微波辅助合成纳米沸石及其表面与孔道性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沸石是一类重要的分子筛材料,在催化、吸附和离子交换等传统领域起着不可替代的作用。相比于传统的沸石材料,纳米沸石具有较短的扩散孔道,较大的外表面积,而且其表面丰富的酸性位和其他作用位点可以进行多重调变,拓展了沸石在各个传统、非传统领域的应用。
     微波作为一种新能源,其能量转换加热模式具有许多独特之处。首先,微波体相加热的性质避免了传统加热中的温度梯度,使得加热更为均匀。其次,反应物的极性不同,对于微波的吸收能力不同,这就使得通过调变反应体系的极性从而发生选择性反应成为了可能。再者,除了热效应外,微波可能还可以使得一些分子的空间结构发生变化,降低中间过渡态能垒,活化分子,促进多种类型的化学反应。
     微波也被引入到分子筛的合成领域。微波介电加热效应、微波离子传导损耗及局部过热效应等都是其加速化学反应的重要因素。微波辅助的水热合成法不仅能大大缩短沸石分子筛的合成时间,而且能够有效控制产物的粒径分布、形貌和纯度。这为纳米沸石在各个领域的广泛应用打下了坚实的物质基础。另一方面,对于纳米沸石的合理应用是建立在对其表面(外表面、晶面)和孔道性质的有效控制和深入认识的基础上的。因此,本文以研究纳米沸石的表面和孔道性质为目的,选择微波为加热介质,快速成功合成尺寸、晶面暴露比例、表面官能基团以及孔道有序度不同的纳米沸石。在此基础上研究表面和孔道性质差异对于纳米沸石在催化、蛋白吸附等领域的影响,并以此为线索研究纳米沸石表现出的尺寸和晶面效应,探索表面官能基团的引入对于纳米沸石结晶的影响。同时,为了有效保护纳米沸石丰富的外表面和稳定的孔道结构,高效、温和的除模板方法也成为我们研究的重点。
     本文的工作分为以下几个部分展开。
     首先我们利用微波辅助的原位水热法成功一步合成了表面带有有机官能团(-NH2、-SH、-CH2-CH=CH2)的ZSM-5纳米沸石。表面功能化的纳米沸石是粒径分布均匀;粒子表面毛糙,由粒径为10-20nm的微晶组成;沸石晶格贯穿,表面官能团接枝率高。纳米沸石的表面官能基团调变了ZSM-5纳米沸石的表面性质。首先表现在随着ZSM-5纳米沸石表面接枝的有机官能团的不同,样品的表面ζ电势发生了明显的变化。另外,纳米沸石的亲疏水性也发生了相应的变化。这有效调变了ZSM-5纳米沸石对于不同模型蛋白的吸附范围和吸附能力。再者,表面官能团在纳米沸石表面的接枝有效防止纳米沸石在高温焙烧过程中产生的不可逆团聚现象,这为保护纳米沸石巨大的外表面及其表面活性位点提供了一条新的思路。同时,我们也将这一合成方法扩展的Silicalite-1和LTA体系,均能实现成功、有效的表面有机基团的接枝。观察表面功能化的纳米沸石的结晶过程和产物特点,我们发现,不同的硅烷偶联剂的加入会不同程度的影响纳米沸石的结晶过程。这种影响一方面表现在对于沸石晶化时间的影响(相同时间,纳米沸石粒径大小)上;另一方面表现在对于沸石Si/Al比的调变上。我们认为硅烷偶联剂与Al物种的相互作用造成了这样的影响。
     为了深入研究硅烷偶联剂对于纳米沸石结晶、晶体性质的影响,我们在细致研究含有-NH2的硅烷偶联剂的基础上,调变偶联剂上含有的其它有机基团(-CH3),以便观察-CH3基团对于纳米沸石结晶的影响。实验表明,随着偶联剂中含有甲基个数的增多,纳米沸石的结晶所需的时间缩短;相同合成时间内,沸石尺寸随着甲基个数的增多,逐渐增大。随着时间的延长,各产品之间的尺寸差异变小。另外,随着偶联剂中含有甲基个数的增多,-NH2对于铝物种的影响逐渐减小,从而使得沸石的铝位也相应增多,硅铝比降低。这些实验结果和DFT理论的计算结果一致,即随着甲基基团的引入,硅烷偶联剂与Al的结合能逐渐减弱,对于沸石的尺寸、结晶时间、晶体组成的影响逐渐减弱。为了更直接有效的观察有机硅烷偶联剂对于纳米沸石结晶过程的影响,我们建立了原位拉曼法即时观察纳米沸石的结晶过程,包括在沸石形成的过程中实时观察沸石特征骨架峰的出现和变化和骨架中铝位的形成情况。但是ZSM-5纳米沸石的生长过程以及硅烷偶联剂对于沸石结晶过程的作用机理(偶联剂的取代效应、对于Al、Si物种的影响)亟待进一步深入研究。
     微波辅助水热法有效的调变纳米沸石的形貌、尺寸,为深入研究沸石的尺寸效应、晶面效应提供了可能。本文还利用尺寸、晶面暴露比例和孔道有序度不同的LTL纳米沸石在模型蛋白(包括转铁蛋白(?)ansferrin,肌红蛋白Myoglobin和细胞色素c Cytochrome c)上的吸附差异,研究了沸石的孔结构对其性质和应用的调变作用。通过建立蛋白吸附模型以及一系列的计算,初步探索了不同尺寸、不同晶面暴露比例的LTL纳米沸石吸附蛋白能力差别的原因。我们发现纳米沸石LTL的尺寸越小,蛋白吸附量越大。另外,具有大量12元环孔口的LTL纳米沸石的(001)晶面比其他两个晶面的蛋白吸附量大,这从一个方面反映出孔口的特殊效应。再者,LTL纳米沸石的特殊的圆柱体形貌使得曲率较高的侧面在一定程度上影响蛋白的组装密度和自然构象,降低蛋白在侧面上的吸附。而孔道有序度不同的LTL纳米沸石,对三种模型蛋白的吸附能力也不同,我们发现规整的孔道结构是LTL对于模型蛋白表现出稳定的高吸附能力的保证。
     以上的研究表明,纳米沸石的表面(大的比表面和不同晶面)的可控调节以及选择性保护对于纳米沸石在不同领域的应用具有重要的意义。另外我们还发现,纳米沸石的有序孔道结构对于其结构稳定性、吸附性和催化反应活性都有较大的影响。一般情况下,纳米沸石的合成都会使用有机模板剂。传统的祛除有机模板剂的方法是高温焙烧,但是其对沸石表面和骨架结构的损害不可小窥。为了有效的保持沸石结构性质并扩展其应用,我们建立了微波辐照下的类芬顿法(H2O2/Fe3+)原位(沸石未经洗涤)祛除沸石孔道中的有机模板。条件温和,快速有效。相比于传统焙烧法处理的沸石,芬顿处理后的β纳米沸石表面清洁,粒子单分散性好,形貌无破坏;孔道贯通、规整。处理后的β纳米沸石没有出现高温焙烧中的脱铝现象,其结晶度保持良好。将处理过的β纳米沸石应用在催化果糖脱水制备5-HMF的反应中,其反应的转化率与焙烧的纳米沸石相差无几,而且对于5-HMF的选择性明显的提高。这都体现了微波辐照类芬顿法处理纳米沸石的优势。最后,对于微波辐照下类芬顿法祛除有机模板剂的效率进行了测算,发现原位祛除方法中H2O2的有效利用率达85%左右。
Zeolite molecular sieves are good candidates for catalysts, adsorbents and ion-exchanger due to their unique properties, such as their large surface areas, defined channel systems, controllable densities of the active sites, and so on. Compared with the traditional zeolites, nanosized zeolites (nanozeolites) exhibit shorter intracrystal nanochannels and much larger external surface area, which results their good performance in the traditional and untraditional area.
