酞菁功能化纤维素纳米纤维的制备及其染料废水脱色性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素纳米纤维综合了纤维素来源广泛、无毒副作用、稳定性高、含大量羟基官能团和纳米纤维比表面积超高、机械性能优异、表面易调控等优点,是功能性分子的理想载体材料。本论文以纤维素纳米纤维为基体,将四氨基钴酞菁(CoPc)催化剂共价固定于其表面制备得到异相催化剂,并应用于模拟染料废水脱色处理。具体研究内容如下:
     利用静电纺丝技术制备了乙酸纤维素纳米纤维,将CoPc共价固定于经水解和氧化表面改性后的纳米纤维表面,制备得到酞菁表面功能化纤维素纳米纤维CoPc-NM.以活性艳红X-3B染料溶液模拟工业染料废水,测试CoPc-NM的脱色性能。发现酸性条件下CoPc分子对带负电荷的阴离子染料具有很高的吸附容量,吸附能力的提高可促进催化氧化反应的进行。pH=2时,以H2O2为氧化剂,CoPc-NM能在90min内使90%的染料分子催化氧化降解。
     在催化剂与载体之间引入一条间隔臂,制备得到酞菁表面功能化,间隔臂连接纤维素纳米纤维CoPc-spacer-NM。间隔臂的引入可降低纳米纤维载体对CoPc的位阻效应,减少染料分子向CoPc扩散时的扩散阻力,进而提高纳米纤维表面CoPc的催化效率,pH=10时催化氧化速率高达73.85μmol·min-1.g-1。利用电子顺磁共振(EPR)技术证实了催化氧化过程中有高活性的羟基自由基·OH产生。通过气相色谱-质谱联用(GC-MS)技术证实染料分子被深度氧化为顺丁烯二酸、反丁烯二酸、戊二酸和己二酸等易被生物降解的脂肪酸。初步探讨了CoPc-spacer-NM在催化膜反应器中的应用,在最佳操作条件下,反应9min可使染料溶液浓度下降90%以上。
     将电子传导性能优异的多壁碳纳米管(MWNT)引入到催化氧化体系,制备碳纳米管掺杂,酞菁表面功能化,间隔臂连接纤维素纳米纤维,研究其对模拟染料废水的脱色性能。结果表明,MWNT能在一定程度上促进催化氧化反应的进行,含5%MWNT的异相催化剂对染料溶液的催化氧化速率比CoPc-spacer-NM快约20%。
Cellulose nanofibers are promising supports for functional molecules immobilization due to several attractive characteristics:low cost, nontoxicity, high physicochemical stability, and high density of hydroxyl groups from cellulose; and very large surface-to-volume ratio, good mechanical properties as well as easily tunable surface from nanofiber. In this thesis, cellulose nanofibers were selected as support of cobalt tetraaminophthalocyanine (CoPc) catalyst. CoPc was covalently immobilized onto the surface of cellulose nanofibers and the prepared heterogeneous catalyst was used for decolorizing simulated dye wastewater. The main experiments and results are summarized as follow.
     Cellulose acetate was electrospun into nanofiber mats (CA-NM), CoPc was covalent immobilized onto the surface after hydrolyzation and oxidation. The CoPc functionalized nanofiber mats (CoPc-NM) was used for the treatment of a simulated dye wastewater:reactive red X-3B solution. In acidic solution, CoPc-NM has high adsorption capacity to anionic dye molecules, which can further promote the catalytic oxidation efficiency when H2O2was present as oxidant. At pH2, more than90%of reactive red X-3B can be eliminated by CoPc-NM/H2O2in90min.
     To further minimize the effects of diffusion limitation and steric hindrance and improve the decoloration efficiency of the heterogeneous catalyst, a novel CoPc functionalized, spacer arm attached cellulose nanofiber mats (CoPc-spacer-NM) nanomaterial was prepared and used for decoloration of the simulated dye wastewater. Compared with CoPc-NM, CoPc-spacer-NM shows much higher adsorption capacity when conducted under acidic condition, which enhances the catalytic oxidation rate of dye molecules when H2O2was used as oxidant. Dye wastewater can also be efficiently decolorized by CoPc-spacer-NM/H2O2system under basic condition. Despite a relatively weak adsorption capacity, the catalytic oxidation rate was73.85μimol·min-1·g-1at pH10. Electron paramagnetic resonance (EPR) results suggest that the catalytic oxidation process involves the formation and reaction of hydroxyl radicals. Gas chromatography-mass spectra (GC-MS) show that reactive red X-3B is mainly decomposed to biodegradable aliphatic acids, such as maleic acid, fumaric acid, glutaric acid and adipic acid. A catalytic membrane reactor was assembled based on CoPc-spacer-NM. At optimal operational condition,90%of dye molecules can be eliminated within9min.
     To enhance the electron transfer efficiency of CoPc during the catalytic oxidation process, a multiwalled carbon nanotube doped, CoPc functionalized, spacer arm attached cellulose nanofiber mats (MWNT/CoPc-spacer-NM) was prepared. Due to its well conductivity, the introduction of MWNT can accelerate the electron transfer of MWNT/CoPc-spacer-NM/H2O2, the catalytic oxidation efficiency is20%higher when compared with CoPc-spacer-NM/H2O2system.
引文
[1]张俐娜,天然高分子改性材料及应用.北京:化学工业出版社,2006.
    [2]Kobayashi, S., Kashiwa, K., Shimada, J., Kawasaki, T., Shoda, S., Enzymatic polymerization-the 1st invitro synthesis of cellulose via nonbiosynthetic path catalyzed by cellulase. Macromol. Symp.1992,54-5,509-518.
    [3]Nehls, I., Wagenknecht, W., Philipp, B., Stscherbina, D., Characterization of cellulose and cellulose derivatives in solution by high-resolution 13C-NMR spectroscopy. Prog. Polym. Sei. 1994,19,29-78.
    [4]Mittal, A., Katahira, R., Himmel, M. E., Johnson, D. K., Effects of alkaline or liquid-ammonia treatment on crystalline cellulose:Changes in crystalline structure and effects on enzymatic digestibility. Biotechnol. Biofuels 2011,4,41-56.
    [5]Klemm, D., Heublein, B., Fink, H. P., Bohn, A., Cellulose:Fascinating biopolymer and sustainable raw material. Angew. Chem.-Int. Edit.2005,44,3358-3393.
    [6]高洁,汤烈贵,纤维素科学.北京:科学出版社,1996.
    [7]Parthasarathi, R., Bellesia, G., Chundawat, S. P. S., Dale, B. E., Langan, P., Gnanakaran, S., Insights into hydrogen bonding and stacking interactions in cellulose. J. Phys. Chem. A 2011,115,14191-14202.
    [8]Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., Youngs, H., Toward a systems approach to understanding plant-cell walls. Science 2004,306,2206-2211.
    [9]Fernandes, A. N., Thomas, L. H., Altaner, C. M., Callow, P., Forsyth, V. T. Apperley, D. C., Kennedy, C. J., Jarvis, M. C., Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci. U. S. A.2011,108, E1195-E1203.
    [10]Endler, A., Persson, S., Cellulose synthases and synthesis in arabidopsis. Mol. Plant.2011,4,199-211.
    [11]Favier, V., Chanzy, H., Cavaille, J. Y., Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 1995,28,6365-6367.
    [12]Kvien, I., Tanem, B. S., Oksman, K., Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 2005,6,3160-3165.
    [13]Angles, M. N., Dufresne, A., Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 2000,33,8344-8353.
    [14]Fleming, K., Gray, D., Prasannan, S., Matthews, S., Cellulose crystallites:A new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J. Am. Chem. Soc.2000,122,5224-5225.
    [15]Habibi, Y., Goffin, A. L., Schiltz, N., Duquesne, E., Dubois, P., Dufresne, A., Bionanocomposites based on poly(epsilon-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem.2008,18,5002-5010.
