng Yu. Cyclodextrin-Mediated Soft Cutting ofSingle-Walled Carbon Nanotubes [J]. J Am Chem Soc2001,123:6201-6202.
    [58] Liu Kesong, Fu Honggang, Xie Ying, Zhang Lili, Pan Kai, Zhou Wei. Assembly of-Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes [J]. J PhysChem C,2008,112:951-957.
    [59] Pang Jinyu, Xu Guiying, Bai Yan, Yuan Shiling, He Fang, Wang Yajing, Sun Hongyuan,Aiyou Hao. Molecular dynamics simulations of the interactions between b-cyclodextrinderivatives and single-walled carbon nanotubes [J]. Computational Materials Science,2010,50:284-290.
    [60] Hu Jun, Shao Dadong, Chen Changlun, Sheng Guodong, Li Jiaxing, Wang Xiangke MasaakiNagatsu. Plasma-Induced Grafting of Cyclodextrin onto Multiwall Carbon Nanotube/IronOxides for Adsorbent Application [J]. J Phys Chem B,2010,114(20):6779-6778.
    [61] Shao Dadong, Sheng Guodong, Chen Changlun, WangXiangke, Masaaki Nagatsu. Removalof polychlorinated biphenyls from aqueous solutions using-cyclodextrin graftedmultiwalled carbon nanotubes [J]. Chemosphere,2010,79:679–685.
    [62] Kang Shi-Zhao, Cui Zeyi, Mu Jin. Electrochemical behavior of sodium cholate anddeoxycholate on an electrode modified with multi-walled carbon nanotubes (MWNTs) linkedup with cyclodextrin [J]. Diamond&Related Materials,2007,16:12–15.
    [63] KL Salipiraa, RW Krausea, BB Mambaa, TJ Malefetsea, LM Celea, SH Durbacha.Cyclodextrin polyurethanes polymerized with multi-walled carbon nanotubes Synthesis andcharacterization [J]. Materials Chemistry and Physics,2008,111:218–224.
    [64] Yu Jin-Gang, Huang Ke-Long, Liu Su-Qin, Tang Jin-Chun. Preparation and characterizationof soluble methyl--cyclodextrin functionalized single-walled carbon nanotubes [J]. Physica,2008,40:689–692.
    [65] Jiang L Q, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes [J].J Colloid Interface Sci,2003,260:89-94.
    [66] Islam M F, Roilb E, Bergey D M. High weight fraetion surfactant sclubilization of single-wallcarbon nanotubes in water [J]. Nano Lett,2003,3(2):269-273.
    [67] Matarredona O, Rhoads H, Li Z. Dispersion of single-walhd carbon nanotubes in aqueoussolutions ofthe an ionic surfaetant naDDBS [J]. Plays Chem B,2003,107:13357-13367.
    [68] Ning J, Zhang J, PanY. Surfaetants assisted processing of carbon nanotube-reinforced SiO2matrix composites [J]. Ceramics International,2004,30:64-67,
    [69] Milana O, Lisunova, Nikolai I, Lebovka, Olexander V, Melezhyk C,Yurie P Boiko. Stabilityof the aqueous suspensions of nanotubes in the presence of nonionic surfactant [J]. Journal ofColloid and Interface Science,2006,299:740–746.
    [70] Adam J Blanch, Claire E Lenehan, Jamie S. Quinton Optimizing Surfactant Concentrationsfor Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solution [J]. J Phys ChemB,2010,114(30):9805–9811.
    [71] Hasan V, Scardaci PH, Tan AG, Rozhin WI, Milne AC. Ferrari Dispersibility and stabilityimprovement of unfunctionalized nanotubes in amide solvents by polymer wrapping [J].Physica E,2008,40:2414-2418.
    [72] Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M, Iijima S. Selectivity of water-solubleproteins in single-walled carbon nanotube dispersions [J]. Chem Phys Lett,2006,429:497-502.
    [73] Nepal D, Geckeler KE. pH-sensitive dispersion and debundling of single-walled carbonnanotubes: lysozyme as a tool [J]. Small,2006,2:406-412.
    [74] Yu CM, Yen MJ, Chen LC. A bioanode based on MWCNT/protein-assisted coimmobilizationof glucose oxidase and2,5-dihydroxybenzaldehyde for glucose fuel cells [J]. BiosensBioelectron,2010,25:2515-2521.