     As a kind of new energy resource, microwave has its unique advantages and properties. The dielectric heating of microwave irradiation not only facilitates a more uniform reaction without thermal gradients, but also leads to elevated reactant temperatures for size focusing due to its special selective heating. The efficiency of "microwave heating" dramatically reduces reaction time from days and hours to minutes and seconds. Microwave heating effects are expected to be thermal and non-thermal effects.
     Microwave energy has been reported to be very advantageous to the preparation of nanozeolites. Recently studies have documented a significantly reduced time for fabricating zeolites from days to minutes by microwave irradiation. Further, microwave synthesis has often proven to create more uniform products and much more effectively control the size, morphology and purity of products than from conventional hydrothermal synthesis. Till now, the methods and engineer of synthesizing nanozeolites are developed well, which is the base to study the crystal growth process of nanozeoltes and extend their usage in many traditional and untraditional areas. However, the mechanism the enhanced rates of synthesis and crystal processes of nanozeolites under microwave irradiation are unknown and worth to be studied.
     This study focuses on the surface and defined channels of nanozeolites which are synthesized under the microwave irradiation. The detailed study of the properties of nanozeolites is helpful in developing its application in many areas.
     A microwave assisted synthesis method is applied to in-situ prepare ZSM-5nanozeolites with different organic groups including NH2, SH, CN and CH2-CH=CH2. It is found that, the in situ synthesized nanozeolites were comprised of aggregates of primary units with size even below20nm. Significantly, it is interesting that all of the crystal plane strings go throughout the whole particles, suggesting the highly orientation and intergrowth of adjacent primary units. The surface functionalization of zeolite nanoparticles can be also proved by the change of their surface charge and wettability. The ζ potentials of nanozeolites ZSM-5change with the surface organic groups. These various surface functional groups lead to diverse capacity and range for protein adsorption on the resulting nanozeolites., extending host-guest interaction between nanozeolites and biomolecules. And the surface-functionalized nanozeolite particles have been employed to prepare the template-free zeolite nanoparticles by the temporary obstructing caused by surface organic groups during calcination. Therefore, the as-prepared surface functionalized nanozeolites are expected to transform to template-free monodispersed nanozeolite particles with opened micropores. Besides the surface properties, the sizes and Si/Al ratio of the surface-functionalized nanozeolites are changeable with the variation of organosilane. It is believed that organosilane can influence the stability of Al species in the nuclear process, and thereby impact the crystalline process of nanozeolites.
     To indicate the influences of organosilanes on the crystal processes of nanozeolites, we use other kinds of silanes with-CH3and detect products. It is found that along the increase of-CH3, the influences of silanes to the size, crystal time and Si/Al ratio decrease. All these results are consistent with the DFT calculation, which give the theoretical interaction of all the silanes with Al (OH)4-. It is said that, with the addition of-CH3, the interaction of the silane to Al species reduces and causes much less affect on the properties of nanozeolites. For deeper understanding the effects of different silanes on the crystal process of nanozeolites, we developed an in situ Raman method to detect the crystallization of nanozeolites and analyze the building of its framework and Al sites. However, the intrinsical growth mechanism of nanocrystals under the addition of organosilanes and irradiation of microwave are required to research well.
     The nanozeolites LTL with different exposed crystal planes and sizes were synthesized as an excellent model material to study the effects of crystal plane and size of nanozeolite on the protein adsorption behaviors. A larger protein adsorption amount is observed on the smaller nanocrystals due to their larger surface area and surface charge density. More importantly, it is found that the (001) crystal plane with12-membered ring channel array has a larger contribution for protein adsorption on zeolite LTL nanocrystals than other two dimensions with very small pore-opening (1.5A). It is proposed that the protein adsorption difference of the different crystal planes could be attributed to abundant exposed pore-opennings on the top (bottom) surface and curved surface of the side surface in columned nanozeolites LTL. This fact exhibits that topography at the nanoscale is also an important factor determining protein adsorption on the surface of nanozeolites, and new efforts in the future should be focused on synthesis of nanozeolites LTL with abundant exposed (001) planes. This observation will provide a new view for the bioapplication and design of crystalline nanomaterials.