    [16]Siqueira, G., Bras, J., Dufresne, A., Cellulose whiskers versus micro fibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 2009,10, 425-432.
    [17]Samir, M. A. S. A., Alloin, F., Sanchez, J. Y., El Kissi, N., Dufresne, A. Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 2004,37,1386-1393.
    [18]Henriksson, M., Henriksson, G., Berglund, L. A., Lindstrom, T., An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J.2007,43,3434-3441.
    [19]Saito, T., Nishiyama, Y., Putaux, J. L., Vignon, M., Isogai, A., Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006,7,1687-1691.
    [20]Saito, T., Kimura, S., Nishiyama, Y., Isogai, A., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007,8, 2485-2491.
    [21]Ma, H., Burger, C., Hsiao, B. S., Chu, B., Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 2011,12,970-976.
    [22]Ma, H., Burger, C., Hsiao, B. S., Chu, B., Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 2012,13,180-186.
    [23]Rodionova, G., Eriksen, O., Gregersen, O., TEMPO-oxidized cellulose nanofiber films:Effect of surface morphology on water resistance. Cellulose 2012,19, 1115-1123.
    [24]van den Berg, O., Capadona, J. R., Weder, C., Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 2007,8,1353-1357.
    [25]Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter, M., Rowan, S. J., Tyler, D. J., Weder, C., A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol.2007,2, 765-769.
    [26]Cannon, R. E., Anderson, S. M., Biogenesis of bacterial cellulose. Crit. Rev. Microbiol.1991,17,435-447.
    [27]Hsieh, Y. C., Yano, H., Nogi, M., Eichhorn, S. J., An estimation of the Young's modulus of bacterial cellulose filaments. Cellulose 2008,15,507-513.
    [28]Park, W. I., Kim, H. S., Kwon, S. M., Hong, Y. H., Jin, H. J., Synthesis of bacterial celluloses in multiwalled carbon nanotube-dispersed medium. Carbohydr. Polym.2009,77,457-463.
    [29]Moon, S. H., Park, J. M., Chun, H. Y., Kim, S. J., Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes. Biotechnol. Bioprocess Eng.2006,11,26-31.
    [30]Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A., Golalipour, M., Bacterial synthesized cellulose nanofibers:Effects of growth times and culture mediums on the structural characteristics. Carbohydr. Polym.2011,86,1187-1191.
    [31]Shams, M. I., Ifuku, S., Nogi, M., Oku, T., Yano, H., Fabrication of optically transparent chitin nanocomposites. Appl. Phys. A-Mater. Sci. Process.2011,102, 325-331.
    [32]Nogi, M., Yano, H., Optically transparent nanofiber sheets by deposition of transparent materials:A concept for a roll-to-roll processing. Appl. Phys. Lett.2009, 94,233117-233119.
    [33]Nogi, M., Iwamoto, S., Nakagaito, A. N., Yano, H., Optically transparent nanofiber paper. Adv. Mater.2009,21,1595-1598.
    [34]Nogi, M., Handa, K., Nakagaito, A. N., Yano, H., Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl. Phys. Lett.2005,87,243110-243112.
    [35]Yano, H., Sugiyama, J., Nakagaito, A. N., Nogi, M., Matsuura, T., Hikita, M., Handa, K., Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 2005,17,153-155.
    [36]Nogi, M., Yano, H., Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater.2008, 20,1849-1852.
    [37]Iwamoto, S., Nakagaito, A. N., Yano, H., Nogi, M., Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A-Mater. Sci. Process.2005,81, Cp8-1112.
    [38]Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M., Electrospray ionization for mass-spectrometry of large biomolecules. Science 1989, 246,64-71.
    [39]Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M., Ganan-Calvo, A. M., Micro/nano encapsutation via electrified coaxial liquid jets. Science 2002,295,1695-1698.
    [40]Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M., Electrospray ionization-principles and practice. Mass Spectrom. Rev.1990,9,37-70.
    [42]Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol.2003,63,2223-2253.
    [43]Li, D., Xia, Y. N., Electrospinning of nanofibers:Reinventing the wheel? Adv. Mater.2004,16,1151-1170.
    [44]Schiffman, J. D., Schauer, C. L., A review:Electrospinning of biopolymer nanofibers and their applications. Polym. Rev.2008,48,317-352.
    [45]Shin, Y. M., Hohman, M. M., Brenner, M. P., Rutledge, G. C., Electrospinning:A whipping fluid jet generates submicron polymer fibers. Appl. Phys. Lett.2001,78, 1149-1151.
    [46]Bhardwaj, N., Kundu, S. C, Electrospinning:A fascinating fiber fabrication technique. Biotechnol. Adv.2010,28,325-347.
    [47]Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 2000,87,4531-4547.
    [48]Shin, Y. M., Hohman, M. M., Brenner, M. P., Rutledge, G. C., Experimental characterization of electrospinning:The electrically forced jet and instabilities. Polymer 2001,42,9955-9967.
    [49]Yarin, A. L., Koombhongse, S., Reneker, D. H., Bending instability in electrospinning of nanofibers. J. Appl. Phys.2001,89,3018-3026.
    [50]Shenoy, S. L., Bates, W. D., Frisch, H. L., Wnek, G. E., Role of chain entanglements on fiber formation during electrospinning of polymer solutions:Good solvent, non-specific polymer-polymer interaction limit. Polymer 2005,46, 3372-3384.
    [51]Yu, J. H., Fridrikh, S. V., Rutledge, G. C., The role of elasticity in the formation of electrospun fibers. Polymer 2006,47,4789-4797.
    [52]Hohman, M. M., Shin, M., Rutledge, G., Brenner, M. P., Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 2001,13,2201-2220.
    [53]Gao, Y. F., Yuan, J. Y, Sui, X. F., Zhou, M., Cai, Z. N., Electrospinning of cellulose and cellulose derivatives. Prog. Chem 2009,21,1553-1559.
    [54]Frey, M. W., Electrospinning cellulose and cellulose derivatives. Polym. Rev. 2008,48,378-391.
    [55]Khil, M. S., Kim, H. Y., Kang, Y. S., Bang, H. J., Lee, D. R., Doo, J. K., Preparation of electrospun oxidized cellulose mats and their in vitro degradation behavior. Macromol. Res.2005,13,62-67.
    [56]Ohkawa, K., Hayashi, S., Nishida, A., Yamamoto, H., Ducreux, J., Preparation of pure cellulose nanofiber via electrospinning. Text. Res. J.2009,79,1396-1401.
    [57]Viswanathan, G., Murugesan, S., Pushparaj, V., Nalamasu, O., Ajayan, P. M., Linhardt, R. J., Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 2006,7,415-418.
    [58]Kim, C. W., Kim, D. S., Kang, S. Y., Marquez, M., Joo, Y L., Structural studies of electrospun cellulose nanofibers. Polymer 2006,47,5097-5107.
    [59]Kim, C. W., Frey, M. W., Marquez, M., Joo, Y L., Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J. Polym. Sci. Pt. B-Polym. Phys.2005,43,1673-1683.
    [60]Frey, M. W., Joo, Y., Kim, C., New solvents for cellulose electrospinning and preliminary electrospinning results. Abs. Pap. Am. Chem. Soc.2003,226.
    [61]Frey, M. W., Song, H., Cellulose fibers formed by electrospinning from solution. Abs. Pap. Am. Chem. Soc.2003,225.
    [62]Haas, D., Heinrich, S., Greil, P., Solvent control of cellulose acetate nanofibre felt structure produced by electrospinning. J. Mater. Sci.2010,45,1299-1306.
    [63]Hardick, O., Stevens, B., Bracewell, D. G., Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency. J. Mater. Sci. 2011,46,3890-3898.
    [64]Celebioglu, A., Uyar, T., Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater. Lett.2011,65,2291-2294.