    [75] Wu X, Zhao B, Wu P, Zhang H, Cai H. Effects of ionic liquids on enzymatic catalysis of theglucose oxidase toward the oxidation of glucose [J]. J Phys Chem B,2009,113:56713365-56713373.
    [76] Lee CA, Tsai YC. Preparation of multiwalled carbon nanotube-chitosan-alcoholdehydrogenase nanobiocomposite for amperometric detection of ethanol [J]. Sens ActuatorsB,2009,138:518-523.
    [77] Lee KP, Komathi S, Nam NJ, Gopalan AI. Sulfonated polyaniline network grafted multi-wallcarbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing ofglucose [J]. Microchem J,2010c,95:74-79.
    [78] Yim TJ, Liu J, Lu Y, Kane RS, Dordick JS. Highly active and stable DNAzyme-carbonnanotube hybrids [J]. J Am Chem Soc,2005,9:12200-12201.
    [79] Withey GD, Kim JH, Xu J. DNA-programmable multiplexing for scalable, renewable redoxprotein bio-nanoelectronics [J]. Bioelectrochemistry,2008,74:111-117.
    [80] Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes byMWNT connectors.[J]. Angew Chem,2004,116:2165-2169.
    [81] Chen RJ, Bangsaruntip S. Drouvalakis KA, Kam NWS, Shim M, Li Y, Noncovalentfunctionalization of carbon nanotubes for highly specific electronic biosensors [J]. Proc NatlAcad Sci USA,2003,100:4984-4989.
    [82] Yan Y, Zheng W, Zhang M, Wang L, Su L, Mao L. Bioelectrochemically functionalnanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes:facilitated electron transfer of assembled proteins with enhanced faradic response [J].Langmuir,2005,21:6560-6566.
    [83] Shim M, Kam NWS, Chen RJ, Li YM, Dai HJ.Functionalization of carbon nanotubes forbiocompatibility and biomolecular recognition [J]. Nano Lett,2002,2:285-288.
    [84] McDonald TJ, Svedruzic D, Kim YH, Blackburn HL, Zhang SB, King PW. Wiring-uphydrogenase with single-walled carbon nanotubes [J]. Nano Lett,2007,7:3528-3534.
    [85] Bi S, Zhou H, Zhang S. Multilayers enzyme-coated carbon nanotubes as biolabel forultrasensitive chemiluminescence immunoassay of cancer biomarker [J]. Biosens Bioelectron,2009,24:2961-2966.
    [86] Munge B, Liu G, Collins G, Wang J. Multiple enzyme layers on carbon nanotubes forelectrochemical detection down to80DNA copies [J]. Anal Chem,2005,77:4662-4666.
    [87] Gao Y, Kyratzis I. Covalent immobilization of proteins on carbon nanotubes using thecross-linker1-ethyl-4-(4-dimethylaminopropyl) carbodiimide-a critical assessment [J].Bioconjugat Chem,2008,19:1945-1950.
    [88] Ji P, Tan H, Xu X, Feng W.Lipase covalently attached to multi-walled carbon nanotubes as anefficient catalyst in organic solvent [J]. AIChE J,2010,56:3005-3011.
    [89] Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J. Enhanced stability ofenzyme organophosphate hydrolase interfaced on the carbon nanotubes [J]. Colloids Surf BBiointerfaces,2010,77:69-74.
    [90] Pang HL, Liu J, Hu D, Zhang XH, Chen JH. Immobilization of laccase onto1-aminopyrenefunctionalized carbon nanotubes and their electrocatalytic activity for oxygen reduction [J].Electrochim Acta,2010,55:6611-6616.
    [91] Kim BJ, Kang BK, BahkYY, YooKH, LimKJ. Immobilization of horseradish peroxidase onmulti-walled carbon nanotubes and its enzymatic stability [J]. Curr Appl Phys,2009,9:264-265.
    [92] Wang L, Wei L, Chen Y, Jiang R. Specific and reversible immobilization of NADH oxidaseon functionalized carbon nanotubes [J]. J Biotechnol,2010,150:57-63.
    [93] Zhang B, Xing Y, Li Z, Zhou H, Mu Q, Yan B. Functionalized carbon nanotubes specificallybind to-chymotrypsin's catalytic site and regulate its enzymatic function [J]. Nano Lett,2009,9:2280-2284.
    [94] Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH. Purification andCharacterization of Single-Wall Carbon Nanotubes [J]. J Phys Chem B,2001,105:1157-1161.