     To preserve their monodispersity and large external surface area of p nanozeolites and also avoid the formation of extra-framework aluminum and destruction of the structure, a microwave-assisted Fenton-like oxidation method is developed to rapidly detemplat as-prepared P nanozeolites. Such Fenton-like process can significantly reduce the detemplation time to10-15minutes and avoid the traditional calcination process as well as its destruction for the structure and composition of β nanozeolites. The influence factors are discussed to deeply understand the processes of the detemplation. And the optimum condition is proposed to drastically eliminate SDAs within15minutes under microwave irradiation. Moreover, the well intrinsic framework structure and monodispersity of nanozeolit preserved by Fenton-like oxidation promise its good catalytic behavior in fructose dehydration, which due to the well preserved good monodispersity of β nanozeolites. And thus shorten the diffusion route for guest molecules and avoids the secondary reactions and formation of coke. Besides, the washed P nanozeolite is also detemplated by the same process. It is remarkable to find that the ratio of H2O2/TEAOH must be improved to completely remove SDAs in the micropore of nanzeolite. The content of Fe3+ions also needs a little improvement. Clearly, compared to organic molecules dispersed in the solution, SDAs encaged in the micropores are hard to remove, and a more high concentration of·OH is needed to fully eliminated them. Furthermore, we try to relate the amounts of hydrogen peroxide we used to the stoichiometric demanded for the total oxidation of the SDAs in the system. For the as-prepared β nanozeolite system,80-85%of H2O2is used in the detemplation process.
引文
[1]徐如人,庞文琴,屠昆岗,沸石分子筛的结构与合成,吉林大学出版社,1987.
    [2]程志林,晁白胜,万惠霖,化学进展,16(2004)61.
    [3]刘旦初,多相催化原理,复旦大学出版社,1997.
    [4]L. TOsheva, V. P. Valtdhev, Chem. Mater.,17 (2005) 2494.
    [5]M. V. Landau, L. Vradman, V. Valtchev, J. Lezervant, E. Liubich, M. Talianke, Ind. Eng. Chem. Res.42 (2003) 2773.
    [6]C. S. Cundy, P. A. Cox, Chem. Rev.,103 (2003) 663.
    [7]T. Wakihara, T. Okubo, Chem. Lett.,34 (2005) 276.
    [8]B. J. Schoeman, J. Sterte, J.-E. Otterstedt, Zeolites,14 (1994) 110.
    [9]M. Tsapatsis, M. Lovallo, T. Okubo, M. E. Davis, Chem. Mater.,7 (1995) 1734.
    [10]B. J. Schoeman, J. Sterte, J.-E. Otterstedt, Zeolites,14 (1994) 208.
    [11]M. A. Camblor, A. Corma, A. Mifsud, J. Perez-Pariente, S. Valencia, Stud. Surf. Sci. Catal.105(1997)341.
    [12](a) A. E. Persson, B. J. Schoeman, J. Sterte, J. E. Ottesstedt, Zeolites,14 (1994) 557; (b) A. E. Persson, B. J. Schoeman, J. Sterte, J. E. Ottesstedt, Zeolites,15 (1995)611.
    [13]L. Tosheva, V. P. Valtchev, Chem. Mater.17 (2005) 2494.
    [14]B. J. Schoeman, J. Sterte, J. E. Otterstedt, Zeolites 14 (1994) 110.
    [15]M.A. Camblor, A. Corma, A. Mifsud, J. Pe'rez-Pariente, S. Valencia, in:H. Chon, S.-K. Ihm, Y. S. Uh (Eds.), Progress in Zeolite and Microporous Materials, Stud. Surf. Sci. Catal.105 (1997) 341.
    [16](a)X. Meng, Y. Zhang, C. Meng, Proc 9th International Zeolite Conference, (1993) 297; (b)M. Tsapatsis, M. Lovallo, T. Okubo, Chem. Mater.,7 (1995) 1734.
    [17](a) B. J. Schoman, J. Sterte, J.-E. Otterstedt, J. Colloid and Interface Sci.,170(2) (1995),449; (b) B. J. Schoman, J. Sterte, J.-E. Otterstedt, Zeolites,14 (1994) 208.
    [18]M. Fang, H. Du, W. Xu, Microporous Mater.,9 (1997),59.
    [19]J. P. Dong, Y. J. Sun, and Y. C. Long, Chem. Lett., (2001) 516.
    [20]B. J. Schoeman, J. Sterte, J-E Otterstedt, J. Chem. Soc.,1993,994. (b) B. J. Schoeman, J. Sterte, J-E Otterstedt, Zeolites,14 (1994) 208.
    [21]D. R. Baghurst, D. M. P. Mingos, Chem. Soc. Rev.,1991,20,1.
    [22]C. Gabriel, S. Gabriel, E. H. Grant, B. S. Halstead, D. M. P. Mingos, Chem. Soc. Rev.,1998,27,213.
    [23](a) S. Komarneni, R. Roy, Q. H. Li, Mater. Res. Bull.27 (1992) 1393; (b) C. S. Cundy, Collect. Czech. Chem. Commun.63 (1998) 1699; (c) C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, D. M. P. Mingos, Chem. Soc. Rev.27 (1998) 213; (d) S. E. Park, D. S. Kim, J. S. Chang, W. Y. Kim, Catal. Today 44 (1998) 301; (e) X. Xu, W. Yang, J. Liu, L. Lin, Adv. Mater.12 (2000) 195; (f) D. P. Serrano, M. A. Uguina, R. Sanz, E. Castillo, A. Rodriguez, P. Sanchez, Microporous Mesoporous Mater.69 (2004) 197; (g) C. S. Cundy, J. O. Forrest, Microporous Mesoporous Mater.72 (2004) 67; (h) S. H. Jhung, J. S. Chang, J. S. Hwang, S. E. Park, Microporous Mesoporous Mater.64 (2003) 33; (i) S. E. Park, J. S. Chang, Y. K. Hwang, D. S. Kim, S. H. Jhung, J. S. Hwang, Catal. Surv. Asia 8 (2004) 91; (j) S. H. Jhung, J. S. Chang, Y. K. Hwang, S. E. Park, J. Mater. Chem.14 (2004) 280; (k) Y. K. Hwang, J. S. Chang, Y. U. Kwon, S. E. Park, Microporous Mesoporous Mater.68 (2004) 280; (1) J. C. Lin, J. T. Dipre, M. Z. Yates, Langmuir 20 (2004) 1039.