    [65]Nista, S. V. G., Peres, L., D'Avila, M. A., Schmidt, F. L., Mei, L. H. I., Nanostructured membranes based on cellulose acetate obtained by electrospinning, part 1:Study of the best solvents and conditions by design of experiments. J. Appl. Polym. Sci.2012,126, E70-E78.
    [66]Liu, H. Q., Hsieh, Y. L., Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. Pt. B-Polym. Phys.2002,40, 2119-2129.
    [67]Liu, H. Q., Hsieh, Y. L., Surface methacrylation and graft copolymerization of ultrafine cellulose fibers. J. Polym. Sci. Pt. B-Polym. Phys.2003,41,953-964.
    [68]Wang, Y. H., Hsieh, Y. L., Enzyme immobilization to ultra-fine cellulose fibers via Amphiphilic polyethylene glycol spacers. J. Polym. Sci. Pol. Chem.2004,42, 4289-4299.
    [69]Lu, P., Hsieh, Y. L., Lipase bound cellulose nanofibrous membrane via Cibacron Blue F3GA affinity ligand. J. Membr. Sci.2009,330,288-296.
    [70]Ma, Z. W., Kotaki, M., Ramakrishna, S., Electrospun cellulose nanofiber as affinity membrane. J. Membr. Sci.2005,265,115-123.
    [71]Ma, Z., Ramakrishna, S., Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J. Membr. Sci.2008, 319,23-28.
    [72]Ma, Z., Lan, Z., Matsuura, T., Ramakrishna, S., Electrospun polyethersulfone affinity membrane:Membrane preparation and performance evaluation. J. Chromatogr. B 2009,877,3686-3694.
    [73]Salihu, G., Goswami, P., Russell, S., Hybrid electrospun nonwovens from chitosan/cellulose acetate. Cellulose 2012,19,739-749.
    [74]Phiriyawirut, M., Phaechamud, T., Cellulose acetate electrospun fiber mats for controlled release of silymarin. J. Nanosci. Nanotechnol.2012,12,793-799.
    [75]Miao, J. J., Pangule, R. C., Paskaleva, E. E., Hwang, E. E., Kane, R. S., Linhardt, R. J., Dordick, J. S., Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 2011,32, 9557-9567.
    [76]Miyauchi, M., Miao, J. J., Simmons, T. J., Lee, J. W., Doherty, T. V., Dordick, J. S., Linhardt, R. J., Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose. Biomacromolecules 2010,11, 2440-2445.
    [77]Lu, P., Hsieh, Y. L., Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning. Acs Appl. Mater. Interfaces 2010,2,2413-2420.
    [78]Bedford, N. M., Steckl, A. J., Photocatalytic self cleaning textile fibers by coaxial electrospinning. Acs Appl. Mater. Interfaces 2010,2,2448-2455.
    [79]Sundarrajan, S., Ramakrishna, S., Fabrication of functionalized nanofiber membranes containing nanoparticles. J. Nanosci. Nanotechnol.2010,10,1139-1147.
    [80]Du, J., Hsieh, Y. L., Cellulose/chitosan hybrid nanofibers from electrospinning of their ester derivatives. Cellulose 2009,16,247-260.
    [81]Zhang, L. F., Hsieh, Y. L., Ultra-fine cellulose acetate/poly(ethylene oxide) bicomponent fibers. Carbohydr. Polym.2008,71,196-207.
    [82]Zhang, L. F., Hsieh, Y. L., Ultrafine cellulose acetate fibers with nanoscale structural features. J. Nanosci. Nanotechnol.2008,8,4461-4469.
    [83]Lu, P., Hsieh, Y. L., Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes. Nanotechnology 2009,20,415604-415612.
    [84]Shukla, S., Brinley, E., Cho, H. J., Seal, S., Electrospinning of hydroxypropyl cellulose fibers and their application in synthesis of nano and submicron tin oxide fibers. Polymer 2005,46,12130-12145.
    [85]Frenot, A., Henriksson, M. W., Walkenstrom, P., Electrospinning of cellulose-based nanofibers.J. Appl. Polym. Sci.2007,103,1473-1482.
    [86]Wu, X. H., Wang, L. G., Yu, H., Huang, Y., Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J. Appl. Polym. Sci.2005,97,1292-1297.
    [87]Zhao, S. L., Wu, X. H., Wang, L. G., Huang, Y., Electrostatically generated fibers of ethyl-cyanoethyl cellulose. Cellulose 2003,10,405-409.
    [88]Zhao, S. L., Wu, X. H., Wang, L. G., Huang, Y., Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. J. Appl. Polym. Sci.2004,91, 242-246.
    [89]Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., Lindstrom, T., Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 2007,8,1934-1941.
    [90]Greiner, A., Wendorff, J. H., Electrospinning:A fascinating method for the preparation of ultrathin fibres. Angew. Chem.-Int. Edit.2007,46,5670-5703.
    [91]Bergshoef, M. M., Vancso, G. J., Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv. Mater.1999,11,1362-1365.
    [92]Halpin, J. C., Kardos, J. L., The Halpin-Tsai equations:A review. Polym. Eng. Sci. 1976,16,344-352.
    [93]Davies, G. C., Bruce, D. M., Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Text. Res. J.1998,68, 623-629.
    [94]Sturcova, A., Davies, G. R., Eichhorn, S. J., Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 2005,6,1055-1061.
    [95]Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J. D., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A., Kotov, N. A., Ultrastrong and stiff layered polymer nanocomposites. Science 2007,318,80-83.
    [96]Bonderer, L. J., Studart, A. R., Gauckler, L. J., Bioinspired design and assembly of platelet reinforced polymer films. Science 2008,319,1069-1073.
    [97]Choi, Y. J., Simonsen, J., Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J. Nanosci. Nanotechnol.2006,6,633-639.
    [98]Mathew, A. P., Dufresne, A., Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 2002,3, 609-617.
    [99]Kvien, I., Sugiyama, J., Votrubec, M., Oksman, K., Characterization of starch based nanocomposites. J. Mater. Sci.2007,42,8163-8171.
    [100]Samir, M. A. S. A., Alloin, F., Sanchez, J. Y., Dufresne, A., Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 2004,45,4149-4157.
    [101]Sehaqui, H., Zhou, Q., Berglund, L. A., Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 2011,7,7342-7350.
    [102]Sehaqui, H., Allais, M., Zhou, Q., Berglund, L. A., Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos. Sci. Technol. 2011,71,382-387.
    [103]Zhou, Q., Malm, E., Nilsson, H., Larsson, P. T., Iversen, T., Berglund, L. A., Bulone, V., Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 2009, 5,4124-4130.
    [104]de Rodriguez, N. L. G., Thielemans, W., Dufresne, A., Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 2006,13,261-270.
    [105]Dubief, D., Samain, E., Dufresne, A., Polysaccharide microcrystals reinforced amorphous poly(beta-hydroxyoctanoate) nanocomposite materials. Macromolecules 1999,32,5765-5771.
    [106]Dufresne, A., Kellerhals, M. B., Witholt, B., Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 1999,32,7396-7401.
    [107]Heux, L., Chauve, G., Bonini, C., Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 2000,16,8210-8212.
    [108]Gousse, C., Chanzy, H., Excoffier, G., Soubeyrand, L., Fleury, E., Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 2002,43,2645-2651.
    [109]Nair, K. G., Dufresne, A., Gandini, A., Belgacem, M. N., Crab shell chitin whiskers reinforced natural rubber nanocomposites.3. Effect of chemical modification of chitin whiskers. Biomacromolecules 2003,4,1835-1842.
    [110]Angellier, H., Molina-Boisseau, S., Belgacem, M. N., Dufresne, A., Surface chemical modification of waxy maize starch nanocrystals. Langmuir 2005,21, 2425-2433.
    [111]Labet, M., Thielemans, W., Dufresne, A., Polymer grafting onto starch nanocrystals. Biomacromolecules 2007,8,2916-2927.