    [95] Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC.Chemistry of Single-Walled Carbon Nanotubes [J]. Acc Chem Res,2002,35:1105-1113.
    [96] Li Huanjun, Feng Lai, Guan Lunhui, Shi Zujin, Gu Zhennan. Synthesis and purification ofsingle-walled carbon nanotubes in the cottonlike soot [J]. Solid State Communications,2004,132:219–224.
    [97]邱方利.对氨基苯甲酸钾的合成研究[J].浙江化工,2006,5:5-5-31.
    [98] Zhong N, Byun HS, Bittrnan R. An improved synthesis of6-O-monotosyl-6-deoxy--cyclodextrin [J]. Tetrahedron lett,1998,39:2919-2920.
    [99] Tang Weihua, Ng Siu-Choon. Synthesis of cationic single-isomer cyclodextrins for the chiralseparation of amino acids and anionic pharmaceuticals [J]. Nature Protocols,2007,2(12):3195-3200.
    [100] Inoue Y, Miyauchi M, Nakajima H, Takashima Y, Yamaguchi H, Harada A. Self-Threadingof a Poly(ethylene glycol) Chain in a Cyclodextrin-Ring Control of the Exchange Dynamicsby Chain Length [J]. J Am Chem Soc,2006,128:8994-8995.
    [101] Gao Yuan, Kyratzis Ilias. Covalent Immobilization of Proteins on Carbon Nanotubes Usingthe Cross-Linker1-Ethyl-4-(4-dimethylaminopropyl) carbodiimide-a Critical Assessment [J].Bioconjugate Chem,2008,19(10):1945–1950.
    [102] Chou Alison, Bocking Till, Liu Rongmei, Singh KN, Moran G, Gooding JJ. Effect of Dialysison the Electrochemical Properties of Acid-Oxidized Single-Walled Carbon Nanotubes [J]. JPhys Chem C,2008,112:14131–14138.
    [103] Hull Robert V, Li Liang, Xing Yangchuan, Chusuei Charles C. Pt Nanoparticle Binding onFunctionalized Multiwalled Carbon Nanotubes [J]. Chem Mater,2006,18:1780-1788.
    [104] Nina I Kovtyukhova, Thomas E Mallouk, Ling Pan, Elizabeth C. Dickey IndividualSingle-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon NanotubeRopes [J]. J Am Chem Soc,2003,125:9761-9769.
    [105] T Ramanathan, F T Fisher, RS Ruoff, LC Brinson. Amino-Functionalized Carbon Nanotubesfor Binding to Polymers and Biological Systems [J]. Chem Mater,2005,17:1290-1295.
    [106] Bernadette Brady, Nuala Lynam, Thomas O'Sullivan, Cormac Ahern, Raphael arcy.6A-O-p-Toluenesulfonyl--Cyclodextrin [J]. Organic Syntheses,2004,10:686-687.
    [107] Kai Griebenow, Yanira Daz Laureano, Anglica M. Santos, Ileana Montaez Clemente, LuizRodrguez, Michael W Vidal, Gabriel Barletta. Improved Enzyme Activity andEnantioselectivity in Organic Solvents by Methyl--cyclodextrin [J]. J Am Chem Soc,1999,121(36):8157-8163.
    [108] Ovejero G, Sotelo J L, Romero MD, Rodriguez A, Ocana MA, Rodr iguez G, Garcia J.Multiwalled Carbon Nanotubes for Liquid-Phase Oxidation. FunctionalizationCharacterization and Catalytic Activity [J]. Ind Eng Chem Res,2006,45:2206-2212.
    [109] Donna J Nelson, Heather Rhoads, Christopher Brammer. Characterizing CovalentlySidewall-Functionalized MWNTs [J]. J Phys Chem C,2007,111:17872-17878.
    [110] B Katherine Price, James M Tour. Functionalization of Single-Walled Carbon Nanotubes―OnWater‖[J]. J Am Chem Soc,2006,128:12899-12904.
    [111] Li Huanjun, Feng Lai, Guan Lunhui, Shi Zujin, Gu Zhennan.Synthesis and purification ofsingle-walled carbon nanotubes in the cottonlike soot [J]. Solid State Communications,2004,132:219–224.
    [112] Douglas Ogrin, Jayanta Chattopadhyay, Anil K Sadana, W Edward Billups, Andrew R Barron.Epoxidation and Deoxygenation of Single-Walled Carbon Nanotubes:Quantification ofEpoxide Defects [J]. J Am Chem Soc,2006,128:11322-11323.