    [24]J. Motuzas, A. Julbe, R. D. Noble, C. Guizard, Z. J. Bersnevicius, D. Cot, Microporous Mesoporous Mater.80 (2005) 73.
    [25]T. Brar, P. France, P. G. Smirniotis, Ind. End. Chem. Res.40 (2001) 1133.
    [26]Y. K. Hwang, J. S. Chang, S. E. Park, D. S. Kim, Y. U. Kwon, S. H. Jhung, J. S. Hwang, M. S. Park, Angew. Chem. Int. Ed.44 (2005) 556.
    [27]G. A. Tompsett, W. C. Conner, K. S. Yngvesson, ChemPhysChem.7 (2006) 296.
    [28]I. Schmidt, C. Madsen, C. J. H. Jacobsen, Inorg. Chem.39 (2000) 2279.
    [29]C. J. H. Jacobsen, C. Madsen, T. V. W. Janssens, Microporous Mesoporous Mater.,39 (2000) 393.
    [30]C. Madsen, C. J. H. Jacobsen, Chem. Commun., (1999) 673.
    [31]C. J. H. Jacobsen, C. Madsen, J. Houzvicka, et al., J. Am. Chem. Soc.,122 (2000) 7116.
    [32]I. Schmidt, A. Krogh, K. Wienberg, et al., Chem. Commun., (2000) 2157.
    [33]M. Matsukata, M. Ogura, T. Osaki, P. R. Hari Prasad Rao, M. Nomura, E. Kikuchi, Topics in Catalysis,9 (1999) 77.
    [34]W. Xu, J. Dong, J. Li, W. Li, F. Wu, J. Chem. Soc., Chem. Commun.,755 (1990).
    [35]M. H. Kim, H. X. Li, and M. E. Davis, Microporous Mater.,1 (1993) 191.
    [36]P. R. H. P. Rao, M. Matsukata, Chem. Commun., (1996) 1441.
    [37]P. Rao, R. H. Prasad, Y. Leon, M. Matsukata, Microp. Hesop. Mater.,21 (1998) 305.
    [38]P. B. Weise, V. J. Frilette, J. Phys. Chem.64 (1960) 382.
    [39]M. Iwamoto, K. Yamaguchi, Y. Akutagawa, J. Phys. Chem.88 (1984) 4195.
    [40]Y. J. Wang, Y. Tang,14th International Zeolite Conference,2004,2027.
    [41]A. Thijs, G. Peeters, E. F. Vansant, J. Chem. Soc. Tran. Ⅰ,79 (1983) 2835.
    [42]M. Niwa, H. Itoh, S. Koto, Chem. Commun. (1982) 819.
    [43]A. S. Maria Chong, X. S. Zhao, J. Phys. Chem. B.,107 (2003) 12650.
    [44](a) S. L. Burkett, S. D. Sims, S. Mann, Chem. Commun., (1996) 1367; (b) J. D. Macquaire, J. Chem. Soc. Commun., (1996) 1961.
    [45]R. Richer, L. Mercier, Chem. Commun., (1998) 1775.
    [46]J. D. Macquaire, D. B. Jackson, J. E. G. Mdoe, J. H. Clark, New J. Chem.,23 (1999)539.
    [47]A. P. Wight, M. E. Davis, Chem. Rev.2002,102,3589; K. Na, W. Park, Y. Seo, R. Ryoo, Chem. Mater.2011,23,1273.
    [48]J. Aguado a, D.P. Serrano, J.M. Rodriguez, Microporous and Me sopor ous Mater. 2008,115,504.
    [49]A. Cauvel, D. Brunel, F. DiRenzo, P. Moreau, F. Fajula, Stud.Surf. Sci. Catal. 1995,94,286.
    [50](a) V. Valtchev and L. Tosheva, Chem. Mater.,2005,17,2494; (b) B. J. Schoeman, J. Sterte and J. E. Otterstedt. Zeolites,1994,14,110.
    [51]M. Muller, G. Harvey and R. Prins, Microporous Mesoporous Mater.,2000,34, 135.
    [52]A. Aleboyeh, M. E. Olya, H. Aleboyeh, Chem. Eng. J.2008,137,518.
    [53]O. Legrini, E. Oliveros, A. M. Braun, Chem, Rev.1993,93,671.
    [54]T. Masuda, S. Otani, T. Tsuji, M. Kitamura and S. Mukai, Sep. Purif. Technol., 2003,32,181.
    [55](a) S. Heng, P. Lau, K. Yeung, M. Djafer and J. Schrotter, J. Membrane Sci., 2004,243,69; (b) J. Kuhn, M. Motegh, J. Gross amd F. Kapteijn, Microporous Mesoporous Mater.,2009,120,35.
    [56]A. Parikh, A. Navrotsky, Q. Li, C. Yee, M. Amweg and A. Corma, Microporous Mesoporous Mater.,2004,76,17.
    [57]T. Maesen, H. Kouwenhoven, H. van Bekkum, B. Sulikowski and J. Klinowski, J. Chem. Soc. Faraday Trans.,1990,86,3967.
    [58]G. A. Tompsett, W. C. Conner and K. S. Yngvesson, ChemPhysChem.,2006,7, 296.
    [59]I. Melian-Cabrera, F. Kapteijn and J. Moulijn, Chem. Commun.,2005,21,2744.
    [60]J. Hedlund, S. Mintova, J. Sterte, Microporous Mesoporous Mater.,28 (1999) 185.
    [61]M. A. Camblor, A. Corma, S.Valencia, Microporous Mesoporous Mater,25 (1998)59.
    [62]R. Ravishankar, C. Kirschhock, B. J. Schoeman, J. Phys. Chem. B,102 (1998) 2633.
    [63]W. Zhang, X. Hao, X. Guo, X. Wang, Catt. Lett.60 (1999) 89.
    [64]B. Z. Zhan, M. A. White, M. Lumsden, Langmuir,19 (2003) 4205.