    [112]Habibi, Y., Dufresne, A., Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 2008,9,1974-1980.
    [113]Yi, J., Xu, Q. X., Zhang, X. F., Zhang, H. L., Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 2008,49,4406-4412.
    [114]Morandi, G., Heath, L., Thielemans, W., Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 2009,25,8280-8286.
    [115]Lonnberg, H., Fogelstrom, L., Berglund, M. A. S. A. S. L., Malmstrom, E., Hult, A., Surface grafting of microfibrillated cellulose with poly(epsilon-caprolactone)-Synthesis and characterization. Eur. Polym. J.2008,44,2991-2997.
    [116]Samir, M. A. S. A., Mateos, A. M., Alloin, F., Sanchez, J. Y., Dufresne, A., Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim. Acta 2004,49,4667-4677.
    [117]Wu, Q. J., Henriksson, M., Liu, X., Berglund, L. A., A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 2007,8,3687-3692.
    [118]Marcovich, N. E., Auad, M. L., Bellesi, N. E., Nutt, S. R., Aranguren, M. I., Cellulose micro/nanocrystals reinforced polyurethane. J. Mater. Res.2006,21, 870-881.
    [119]Auad, M. L., Contos, V. S., Nutt, S., Aranguren, M. I., Marcovich, N. E., Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym. Int. 2008,57,651-659.
    [120]Lima, M. M. D., Borsali, R., Rodlike cellulose microcrystals:Structure, properties, and applications. Macromol. Rapid Commun.2004,25,771-787.
    [121]Schroers, M., Kokil, A., Weder, C., Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. J. Appl. Polym. Sci.2004,93,2883-2888.
    [122]Ljungberg, N., Bonini, C., Bortolussi, F., Boisson, C., Heux, L., Cavaille, J. Y., New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene:Effect of surface and dispersion characteristics. Biomacromolecules 2005,6,2732-2739.
    [123]van den Berg, O., Schroeter, M., Capadona, J. R., Weder, C., Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J. Mater. Chem.2007,17,2146-2753.
    [124]Henriksson, M., Berglund, L. A., Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J. Appl. Polym. Sci.2007, 106,2817-2824.
    [125]Nakagaito, A. N., Yano, H., Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl. Phys. A-Mater. Sci. Process.2005,80,155-159.
    [126]Juntaro, J., Pommet, M., Kalinka, G., Mantalaris, A., Shaffer, M. S. P., Bismarck, A., Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv. Mater.2008,20,3122-3126.
    [127]Juntaro, J., Pommet, M., Mantalaris, A., Shaffer, M., Bismarck, A., Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos. Interfaces 2007,14,753-762.
    [128]Pommet, M., Juntaro, J., Heng, J. Y. Y., Mantalaris, A., Lee, A. F., Wilson, K., Kalinka, G., Shaffer, M. S. P., Bismarck, A., Surface modification of natural fibers using bacteria:Depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 2008,9,1643-1651.
    [129]Gardner, D. J., Oporto, G. S., Mills, R., Samir, M. A. S. A., Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol.2008,22, 545-567.
    [130]Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., Mayes, A. M., Science and technology for water purification in the coming decades. Nature 2008,452,301-310.
    [131]Ulbricht, M., Advanced functional polymer membranes. Polymer 2006,47, 2217-2262.
    [132]Araki, J., Kuga, S., Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 2001,17,4493-4496.
    [133]Fan, Y, Saito, T., Isogai, A., Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin. Biomacromolecules 2008,9,192-198.
    [134]Habibi, Y, Chanzy, H., Vignon, M. R., TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 2006,13,679-687.
    [135]Isogai, A., Saito, T., Fukuzumi, H., TEMPO-oxidized cellulose nanofibers. Nanoscale 2011,3,71-85.
    [136]Trotter, J. A., Lyons-Levy, G., Chino, K., Koob, T. J., Keene, D. R., Atkinson, M. A. L., Collagen fibril aggregation-inhibitor from sea cucumber dermis. Matrix. Biol. 1999,18,569-578.
    [137]Szulgit, G. K., Shadwick, R. E., Dynamic mechanical characterization of a mutable collagenous tissue:Response of sea cucumber dermis to cell lysis and dermal extracts. J. Exp. Biol.2000,203,1539-1550.
    [138]Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J., Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 2008,319,1370-1374.
    [139]Bellamkonda, R. V., Biomimetic materials-Marine inspiration. Nat. Mater. 2008,7,347-348.
    [140]Craig, S. L., Cool as a Cucumber. Angew. Chem.-Int. Edit.2008,47, 8776-8777.
    [141]Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Ifuku, S., Yano, H., Property enhancement of optically transparent bionanofiber composites by acetylation. Appl. Phys. Lett.2006,89,233123-233126.
    [142]Nogi, M., Yano, H., Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 2008,20,1849-1852.
    [143]Nogi, M., Ifuku, S., Abe, K., Handa, K., Nakagaito, A. N., Yano, H., Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl. Phys. Lett.2006,88,133124-133127.
    [144]Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H., Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites:Dependence on acetyl-group DS. Biomacromolecules 2007,8, 1973-1978.
    [145]Iwamoto, S., Nakagaito, A. N., Yano, H., Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A-Mater. Sci. Process.2007, 89,461-466.
    [146]Abe, K., Iwamoto, S., Yano, H., Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 2007,8,3276-3278.
    [147]Iwamoto, S., Abe, K., Yano, H., The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 2008,9, 1022-1026.
    [148]Shimazaki, Y., Miyazaki, Y., Takezawa, Y., Nogi, M., Abe, K., Ifuku, S., Yano, H., Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 2007,8,2976-2978.
    [149]Xia, F., Jiang, L., Bio-inspired, smart, multiscale interfacial materials. Adv. Mater.2008,20,2842-2858.
    [150]Zhang, X., Shi, F., Niu, J., Jiang, Y. G., Wang, Z. Q., Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem.2008,18,621-633.
    [151]Pan, Q. M., Wang, M., Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes. Acs Appl. Mater. Interfaces 2009,1,420-423.
    [152]Pan, Q. M., Liu, J., Zhu, Q., A water strider-like model with large and stable loading capacity fabricated from superhydrophobic copper Foils. Acs Appl. Mater. Interfaces 2010,2,2026-2030.
    [153]Larmour, I. A., Bell, S. E. J., Saunders, G. C., Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew. Chem.-Int. Edit.2007,46,1710-1712.
    [154]Bormashenko, E., Bormashenko, Y., Musin, A., Water rolling and floating upon water:Marbles supported by a water/marble interface. J. Colloid. Interface Sci.2009, 333,419-421.
    [155]Jin, H., Kettunen, M., Laiho, A., Pynnonen, H., Paltakari, J., Marmur, A., Ikkala, O., Ras, R. H. A., Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 2011,27, 1930-1934.
    [156]Paakko, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindstrom, T., Berglund, L. A., Ikkala, O., Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 2008,4,2492-2499.
    [157]Gao, X. F., Jiang, L., Water-repellent legs of water striders. Nature 2004,432, 36-36.
    [158]Svagan, A. J., Samir, M. A. S. A., Berglund, L. A., Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 2007,8,2556-2563.
    [159]Lonnberg, H., Zhou, Q., Brumer, H., Teeri, T. T., Malmstrom, E., Hult, A., Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(L-lactic acid) via ring-opening polymerization. Biomacromolecules 2006,7,2178-2185.
    [160]Lindqvist, J., Nystrom, D., Ostmark, E., Antoni, P., Carlmark, A., Johansson, M., Hult, A., Malmstrom, E., Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Biomacromolecules 2008,9,2139-2145.
    [161]Westlund, R., Carlmark, A., Hult, A., Malmstrom, E., Saez, I. M., Grafting liquid crystalline polymers from cellulose substrates using atom transfer radical polymerization. Soft Matter 2007,3,866-871.