    [113] Shinichi Nagasawa, Masako Yudasaka, Kaori Hirahara, Toshinari Ichihashi, Sumio Iijim.Effect of oxidation on single-wall carbon nanotubes [J]. Chemical Physics Letters,2000,328:374-380.
    [114] Zhao Bin, Hu Hui, Yu Aiping, Perea Daniel, Haddon RC. Synthesis and Characterization ofWater Soluble Single-Walled Carbon Nanotube Graft Copolymers [J]. J Am Chem Soc,2005,127:8197-8203.
    [115] Pelton JT, McleanLR. Spectroscopic Methods for Analysis of Protein Secondary Structure [J].Ana1Biochem,2000,277:167-176.
    [116] Goa J. A micro biuret method for protein determination. Determination of total protein incerebrospinal fluid [J]. Scand J Clin Lab Invest,1953,5:218-222.
    [117] Lang CA. Simple Microdetermination of Kjeldahl Nitrogen in Biological Materials [J]. Ana1Chem,1958,30:1692-1694.
    [118] Edellhoeh H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins [J].Biochemistry,1967,6:1948-1954.
    [119] Sergei Khrapunov. Circular dichroism spectroscopy has intrinsic limitations for proteinsecondary structure analysis [J]. Analytical Biochemistry,2009,389:174–176.
    [120] Greenfield N, Fasman GD. Computed circular dichroism spectra for the evaluation of proteinconformation [J]. Biochemistry,1969,8:4108-4116.
    [121] Morrisett JD, David JS, Pownall HJ, Gotto AMJ. Interaction of an apolipoprotein(apoLP-alanine) with phosphatidylcholine [J]. Biochemistry,1973,12:1290-1299.
    [122] Sreerama N, Woody RW. A Self-Consistent Method for the Analysis of Protein SecondaryStructure from Circular Dichroism [J]. Anal Biochem,1993,209:32–44.
    [123] Johnson WC Jr. Analyzing protein CD for accurate secondary structures. Proteins Struct.Funct [J]. Genet,1999,35:307-312.
    [124] Provencher SW, Gloeckner J. Estimation of globular protein secondary structure fromcircular dichroism [J]. Biochemistry,1981,20:33–37.
    [125] Sreerama N, Venyamlnov SY, Woody RW. Estimation of Protein Secondary Structure fromCircular Dichroism Spectra Inclusion of Denatured Proteins with Native Proteins in theAnalysis [J]. Ana1Biochem,2000,287:244-251.
    [126] Venyaminov SY, Vassilenko KS. Determination of Protein Tertiary Structure Class fromCircular Dichroism Spectra [J]. Ana1Biochem,1994,222:176-l84.
    [127] Manavalan P, Johnson WC Jr. Sensitivity of circular dichroism to protein tertiary structureclass [J]. Nature,1983,305:831-832.
    [128] Smith B. Quantitative Spectroscopy Theory and Practice [J]. J Anal Chem,2008,80:4049-4054.
    [129] Eran Edri, Oren Regev.―Shaken, Not Stable‖Dispersion Mechanism and Dynamics ofProtein-Dispersed Nanotubes Studied via Spectroscopy [J]. Langmuir,2009,25(18):10459–10465.
    [130] Eran Edri, Oren Regev. pH Effects On BSA-Dispersed Carbon Nanotubes Studied bySpectroscopy-Enhanced Composition Evaluation Techniques [J]. Anal Chem,2008,80:4049-4054.
    [131] Zaks A, Klibanov AM. The effect of water on enzyme action in organic media [J]. Biol Chem,1988,263,3194-3201.
    [132] D. M. Byler, H. Susi. Examination of the secondary structure of proteins by deconvolvedFTIR spectra [J]. Biopolymers,1986,25:469–487.
    [133] Dousseau F, Pèzolet M. Determination of the secondary structure content of proteins inaqueous solutions from their amide I and amide II infrared bands Comparison betweenclassical and partial least-squares methods [J]. Biochemistry,1990,29:8771–8779.
    [134] Surewicz WK, Mantsch HH, Chapman D. Determination of protein secondary structure byFourier transform infrared spectroscopy A critical assessment [J]. Biochemistry,1993,32:389–394.
    [135] Dong JD, Meyer SB, Kendrick MC, Manning Carpenter J F. Effect of secondary structure onthe activity of enzymes suspended in organic solvents [J]. Arch Biochem Biophys,1996,334:406–414.