    [65]P. A. Jacobs, E. G. Derouane, J. Weitkamp, J. Chem. Soc., Chem. Commun., (1981)591.
    [66]R. Ravishankar, C. Kirschhock, B. J. Schoeman, P. Vanoppen, P. J. Grobet, S. Storck, W. F. Maier, J. A. Martens, F. C. De Schryver, P. A. Jacobs, J. Phys. Chem. B,102(1998)2633.
    [67]C. L. Angle, J. Phys. Chem.1973,77,222.
    [68]P. K. Dutta, M. Puri, J. Phys. Chem.1987,91,4329.
    [69]辛勤,固体催化剂研究方法,科学出版社,2004。
    [70]王星东,王亚军,杨武利,董安钢,任楠,谢在库,唐颐,化学学报,61(2003)354.
    [71](a) K. Rajagopalan, A. W. Peters, G. C. Edwards. Appl. Catal.23 (1986) 69; (b) L. Bonetto, M. A. Camblor, A. Corma, Appl. Catal. A.,82 (1992) 37.
    [72]M. Sugimoto, H. Katsuno, Takatsuka, Zeolites,7 (1987) 503.
    [73]M. Yamamura, K. Chaki, T. Wakatsuki, Zeolites,14 (1994) 643.
    [74]A. J. van der Pol, A. J. Verduyn, J. H. C. van der Hooff, Appl. Catal. A,92 (1992) 113.
    [75]R. Loenders, P. A. Jacobs, J. A. Martens, J. Catal.176 (1998) 545.
    [76]M. V. Landau, D. Tavor, O. Regev, Chem. Mater.11 (1999) 2030.
    [77]K. T. Jung, J. H. Hyun, Y. G. Shul, Zeolites,19 (1997) 161.
    [78]K. T. Jung, J. H. Hyun, Y. G. Shul, A. I. Ch. E. J,43 (1997) 2802.
    [79]L. Huang, Z. Wang, J. Sun, J. Am. Chem. Soc.,122 (2000) 3530.
    [80]Y. J. Wang, Y. Tang,14th International zeolite conference, (2004) 2070.
    [81]Y. H. Zhang, X. Y. Wang, W. Shan, B. Y. Wu, H. Z. Fan, X. J. Yu, Y. Tang, P. Y. Yang, Angew. Chem. Int. Ed.,44 (2005) 615.
    [82]Y. H. Zhang, X. J. Yu, X. Y. Wang, W. Shan, P. Y. Yang, Y. Tang, Chem. Commun.,2004,2882.
    [83]Y. Zhang, Y. Liu, J. Kong, P. Yang, Y. Tang, B. Liu, Small,2 (2006) 1170.
    [84]X. Zhou, T. Yu, Y. Zhang, J. Kong, Y. Tang, J. L. Marty, B. Liu, Electrochem. Commum.,9 (2007) 1525.
    [85]T. Yu, Y. Zhang, C. You, J. Zhuang, B. Wang, B. Liu Y. Kang, Y. Tang, Chem. Eur. J.,12(2006) 1137.
    [86]Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Science,300 (2003) 456.
    [87]P. Roach, D. Farrar, C. C. Perry, J. Am. Chem. Soc.,127 (2005) 8168.
    [1]徐如人,庞文琴,屠昆岗,沸石分子筛的结构与合成,吉林大学出版社,1987.
    [2]Y. C. Tseng and L. Huang, J. Biomed. Nanotechno.,2009,4,351; J. H. Chang, K. H. Kang, J. Choi and Y. K. Jeong, Superlattice. Microst.,2008,44,442; S. G Penn, L. He and M. J. Natan, Curr. Opin. Chem. Biol.,2003,7,609; P. Fortina, L. J. Kricka, S. Surrey and P. Grodzinski, Trends Biotechnol.,2005,23,168
    [3]O. Vassylyev, G. S. Hall, J. G. Khinast, J. Porous Mater,2006,13,5.
    [4]L. Jing, J. Wang, Y. Qu and Y. Luan, Appl. Surf. Sci.,2009,256,657; S. Mandal, S. Phatare and M. Sastry, Curr. Appl. Phys.,2005,5,118; A. P. Alivisatos, Science,1996,271,933; A, Henglein, Chem. Rev.,1989,89,1861.
    [5]A. S. Maria Chong, X. S. Zhao, J. Phys. Chem. B.,2003,107,12650.
    [6](a) S. L. Burkett, S. D. Sims, S. Mann, Chem. Commun.,1996,1367; (b) J. D. Macquaire, J. Chem. Soc. Commun.,1996,1961.
    [7]R. Richer, L. Mercier, Chem. Commun.,1998,1775.
    [8]J. D. Macquaire, D. B. Jackson, J. E. G. Mdoe, J. H. Clark, New J. Chem.,1999, 23,539.
    [9]M. Hartmann, Angew. Chem. Int. Ed.2004,43.
    [10]D. P. Serrano, J. Aguado. J. M. Escola, Chem. Mater,2006,18,2462.
    [11]Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren and Y. Tang, Microporous Mesoporous Mater.,2009,119,306.
    [12]F. Fan, K. Sun, Z. Feng, H. Xia, B. Han, Y. Lian, P. Ying, and C. Li, Chem. Eur. J.,2009,15,3268.
    [13]K. Sun, F. Fan, H. Xia, Z. Feng, W. Li, and C. Li, J. Phys. Chem. C,2008,112, 16036; Y. Yu, G. Xiong, C. Li and F. S. Xiao, Microporous Mesoporous Mater., 2001,46,23.
    [14]D. Lin-Vien, N. B. Colthup, W. G. Fateley and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frenquencies of Organic Molecules, Acadenic Press:New York,1991; Ⅰ. Shimizu, H. Okbayashi, K. Taga, A. Yoshino and C. J. O-Conner, Vib. Spectrosc,1997,14,125.
    [15]J. Klinowski, Chem. Rev.,1991,91,1459; J. Klinowski, Anal. Chim. Acta,1993, 283,929; C. A. Fyfe, Y. Feng, H. Grondey, G. T. Kokotailo and H. Gies, Chem. Rev.,1991,91,1525.