    [162]Lindqvist, J., Malmstrom, E., Surface modification of natural substrates by atom transfer radical polymerization. J. Appl. Polym. Sci.2006,100,4155-4162.
    [163]Plackett, D., Jankova, K., Egsgaard, H., Hvilsted, S., Modification of jute fibers with polystyrene via atom transfer radical polymerization. Biomacromolecules 2005, 6,2474-2484.
    [164]Singh, N., Chen, Z., Tomer, N., Wickramasinghe, S. R., Soice, N., Husson, S. M., Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. J. Membr. Sci.2008,311, 225-234.
    [165]Roy, D., Guthrie, J. T., Perrier, S., Graft polymerization:Grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 2005,38,10363-10372.
    [166]Roy, D., Knapp, J. S., Guthrie, J. T., Perrier, S., Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 2008,9,91-99.
    [167]Barsbay, M., Guven, O., Davis, T. P., Barner-Kowollik, C., Barner, L., RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via gamma-radiation. Polymer 2009,50,973-982.
    [168]Xu, Q. X., Yi, J., Zhang, X. F., Zhang, H. L., A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur. Polym. J.2008,44, 2830-2837.
    [169]Shi, Z., Zang, S., Jiang, F., Huang, L., Lu, D., Ma, Y., Yang, G., In situ nano-assembly of bacterial cellulose-polyaniline composites. Rsc Adv.2012,2, 1040-1046.
    [170]Wang, M., Meng, G., Huang, Q., Qian, Y.,Electrospun 1,4-DHAQ-doped cellulose nanofiber films for reusable fluorescence detection of trace Cu2+ and further for Cr3+. Environ. Sci. Technol.2012,46,367-373.
    [171]Sun, D. P., Yang, J. Z., Wang, X., Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2010, 2,287-292.
    [172]Maneerung, T., Tokura, S., Rujiravanit, R., Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym.2008,72, 43-51.
    [173]Sureshkumar, M., Siswanto, D. Y, Lee, C. K., Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J. Mater. Chem. 2010,20,6948-6955.
    [174]Martins, N. C. T., Freire, C. S. R., Pinto, R. J. B., Fernandes, S. C. M., Neto, C. P., Silvestre, A. J. D., Causio, J., Baldi, G., Sadocco, P., Trindade, T., Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 2012,19,1425-1436.
    [175]Mao, X., Ding, B., Wang, M. R., Yin, Y. B., Self-assembly of phthalocyanine and polyacrylic acid composite multilayers on cellulose nanofibers. Carbohydr. Polym. 2010,80,839-844.
    [176]Huang, X. J., Chen, P. C., Huang, F., Ou, Y., Chen, M. R., Xu, Z. K., Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J. Mol. Catal. B-Enzym.2011,70,95-100.
    [177]Isobe, N., Lee, D. S., Kwon, Y. J., Kimura, S., Kuga, S., Wada, M., Kim, U. J., Immobilization of protein on cellulose hydrogel. Cellulose 2011,18,1251-1256.
    [178]Boufi, S., Vilar, M. R., Parra, V., Ferraria, A. M., do Rego, A. M. B., Grafting of porphyrins on cellulose nanometric films. Langmuir 2008,24,7309-7315.
    [179]Tamahkar, E., Babac, C., Kutsal, T., Piskin, E., Denizli, A., Bacterial cellulose nanofibers for albumin depletion from human serum. Process Biochem.2010,45, 1713-1719.
    [180]Braun, A., Tcherniac, J., The products of the action of acet-anhydride on phthalamide. Ber. Dtsch. Chem. Ges.1907,40,2709-2714.
    [181]de la Torre, G., Claessens, C. G., Torres, T., Phthalocyanines:Old dyes, new materials. Putting color in nanotechnology. Chem. Commun.2007, (20),2000-2015.
    [182]Petersen, J. L., Schramm, C. S., Stojakovic, D. R., Hoffman, B. M., Marks, T. J., New class of highly conductive molecular solids-partially oxidized phthalocyanines. J. Am. Chem. Soc.1977,99,286-288.
    [183]Schramm, C. J., Scaringe, R. P., Stojakovic, D. R., Hoffman, B. M., Ibers, J. A., Marks, T. J., Chemical, spectral, structural, and charge transport-properties of the molecular-metals produced by iodination of nickel phthalocyanine. J. Am. Chem. Soc. 1980,102,6702-6713.
    [184]Klofta, T. J., Danziger, J., Lee, P., Pankow, J., Nebesny, K. W., Armstrong, N. R., Photoelectrochemical and spectroscopic characterization of thin-films of titanyl phthalocyanine-comparisons with vanadyl phthalocyanine. J. Phys. Chem.-Us 1987, 91,5646-5651.
    [185]Xiao, K., Liu, Y. Q., Huang, X. B., Xu, Y, Yu, G., Zhu, D. B., Field-effect transistors based on Langmuir-Blodgett films of phthalocyanine derivatives as semiconductor layers. J. Phys. Chem. B 2003,107,9226-9230.
    [186]Spadavecchia, J., Ciccarella, G., Siciliano, P., Capone, S., Rella, R., Spin-coated thin films of metal porphyrin-phthalocyanine blend for an optochemical sensor of alcohol vapours. Sens. Actuator. B-Chem.2004,100,88-93.
    [187]Rella, R., Capone, S., Siciliano, P., Spadavecchia, J., Ciccarella, G., Spin coated thin films of different metal phthalocyanines and porphyrin-phthalocyanine blend for optochemical sensors of volatile organic compounds. P. Soc. Photo-Opt. Ins.2004, 5502,435-438.
    [188]Spadavecchia, J., Ciccarella, G., Rella, R., Optical characterization and analysis of the gas/surface adsorption phenomena on phthalocyanines thin films for gas sensing application. Sens. Actuator. B-Chem.2005,106,212-220.
    [189]Spadavecchia, J., Ciccarella, G., Valli, L., Rella, R., A novel multisensing optical approach based on a single phthalocyanine thin films to monitoring volatile organic compounds. Sens. Actuator. B-Chem.2006,113,516-525.
    [190]Shirk, J. S., Lindle, J. R., Bartoli, F. J., Hoffman, C. A., Kafafi, Z. H., Snow, A. W., Off-resonant 3rd-order optical nonlinearities of metal-substituted phthalocyanines. Appl. Phys. Lett.1989,55,1287-1288.
    [191]DiazGarcia, M. A., Cabrera, J. M., AgulloLopez, F., Duro, J. A., delaTorre, G., Torres, T., FernandezLazaro, F., Delhaes, P., Mingotaud, C., Third-order nonlinear optical susceptibilities of the Langmuir-Blodgett films of octa-substituted metallophthalocyanines. Appl. Phys. Lett.1996,69,1495-1495.
    [192]Li, D. Q., Ratner, M. A., Marks, T. J., Molecular and macromolecular nonlinear optical-materials-probing architecture electronic-structure frequency doubling relationships via an scf-lcao meci-pi electron formalism. J. Am. Chem. Soc.1988,110, 1707-1715.
    [193]Hu, M., Brasseur, N., Yildiz, S. Z., van Lier, J. E., Leznoff, C. C., Hydroxyphthalocyanines as potential photodynamic agents for cancer therapy. J. Med. Chem.1998,41,1789-1802.
    [194]Wohrle, D., Phthalocyanines in macromolecular phases-Methods of synthesis and properties of the materials. Macromol. Rapid Commun.2001,22,68-97.
    [195]McKeown, N. B., Phthalocyanine-containing polymers. J. Mater. Chem.2000, 10,1979-1995.
    [196]Kimura, M., Wada, K., Ohta, K., Hanabusa, K., Shirai, H., Kobayashi, N., Preparation of ordered stacked phthalocyanine polymers through olefin metathesis reaction. Macromolecules 2001,34,4706-4711.