    [136] Prestrelski SJ, Arakawa T, Carpenter J. Structural studies using infrared spectroscop [J]. ArchBiochem.Biophys,1993,303:465–473.
    [137] Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF. Dehydration-induced conformationaltransitions in proteins and their inhibition by stabilizers [J]. Biophys J,1993,65:661–671.
    [138] Dong A, Huang P, Caughey WS. Protein secondary structures in water fromsecond-derivative amide I infrared spectra [J]. Biochemistry,1990,29:3303–3308.
    [139] Daliya S Mathew, Ruey-Shin Juang. Role of alcohols in the formation of inversemicroemulsions and back extraction of proteins/enzymes in a reverse micellar system [J].Separation and Purification Technology2007,53:199–215.
    [140] Kirk J Ziegler, Daniel J Schmidt, Urs Rauwald, Kunal N Shah, Erica L Flor, Robert H Hauge,Richard E Smalley.Length-Dependent Extraction of Single-Walled Carbon Nanotubes [J].Nano Lett,2005,5:2355-2359.
    [141] Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K,Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE. Fullerenepipes [J]. Science,1998,280:1254-1256.
    [142] Kuo SW, Chang FC. Miscibility and Hydrogen Bonding in Blends ofPoly(vinylphenol-co-methyl methacrylate) with Poly(ethylene oxide)[J]. Macromolecules,2001,34:4089-4097.
    [143] Wang J, Cheung MK, Mi YL.Miscibility and morphology in crystalline/amorphous blends ofpoly(caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR, and13C solid stateNMR [J]. Polymer,2002,43:1357-1364.
    [144] Purcell KF, Drago RS.Theoretical aspects of the linear enthalpy wavenumber shift relationfor hydrogen-bonded phenols [J]. J Am Chem Soc,1967,89:2874-2880.
    [145] Satoshi Kubo, John F. Kadla.Hydrogen Bonding in Lignin: A Fourier Transform InfraredModel Compound Study [J]. Biomacromolecules,2005,6:2815-2821.
    [146] Kuo Shiao-Wei, Lin Chen-Lung, Chang Feng-Chih.Phase Behavior and Hydrogen Bondingin Ternary Polymer Blends of Phenolic Resin/Poly(ethylene oxide)/Poly(-caprolactone)[J].Macromolecules2002,35:278-285.
    [147] Chen Chong, Gao Jinsheng, Yan Yongjie.Role of noncovalent bonding in swelling of coal [J].Energy&Fuels,1998,12:446-449.
    [148] Miura Kouichi, Mae Kazuhiro, Li Wen, Kusakawa Takumi, Morozumi Fumiaki, KumanoAkiko. Estimation of Hydrogen Bond Distribution in Coal through the Analysis of OHStretching Bands in Diffuse Reflectance Infrared Spectrum Measured by in-Situ Techniqu [J].Energy&Fuels,2001,15:599-610.
    [149] Sanjai J. Parikh, Jon Chorover.ATR-FTIR Spectroscopy Reveals Bond Formation duringBacterial Adhesion to Iron Oxide [J]. Langmuir,2006,22:8492-8500.
    [150] Yuichi Shibuya, Ryouta Takahashi, Tatsunori Okubo, Hiroyuki Suzuki, Miwa Sugiura,Takumi Noguchi.Hydrogen Bond Interactions of the Pheophytin Electron Acceptor and ItsRadical Anion in Photosystem II As Revealed by Fourier Transform Infrared DifferenceSpectroscopy [J]. Biochemistry,2010,49:493–501.
    [151] Smita Mukherjee, Pramit Chowdhury, William F DeGrado, Feng Gai.Site-Specific HydrationStatus of an Amphipathic Peptide in AOT Reverse Micelles [J]. Langmuir,2007,23:11174-11179.
    [152] Zhang Tianxi, Liu Huizhou, Chen Jiayong.Affnity extraction of BSA by mixed reversedmicellar system with unbound triazine dye [J]. Biochemical Engineering Journal,1999,4:17-21.
    [153] Zhao Yueju, Zhang Jianling, Wang Qian, Li Wei, Li Jianshen, Han Buxing, Wu Zhonghua,Zhang Kunhao, Li Zhihong.Cylindrical-to-Spherical Shape Transformation of LecithinReverse Micelles Induced by CO2[J]. Langmuir,2010,26(7):4581–4585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700