    [16]M. J. Wirth, R. W. P. Fairbank and H. O. Fatunmbi, Science,1997,275,44; L. M. Bronstein, C. J. L. Karlinsey, A. Ryder and J. W. Zwanziger, Chem. Mater.,2001, 13,3678; S. M. De Paul, J. W. Zwanziger, R. Ulrich, U. Wiesner and H. W. Spiess, J. Am. Chem. Soc.,1999,121,5727.
    [17]M. J. Wirth, R. W. P. Fairbank, H.O. Fatunmbi, Science,1997,275,44; L. M. Bronstein, C. J. R. Karlinsey, A. Ryder, J. W. Zwanziger, Chem. Mater.,2001,13, 3678; S. M. De Paul, J. W. Zwanziger, R. Ulrich, U. Wiesner, H. W. Spiess, J. Am. Chem.Soc.,1999,121,5727; M. Templin, U. Wiesner, H. W. Spiess, Adv.Mater, 1997,9,814; S. Mann, S. L. Burkett, S. A. Davis, C. E. Fowler, N. H. Mendelson, S. D. Sims, D. Walsh, N. T. Whilton, Chem.Mater,1997,9,2300.
    [18]J. Aguado, D. P. Serrano, J. M. Rodrigewz, Microporous Mesoporous Mater, 2008,115,504.
    [19]金若水,王韵华,芮承国,现代化学原理,高等教育出版社,2003.
    [20]J. H. Chang, K. H. Kang, J. Choi, Y. K. Jeong, Superlattices and Microstructures, 2008.
    [1]Y. Y. Hu, Y. H. Zhang, Y. Tang, Chem. Commun.,2010,46,3875.
    [2]A. P. Wight, M. E. Davis, Chem. Rev.,2002,102,3589.
    [3](a) K. Na, W. Park, Y. Seo, R. Ryoo, Chem. Mater.,2011,23,1273; (b) D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodri guez, A. Peral, Chem. Mater.,2006, 18,2462; (c) K. Zhu, J. Sun, J. Liu, L. Wang, H. Wan, J. Hu, Y. Wang, C. H. F. Peden, Z. Nie, ACS Catal.,2011,1,682.
    [4]K. Moller, B. Yilmaz, R. M. Jacubinas, U. Muller, T. Bein, J. Am. Chem. Soc., 2011,133,5284.
    [5](a) K. Cho, H. S.Cho, L. C. Menorval, R. Ryoo, Chem. Mater.,2009,21,5664; (b) R. R. Mukti, H. Hirahara, A. Sugawara, A. Shimojima, T. Okubo, Langmuir, 2010,26,2731.
    [6]A. Cauvel, D. Brunel, F. DiRenzo, P. Moreau, F. Fajula, Stud.Surf. Sci. Catal., 1995,94,286.
    [7]C. L. Angel, J. Phys. Chem.,1973,77,222.
    [8]辛勤,固体催化剂研究方法,科学出版社,2004。
    [9]Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc.,2008,120,215.
    [10]Zhao, Y.; Truhlar, D. G. J. Phys. Chem.,2006,110,5121.
    [11](a) McLean, A. D.; Chandler, G. S. J. Chem. Phys.,1980,72,5639. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys.,1980,72,650.
    [12]Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B,2009,113,6378.
    [13]Scalmani, G.; Frisch, M. J. J. Chem. Phys.,2010,132,114110.
    [14]Gaussian 09, Revision A.02, Frisch, M. J. et al. Gaussian, Inc., Wallingford CT, 2009.
    [15]D. Lin-Vien, N. B. Colthup, W. G. Fateley and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frenquencies of Organic Molecules, Acadenic Press:New York,1991.
    [16]I. Shimizu, H. Okbayashi, K. Taga, A. Yoshino and C. J. O-Conner, Vib. Spectrosc,1997,14,125.
    [17]范康年,谱学导论,高等教育出版社,2001。
    [18]F.T. Fan, Z. C. Feng, G. N. Li, K. J. Sun, P. L. Ying, C. Li, Chem. Eur. J.,2008, 14,5125.
    [19]Y. T. Chua, P. C. Stair, I. E. Wachs, J. Phys. Chem. B,2001,105,8600.
    [20]Y. Y. Hu, Y. H. Zhang, Y. Tang, Chem. Commun.,2010,46,3875.
    [21]D. Karami, S. Rohani, Ind. Eng. Chem. Res.,2009,48,4837.
    [22]徐如人,庞文琴,屠昆岗,沸石分子筛的结构与合成,吉林大学出版社,1987.
    [23]J. M. Fedeyko, H. Egolf-Fox, D. W. Fickel, D. G. Vlachos, R. F. Lobo, Langmuir, 2007,23,4532.
    [24]N. D. Hould, R. F. Lobo, Chem. Mater.,2008,20,5807.
    [25]J. Twu, P. K. Dutta, C. T. Kresge, J. Phys. Chem.,1991,95,5267.
    [26]P. K. Dutta, D. C. Shieh, J. Phys. Chem.,1986,90,2331.
    [27]P. K. Dutta, D. C. Shieh, M. J. Puri, J. Phys. Chem.,1987,91,2332.
    [28]F. Roozeboom, H. E. Robson, S. S. Chan, Zeolite,1983,3,321.
    [29]B. D. Mcnicol, G. T. Pott, K. R. Loos, J. Phys. Chem.,1972,76,3388.
    [30]J. Twu, P. K. Dutta, C. T. Kresge, Zeolite,1991,76,672.
    [31]P. K. Dutta, J. Twu, J. Phys. Chem.,1991,95,2498.
    [32]P. K. Dutta, B. Del Barcl, J. Phys. Chem.,1988,92,354.
    [33]Q. Li, D. Creaser, J. Sterte, Microporous Mesoporous Mater.,1999,31,141.
    [34]Q. Li, B. Mihailova, D. Creaser, J. Sterte, Microporous Mesoporous Mater., 2000,40,53.
    [35]P. Wu, T. Komatsu, T. Yashima, Microporous Mesoporous Mater.,1998,20,139.