    [197]de la Escosura, A., Martinez-Diaz, M. V., Torres, T., Grubbs, R. H., Guldi, D. M., Neugebauer, H., Winder, C., Drees, M., Sariciftci, N. S., New donor-acceptor materials based on random polynorbornenes bearing pendant phthalocyanine and fullerene units. Chem.-Asian. J.2006,1,148-154.
    [198]Chen, Y., Hanack, M., O'Flaherty, S., Bernd, G., Zeug, A., Roeder, B., Blau, W. J., An axially grafted charm bracelet type indium phthalocyanine copolymer. Macromolecules 2003,36,3786-3788.
    [199]Engelkamp, H., Middelbeek, S., Nolte, R. J. M., Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999,284,785-788.
    [200]Samori, P., Engelkamp, H., de Witte, P., Rowan, A. E., Nolte, R. J. M., Rabe, J. P., Self-assembly and manipulation of crown ether phthalocyanines at the gel-graphite interface. Angew. Chem.-Int. Edit.2001,40,2348-2350.
    [201]de la Escosura, A., Martinez-Diaz, M. V., Thordarson, P., Rowan, A. E., Nolte, R. J. M., Torres, T., Donor-acceptor phthalocyanine nanoaggregates. J. Am. Chem. Soc. 2003,125,12300-12308.
    [202]de la Escosura, A., Martinez-Diaz, M. V., Guldi, D. M., Torres, T., Stabilization of charge-separated states in phthalocyanine-fullerene ensembles through supramolecular donor-acceptor interactions. J. Am. Chem. Soc.2006,128,4112-4118.
    [203]Anderson, J. S., Bradbrook, E. F., Cook, A. H., Linstead, R. P., Phthalocyanines and associated compounds. Part ⅩⅢ. Absorption spectra. J. Chem. Soc.1938, 1151-1156.
    [204]Cook, A. H., Catalytic properties of the phthalocyanines. Part Ⅰ. Catalase properties. J. Chem. Soc.1938,1761-1768.
    [205]Cook, A. H., Catalytic properties of the phthalocyanines. Part Ⅱ. Oxidase properties. J. Chem. Soc.1938,1768-1774.
    [206]Cook, A. H., Catalytic properties of the phthalocyanines. Part Ⅲ. J. Chem. Soc. 1938,1774-1780.
    [207]Cook, A. H., Catalytic properties of the phthalocyanines. Part Ⅳ. Chemiluminescent reactions. J. Chem. Soc.1938,1845-1847.
    [208]Sorokin, A. B., Kudrik, E. V., Phthalocyanine metal complexes:Versatile catalysts for selective oxidation and bleaching. Catal. Today 2011,159,37-46.
    [209]Boufi, S., Rei Vilar, M., Parra, V., Ferraria, A. M., Botelho do Rego, A. M., Grafting of porphyrins on cellulose nanometric films. Langmuir 2008,24,7309-7315.
    [210]Son, W. K., Youk, J. H., Park, W. H., Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr. Polym.2006,65,430-434.
    [211]Tao, X., Ma, W. H., Zhang, T. Y., Zhao, J. C., A novel approach for the oxidative degradation of organic pollutants in aqueous solutions mediated by iron tetrasulfophthalocyanine under visible light radiation. Chem.-Eur. J.2002,8, 1321-1326.
    [212]Tao, X., Ma, W. H., Zhang, T. Y., Zhao, J. C., Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation. Angew. Chem.-Int. Edit.2001,40,3014-3016.
    [213]Sorokin, A., Seris, J. L., Meunier, B., Efficient oxidative dechlorination and aromatic ring-cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine. Science 1995,268,1163-1166.
    [214]Shirai, H., Tsuiki, H., Masuda, E., Koyama, T., Hanabusa, K., Kobayashi, N., Functional metallomacrocycles and their polymers,25. Kinetics and mechanism of the biomimetic oxidation of thiol by oxygen catalyzed by homogeneous (polycarboxyphthalocyaninato) metals. J. Phys. Chem.-Us 1991,95,417-423.
    [215]Shirai, H., Maruyama, A., Konishi, M., Hojo, N., Functional metal-porphyrazine derivatives and their polymers,5. Peroxidatic oxidation of guaiacol by Fe(Ⅲ)-3,4,3',4',3",4",3'",4'"-octacarboxyphthalocyanine (Fe(Ⅲ)-oapc) and Fe(Ⅲ)-oapc-polyelectrolyte systems. Makromol. Chem.1980,181,1003-1012.
    [216]Wohrle, D., Buck, T., Hundorf, U., Schulzekloff, G., Andreev, A., Phthalocyanines on mineral carriers,4. Low-molecular-weight and polymeric phthalocyanines on SiO2, Gamma-Al2O3 and active charcoal as catalysts for the oxidation of 2-mercaptoethanol. Makromol. Chem.1989,190,961-974.
    [217]Buck, T., Wohrle, D., Schulzekloff, G., Andreev, A., Structure and mercaptan oxidation activity of cobalt(Ⅱ) phthalocyanines covalently bonded to silica of low surface-area. J. Mol. Catal.1991,70,259-268.
    [218]Manassen, J., Metal-complexes of porphyrin-like compounds as heterogeneous catalysts. Catal. Rev.-Sci. Eng.1974,9,223-243.
    [219]Masri, Y., Hronec, M., Hydroxylation of phenol catalyzed by metal phthalocyanines. Stud. Surf. Sci. Catal.1991,66,455-460.
    [220]Kropf, H., Hoffmann, H., Autoxidation von cumol in gegenwart von substituierten kupfer-phthalocyaninen und verwandten kupfer-komplexen. Tetrahedron Lett.1967,8,659-663.
    [221]Ozoemena, K., Kuznetsova, N., Nyokong, T., Comparative photo sensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium. J. Mol. Catal. A-Chem.2001, 176,29-40.
    [222]Ozoemena, K., Kuznetsova, N., Nyokong, T., Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metallophthalocyanines. J. Photochem. Photobio. A-Chem.2001,139,217-224.
    [223]Agboola, B., Ozoemena, K. I., Nyokong, T., Comparative efficiency of immobilized non-transition metal phthalocyanine photosensitizers for the visible light transformation of chlorophenols. J. Mol. Catal. A-Chem.2006,248,84-92.
    [224]Marais, E., Klein, R., Antunes, E., Nyokong, T., Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes.J. Mol. Catal. A-Chem.2007,261,36-42.
    [225]Iliev, V., Alexiev, V., Bilyarska, L., Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds.J. Mol. Catal. A-Chem.1999,137,15-22.
    [226]Shirai, H., Maruyama, A., Takano, J., Kobayashi, K., Hojo, N., Urushido, K. Functional metal-porphyrazine derivatives and their polymers,3. Catalytic activity of Fe (Ⅲ)-octacarboxyphthalocyanine for decomposition of hydrogen peroxide. Makromol. Chem.1980,181,565-573.
    [227]Kimura, M., Nishigaki, T., Koyama, T., Hanabusa, K., Shirai, H., Functional metallomacrocycles and their polymers,27. Catalase-like activity of water-soluble polymer containing a phthalocyanine-manganese complex. Macromol. Chem. Phys. 1994,195,3499-3508.
    [228]Spiller, Wohrle, D., Schulz-Ekloff, G., Ford, W. T., Schneider, G., Stark, J., Photo-oxidation of sodium sulfide by sulfonated phthalocyanines in oxygen-saturated aqueous solutions containing detergents or latexes. J. Photochem. Photobiol. A-Chem. 1996,95,161-173.
    [229]Chen, W. X., Lu, W. Y., Yao, Y. Y., Xu, M. H., Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation, using fiber-supported cobalt phthalocyanine. Environ. Sci. Technol.2007,41,6240-6245.
    [230]Ratnasamy, P., Srinivas, D., Selective oxidations over zeolite- and mesoporous silica-based catalysts:Selected examples. Catal. Today 2009,141,3-11.
    [231]Lu, W. Y., Li, N., Chen, W. X., Yao, Y. Y., The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes. Carbon 2009,47,3337-3345.
    [232]Sorokin, A. B., Tuel, A., Heterogeneous oxidation of aromatic compounds catalyzed by metallophthalocyanine functionalized silicas. New J. Chem.1999,23, 473-476.
    [233]Zanjanchi, M. A., Ebrahimian, A., Arvand, M., Sulphonated cobalt phthalocyanine-MCM-41:An active photocatalyst for degradation of 2,4-dichlorophenol. J. Hazard. Mater.2010,175,992-1000.
    [234]Sun, A. H., Xiong, Z. G., Xu, Y. M., Adsorption and photosensitized oxidation of sulfide ions on aluminum tetrasulfophthalocyanine-loaded anionic resin. J. Mol. Catal. A-Chem.2006,259,1-6.
    [235]Tao, X., Ma, W. H., Li, J., Huang, Y. P., Zhao, J. C., Yu, J. C., Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation. Chem. Commun.2003,80-81.
    [236]Xiong, Z. G., Xu, Y. M., Immobilization of palladium phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2,4,6-trichlorophenol under visible light irradiation. Chem. Mat.2007,19,1452-1458.
    [237]Sanchez, M., Chap, N., Cazaux, J. B., Meunier, B., Metallophthalocyanines linked to organic copolymers as efficient oxidative supported catalysts. Eur. J. Inorg. Chem.2001,2001,1775-1783.
    [238]Raja, R., Ratnasamy, P., Direct conversion of methane to methanol. Appl. Catal. A-Gen.1997,158, L7-L15.
    [239]Raja, R., Ratnasamy, P., Oxyhalogenation of aromatics over copper phthalocyanines encapsulated in zeolites. J. Catal.1997,170,244-253.
    [240]Raja, R., Ratnasamy, P., Oxidation of cyclohexane over copper phthalocyanines encapsulated in zeolites. Catal. Lett.1997,48,1-10.
    [241]Ray, S., Vasudevan, S., Encapsulation of cobalt phthalocyanine in zeolite-Y: Evidence for nonplanar geometry. Inorg. Chem.2003,42,1711-1719.
    [242]Seelan, S., Sinha, A. K., Srinivas, D., Sivasanker, S., Spectroscopic investigation and catalytic activity of copper(II) phthalocyanine encapsulated in zeolite Y.J. Mol. Catal.A-Chem.2000,157,163-171.
    [243]Lu, W. Y., Chen, W. X., Li, N., Xu, M. H., Yao, Y. Y., Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Appl. Catal. B-Environ.2009,87,146-151.
    [244]Hu, M. Q., Xu, Y. M., Xiong, Z. G., A novel photosensitizer of palladium(II) phthalocyanine tetrasulfonate for chlorophenol oxidation under visible light irradiation. Chem. Lett.2004,33,1092-1093.
    [245]Edgar, K. J., Buchanan, C. M., Debenham, J. S., Rundquist, P. A., Seiler, B. D., Shelton, M. C., Tindall, D., Advances in cellulose ester performance and application. Prog. Polym. Sci.2001,26,1605-1688.
    [246]Achar, B. N., Fohlen, G. M., Parker, J. A., Keshavayya, J., Synthesis and structural studies of metal(Ⅱ) 4,9,16,23-phthalocyanine tetraamines. Polyhedron 1987,6,1463-1467.
    [247]Reneker, D. H., Yarin, A. L., Electrospinning jets and polymer nanofibers. Polymer 2008,49,2387-2425.
    [248]Haghi, A. K., Asli, K. H., Sabermaash, E., A review on electrospun polymeric nanosized fibres. J. Balk. Tribol. Assoc.2010,16,570-584.
    [249]Jonoobi, M., Harun, J., Mathew, A. P., Hussein, M. Z. B., Oksman, K., Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 2010,17,299-307.
    [250]Heinze, T., Liebert, T., Unconventional methods in cellulose functionalization. Prog. Polym. Sci.2001,26,1689-1762.
    [251]OSullivan, A. C., Cellulose:The structure slowly unravels. Cellulose 1997,4, 173-207.
    [252]Shanmuganathan, K., Capadona, J. R., Rowan, S. J., Weder, C., Biomimetic mechanically adaptive nanocomposites. Prog. Polym. Sci.2010,35,212-222.
    [253]Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A. N., Mangalam, A., Simonsen, J., Benight, A. S., Bismarck, A., Berglund, L. A., Peijs, T., Review:Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010,45,1-33.
    [254]Klemm, D., Schumann, D., Kramer, F., Hessler, N., Hornung, M., Schmauder, H. P., Marsch, S., Nanocelluloses as innovative polymers in research and application. Adv. Polym. Sci.2006,205,49-96.
    [255]Kamphunthong, W., Hornsby, P., Sirisinha, K., Isolation of cellulose nanofibers from para rubberwood and their reinforcing effect in poly(vinyl alcohol) composites. J. Appl. Polym. Sci.2012,125,1642-1651.
    [256]Peresin, M. S., Habibi, Y., Zoppe, J. O., Pawlak, J. J., Rojas, O. J., Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals:Manufacture and characterization. Biomacromolecules 2010,11,674-681.
    [257]Pandey, J. K., Lee, C. S., Ahn, S. H., Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers. J. Appl. Polym. Sci.2010,115,2493-2501.
    [258]Wang, B., Sain, M., The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. Bioresources 2007,2,371-388.
    [259]Svagan, A. J., Berglund, L. A., Jensen, P., Cellulose nanocomposite biopolymer foam-hierarchical structure effects on energy absorption. Acs Appl. Mater. Interfaces 2011,3,1411-1417.
    [260]Svagan, A. J., Jensen, P., Dvinskikh, S. V., Furo, I., Berglund, L. A., Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. J. Mater. Chem.2010,20,6646-6654.
    [261]Svagan, A. J., Samir, M. A. S. A., Berglund, L. A., Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater.2008,20,1263-1269.
    [262]Sehaqui, H., Salajkova, M., Zhou, Q., Berglund, L. A., Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 2010,6,1824-1832.
    [263]Sehaqui, H., Mushi, N. E., Morimune, S., Salajkova, M., Nishino, T., Berglund, L. A., Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. Acs Appl. Mater. Interfaces 2012,4,1043-1049.
    [264]Sehaqui, H., Zhou, Q., Ikkala, O., Berglund, L. A., Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 2011,12, 3638-3644.
    [265]Henriksson, M., Fogelstrom, L., Berglund, L. A., Johansson, M., Hult, A., Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates. Compos. Sci. Technol. 2011,71,13-17.
    [266]Sehaqui, H., Liu, A. D., Zhou, Q., Berglund, L. A., Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 2010,11,2195-2198.
    [267]Shen, C. S., Song, S. F., Zang, L. L., Kang, X. D., Wen, Y. Z., Liu, W. P., Fu, L. S., Efficient removal of dyes in water using chitosan microsphere supported cobalt(II) tetrasulfophthalocyanine with H2O2. J. Hazard. Mater.2010,177,560-566.
    [268]Chang, Z. J., Fang, Y., Zhang, Q. H., Chen, D. J., "Click" chemistry for facile immobilization of iron phthalocyanines onto electrospun nanofiber surface. Chem. Lett.2009,38,1144-1145.
    [269]Chen, W. X., Chen, S. L., Lu, S. S., Yao, Y. Y., Xu, M. H., Photocatalytic oxidation of phenol in aqueous solutions with oxygen catalyzed by supported metallophthalocyanine catalyst. Sci. China Ser. B-Chem.2007,50,379-384.
    [270]Seelan, S., Agashe, M. S., Srinivas, D., Sivasanker, S., Effect of peripheral substitution on spectral and catalytic properties of copper phthalocyanine complexes. J. Mol. Catal. A-Chem.2001,168,61-68.