    [36]F. T. Fan, K. Sun, Z. C. Feng, H. Xia, B. Han, Y. Lian, P. L. Ying, C. Li, Chem. Eur. J.,2009,15,3268.
    [36]L. Marchese, A. Frache, E. Gianotti, G. Martra, M. Causa, S. Coluccia, Microporous Mesoporous Mater.,1999,30,145.
    [37]F. T. Fan, Z. C. Feng, K. Sun, M. L. Guo, Q. Guo, Y. Song, W. X. Li, C. Li, Angew. Chem. Int. Ed.,2009,48,8743.
    [38]A. J. Holmes, S. J. Kirkby, G. A. Ozin, D. Young, J. Phys. Chem.,1994,98,4677.
    [39]F. T. Fan, Z. C. Feng, C. Li, Chem. Soc. Rev.,2010,39,4794.
    [1]D. W. Breck, Zeolite Molecular Sieves, Structure, Chemistry and Use, Wiley, New York,1974.
    [2]R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
    [3](a) M. Sugimoto, H. Katsuno, K. Takatsu, N. Kawata, Zeolites 1987,7,503; (b) M. Yamamura, K. Chaki, T. Wakatsuki, H. Okado, K. Fujimoto, Zeolites,1994,14, 643; (c) S. Schwarz, D. R. Corbin, G. C. Sonnichsen, Microporous Mesoporous. Mater.1998,22,409; (d) E. G. Derouane, Ⅰ. Schmidt, H. Lachas, C. J. H. Christensen, Catal. Letter.2004,95,13; (e) G. Sartori, R. Maggi, Chem. Rev. 2006,106,1077; (f) M. L. Kantam, K. V. S. Ranganath, M. Sateesh, K. B. S. Kumar, B. M. J. Choudary, J. Mol. Catal. A:Chem.2005,225,15.
    [4](a) D. P. Serrano, J. Aguado, J. M. Escola, Ind. Eng. Chem. Res.2000,39,1177; (b) D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodriguez, in:R. Aiello, G. Giordano, F. Testa (Eds.), Impact of Zeolites and other Porous Materials on the new Technologies at the Beginning of the New Millennium, Stud. Surf. Sci. Catal. 2002,142,77; (c) D. P. Serrano, J. Aguado, J. M. Escola, E. Garagorri, J. M. Rodriguez, L. Morselli, G. Palazzi, R. Orsi, Appl. Catal. B:Environ.2004,49, 257; (d) D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodriguez, J. Anal. Appl. Pyrolysis,2005,74,353; (e) D. P. Serrano, J. Aguado, J. M. Rodriguez, A. Peral, J. Anal. Appl Pyrolysis,2007,79,456.
    [5]M. V. Landau, L. Vradman, V. Valtchev, J. Lezervant, E. Liubich, M. Talianke, Ind. Eng. Chem. Res.2003,42,2773.
    [6]S. Mintova, T. Bein, Adv. Mater.2001,13,1880.
    [7](a) Y. H. Zhang, X. J. Yu, X. D. Wang, W. Shan, Y. Tang, P. Y. Yang, Chem. Commun.2004,2882; (b) T. Yu, Y. H. Zhang, C. P. You, J. H. Zhuang, B. Wang, B. H. Liu, Y. J. Kang, Y. Tang, Chem. Eur. J.,2006,12,1137; (c) Y. H. Zhang, Y. Liu, J. L. Kong, P. Y. Yang, Y. Tang, B. H. Liu, small,2006,2,1170; (d) Y. H. Zhang, X. Y. Wang, W. Shan, B. Y. Wu, H. Z. Fan, X. J. Yu, Y. Tang, P. Y. Yang, Angew. Chem. Int. Ed.,2005,44,615.
    [8](a) Y. H. Zhang, X. Y. Wang, W. Shan, B. Y. Wu, H. Z. Fan, X. J. Yu, Y. Tang, P. Y. Yang, Angew. Chem. Int. Ed.,2005,44,615; (b) Y. Huang, W. Shan, B. H. Liu, Y. Liu, Y. H. Zhang, Y. Zhao, H. J. Lu, Y. Tang, P. Y. Yang, Lab on Chip,2006, 6,534.
    [9](a) T. Yu, Y. H. Zhang, C. P. You, J. H. Zhuang, B. Wang, B. H. Liu, Y. J. Kang, Y. Tang, Chem. Eur. J.,2006,12,1137; (b) Y. H. Zhang, Y. Liu, J. L. Kong, P. Y. Yang, Y. Tang, B. H. Liu, Small,2006,2,1170.
    [10](a) X. Q. Zhou, T. Yu, Y. H. Zhang, J. L. Kong, Y. Tang, J. L. Marty, B. H. Liu, Electrochem. Commun.,2007,9,1525; (b) J. Ji, Y. H. Zhang, X. Q. Zhou, J. L. Kong, Y. Tang, B. H. Liu, Anal. Chem.,2008,80,2457.
    [11]W. M. Meier, D. H. Olsen, C. Barlocher, Atlas of Zeolite Structure Types, Elsevier, Amsterdam,1996.
    [12](a) R. M. Barrer, H. Villiger, Z. Kristallogr.,1969,128,352; (b) J. M. Newsam, J. Phys. Chem.,1989,93,7689.
    [13]Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren, Y. Tang, Microporous Mesoporous Mater, 2009,119,306.
    [14](a) A. Vinu, V. Murugesan, M. Hartmann, J. Phys. Chem. B 108 (2004) 7323; (b) A. Vinu, V. Murugesan, O. Tangermann, M. Hartmann, Chem. Mater.16 (2004) 3056; (c) S. Hudson, E. Magner, J. Cooney, B. K. Hodnett, J. Phys. Chem. B 109 (2005)19496.
    [15]王镜岩,朱圣庚,徐长法,生物化学(第三版),2002.
    [16]O. Zak, P. Aisen, Biochemistry,2003,42,12330.
    [17]王夔等,生物无机化学,清华大学出版社,1992.
    [18]G. Mclendon, Acc. Chem. Res.1998,21,160.
    [19]R. Zhang, P. Somasundaran, Adv. Colloid Interface Sci.,2006,123-126,213.
    [20]K. Sakaguchi, M. Mastsui, F. Mizukami, Appl, Microbiol. Biotechnol.,2005,67, 306.
    [21]T. Yu, Y. Zhang; C. You, J. Zhuang, B. Wang, B. Liu, Y. Kang, Y. Tang, Chem. Eur.J.,2006,12,1137.
    [22][阿根廷]德鲁迈克尔(著),吴大诚,朱谱新,王罗新,高绪珊等(译),表面、界面和胶体——原理及应用
    [23]M. Hartnamm, Chem. Mater.,2005,17,4577.
    [24]于韬,纳米沸石与生物分子的相互作用研究及其在生物传感方面的应用,复旦大学化学系硕士学位论文,2007.
    [25](a) M. Schenk, B. Smit, T. J. H. Vlugt and T. L. M. Maesen, Angew. Chem. Int. Ed.2001,40,736; (b) J. F. Denayer, A. R. Ocakoglu, W. Huybrechts, J. A. Martens, J. W. Thybaut, G. B. Marin, G. V. Baron, Chem. Commun.2003,1880. c) T. F. Degnan Jr., J. Catal.2003,216,32.
    [26]M. Sugimoto, H. Katsuno, K. Takatsu N. Kawata, Zeolites,1989,7,503.
    [27](a) E. Curcio, E. Fontananova, G. Di Profio, E. Drioli, J. Phys. Chem. B,2006, 110,12438; (b) J. Troger, K.Lunkwitz, W. Burger, J. Colloid Interface Sci.1997, 194,281.
    [27](a) P. Roach, D. Farrar, C. C. Perry, J. Am. Chem. Soc.2006,128,3939; (b) P. Roach, D. Farrar, C. C. Perry, J. Am. Chem. Soc.,2005,127,8168.
    [28]A. A. Vertegel, R. W. Siegel, J. S. Dordick, Langmuir,2004,20,6800.
    [1](a) M. Sugimoto, H. Katsuno, K. Takatsu and N. Kawata, Zeolites,1987,7,503; (b) M. Yamamura, K. Chaki, T. Wakatsuki, H. Okado and K. Fujimoto, Zeolites, 1994,14,643; (c) G. Sartori and R. Maggi, Chem. Rev.,2006,106,1077.
    [2](a) D. W. Breck, Zeolites and Molecular Sieves System, Wiley, New York,1974; (b) R. M. Barrer, Hydrothermal Chemistry in Zeolites, Academic Press, London, 1982; (c) T. O. Do and S. Kaliaguine, In Nanoporous Materials Science and Engineering; Imperial College Press:London,2004.
    [3](a) V. Valtchev and L. Tosheva, Chem. Mater.,2005,17,2494; (b) B. J. Schoeman, J. Sterte and J. E. Otterstedt, Zeolites,1994,14,110.
    [4]M. Muller, G. Harvey and R. Prins, Microporous Mesoporous Mater.,2000,34, 135.
    [5]I. Melian-Cabrera, F. Kapteijn and J. Moulijn, Chem. Commun.,2005,21,2744.
    [6]T. Masuda, S. Otani, T. Tsuji, M. Kitamura and S. Mukai, Sep. Purif Technol., 2003,32,181.
    [7](a) S. Heng, P. Lau, K. Yeung, M. Djafer and J. Schrotter, J. Membrane Sci.,2004, 243,69; (b) J. Kuhn, M. Motegh, J. Gross amd F. Kapteijn, Microporous Mesoporous Mater.,2009,120,35.
    [8]A. Parikh, A. Navrotsky, Q. Li, C. Yee, M. Amweg and A. Corma, Microporous Mesoporous Mater.,2004,76,17.
    [9]T. Maesen, H. Kouwenhoven, H. van Bekkum, B. Sulikowski and J. Klinowski, J. Chem. Soc. Faraday Trans.,1990,86,3967.
    [10]G A. Tompsett, W. C. Conner and K. S. Yngvesson, ChemPhysChem.,2006,7, 296.
    [11]C. O. Kappe, Angew. Chem. Int. Ed.,2004,43,6250.
    [12]Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren and Y. Tang, Microporous Mesoporous Mater.,2009,119,306.
    [13]L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London,1975.
    [14]I. M. Cabrera, F. Kapteijn and J. A. Moulijn, Chem. Commun.,2005,2178.
    [15]A. E. W. Beers, J. A. van Bokhoven, K. M. de Lathouder, F. Kapteijn and J. A. Moulijn, J. Cataly.,2003,218,239.
    [16](a) K. N. Rao, K. M. Reddy, N. Lingaiah, I. Suryanarayana and P. S. Prasad, Appl. Catal. A:Gen.,2006,300,139; (b) A. S. Khder and A. I. Ahmed, Appl. Catal. A: Gen.,2009,354,153.
    [17]R. Cid and G. Pecci, Appl. Catal. A:Gen.,1985,14,15.
    [18](a) K. Lourvanij and G. L. Rorrer, Ind. Eng. Chem. Res.,1993,32,11; (b) R. Loenders, P. A. Jacobs and J. A. Martens, J. Catal.,1998,176,545; (c) Y. Shi, X. Li, J. K. Hu, J. H. Lu, Y. C. Ma, Y. H. Zhang and Y. Tang, J. Mater. Chem.,2011, 21,16223; (d) X. Li, Y. Shi, Z. J. Wang, Y. H. Zhang, Y.Tang, J. Catal.,2012,288, 24.
    [19]Y. D. Xia, R. Mokaya, J. Phys. Chem. B,2006,110,91221.
    [20]I. Melian-Cabrera, F. Kapteijn, J.A. Moulijn, Chem. Cmmun.,2005,2744.
    [21]M. R. Maurya, S. J. J. Titinchi, S. Chand, I. M. Mishra, J. Mol. Catal. A: Chemical, 2002,18,201.
    [22]F. J. Rivas, F. J. Beltran, O. Gimeno and J. Frades, J. Agric. Food Chem.,2001, 49,1873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700