    [271]黄金陵,彭亦如.金属酞菁配合物结构研究的一些谱学方法.光谱学与光谱分析2001,21,1-6.
    [272]Stillman, M. J., Mack, J., Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations. Coord. Chem. Rev.2001,219,993-1032.
    [273]Xu, S., Zhang, J., He, A., Li, J., Zhang, H., Han, C. C., Electrospinning of native cellulose from nonvolatile solvent system. Polymer 2008,49,2911-2917.
    [274]Kulpinski, P., Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J. Appl. Polym. Sci.2005,98,1855-1859.
    [275]Han, S. O., Son, W. K., Youk, J. H., Park, W. H., Electrospinning of ultrafine cellulose fibers and fabrication of poly(butylene succinate) biocomposites reinforced by them. J. Appl. Polym. Sci.2008,107,1954-1959.
    [276]Han, S. O., Youk, J. H., Min, K. D., Kang, Y. O., Park, W. H., Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water:Effects of solvent composition on the fiber diameter. Mater. Lett.2008,62,759-762.
    [277]Son, W. K., Youk, J. H., Lee, T. S., Park, W. H., Electrospinning of ultrafine cellulose acetate fibers:Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J. Polym. Sci. Pt. B-Polym. Phys.2004,42,5-11.
    [278]Zhang, L., Menkhaus, T. J., Fong, H., Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers. J. Membr. Sci.2008,319,176-184.
    [279]黄赋,纳米纤维膜固定化酶及其酶—膜反应器的构建与性能研究.浙江大学,2010.
    [280]Bilkova, Z., Slovakova, M., Lycka, A., Horak, D., Lenfeld, J., Turkova, J., Churacek, J., Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. J. Chromatogr. B 2002,770,25-34.
    [281]Pignatello, J. J., Oliveros, E., MacKay, A., Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol.2006,36,1-84.
    [282]吕汪洋,催化功能纤维降解染料等有机污染物的研究.浙江理工大学,2010.
    [283]Lin, C. P., Lee, B. S., Huang, S. H., Chiang, Y. C., Chien, Y. S., Mou, C. Y., Development of in vitro tooth staining model and usage of catalysts to elevate the effectiveness of tooth bleaching. Dent. Mater.2008,24,57-66.
    [284]Kluson, P., Drobek, M., Krejcikova, S., Krysa, J., Kalaji, A., Cajthaml, T., Rakusan, J., Molecular structure effects in photodegradation of phenol and its chlorinated derivatives with phthalocyanines. Appl. Catal. B-Environ.2008,80, 321-326.
    [285]Chen, W. X., Lu, W. Y., Li, N., Yao, Y. Y., The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes. Carbon 2009,47,3337-3345.
    [286]Arica, M. Y., Altintas, B., Bayramoglu, G., Immobilization of laccase onto spacer-arm attached non-porous poly(GMA/EGDMA) beads:Application for textile dye degradation. Bioresour.Technol.2009,100,665-669.
    [287]Bayramoglu, G., Yilmaz, M., Arica, M. Y., Immobilization of a thermostable alpha-amylase onto reactive membranes:Kinetics characterization and application to continuous starch hydrolysis. Food Chem.2004,84,591-599.
    [288]Ozyilmaz, G., The effect of spacer arm on hydrolytic and synthetic activity of Candida rugosa lipase immobilized on silica gel. J. Mol. Catal. B-Enzym.2009,56, 231-236.
    [289]Fernandez-Lorente, G., Palomo, J. M., Cabrera, Z., Guisan, J. M., Fernandez-Lafuente, R., Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzyme Microb. Technol.2007,41,565-569.
    [290]Arica, M. Y., Bayramoglu, G., Bicak, N., Characterisation of tyrosinase immobilised onto spacer-arm attached glycidyl methacrylate-based reactive microbeads. Process Biochem.2004,39,2007-2017.
    [291]Mita, D. G., De Maio, A., El-Masry, M. M., Portaccio, M., Diano, N., Di Martino, S., Mattei, A., Bencivenga, U., Influence of the spacer length on the activity of enzymes immobilised on nylon/polyGMA membranes Part 1:Isothermal conditions. J. Mol. Catal. B-Enzym.2003,21,239-252.
    [292]Mita, D. G., De Maio, A., El-Masry, M. M., De Luca, P., Grano, V., Rossi, S., Pagliuca, N., Gaeta, F. S., Portaccio, M., Influence of the spacer length on the activity of enzymes immobilised on nylon/poly GMA membranes Part 2:Non-isothermal conditions. J. Mol. Catal. B-Enzym.2003,21,253-265.
    [293]Chen, S. L., Huang, X. J., Xu, Z. K., Functionalization of cellulose nanofiber mats with phthalocyanine for decoloration of reactive dye wastewater. Cellulose 2011, 18,1295-1303.
    [294]Ogunbayo, T. B., Antunes, E., Nyokong, T., Investigation of homogeneous photosensitized oxidation activities of palladium and platinum octasubstituted phthalocyanines:Oxidation of 4-nitrophenol. J. Mol. Catal. A-Chem.2011,334, 123-129.
    [295]Wu, L., Li, A. M., Gao, G. D., Fei, Z. H., Xu, S. R., Zhang, Q. X., Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine. J. Mol. Catal. A-Chem.2007,269, 183-189.
    [296]Kiwi, J., Lopez, A., Nadtochenko, V., Mechanism and kinetics of the OH-radical intervention during fenton oxidation in the presence of a significant amount of radical scavenger (Cl-). Environ. Sci. Technol.2000,34,2162-2168.
    [297]Kuznetsova, N., Makarov, D., Yuzhakova, O., Strizhakov, A., Roumbal, Y., Ulanova, L., Krasnovsky, A., Kaliya, O., Photophysical properties and photodynamic activity of octacationic oxotitanium(Ⅳ) phthalocyanines. Photochem. Photobiol. Sci. 2009,8,1724-1733.
    [298]Kluson, P., Drobek, M., Kalaji, A., Zarubova, S., Krysa, J., Rakusan, J., Singlet oxygen photogeneration efficiencies of a series of phthalocyanines in well-defined spectral regions. J. Photochem. Photobiol. A-Chem.2008,199,267-273.
    [299]Sorokin, A., DeSuzzoniDezard, S., Poullain, D., Noel, J. P., Meunier, B., CO2 as the ultimate degradation product in the H2O2 oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine. J. Am. Chem. Soc.1996,118,7410-7411.
    [300]Yang, J., Dai, J., Chen, C. C., Zhao, J. C., Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO(2)-film electrodes. J. Photochem. Photobiol. A-Chem.2009,208,66-77.
    [301]Salem, M. A., Abdel-Halim, S. T., El-Sawy, A. E. H. M., Zaki, A. B., Kinetics of degradation of allura red, ponceau 4R and carmosine dyes with potassium ferrioxalate complex in the presence of H2O2. Chemosphere 2009,76,1088-1093.
    [302]Mrowetz, M., Selli, E., Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2. Phys. Chem. Chem. Phys.2005,7,1100-1102.
    [303]Smith, B. A., Teel, A. L., Watts, R. J., Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems. Environ. Sci. Technol.2004,38,5465-5469.
    [304]Sui, M. H., Liu, J., Sheng, L., Mesoporous material supported manganese oxides (MnOx/MCM-41) catalytic ozonation of nitrobenzene in water. Appl. Catal. B-Environ.2011,106,195-203.
    [305]Yamazaki, I., Piette, L. H., Epr Spin-Trapping Study on the Oxidizing Species Formed in the Reaction of the Ferrous Ion with Hydrogen-Peroxide. J. Am. Chem. Soc. 1991,113,7588-7593.
    [306]约瑟·G.桑切斯·马可,西奥多·T·托迪斯,催化膜及膜反应器.北京:化学工业出版社,2004.
    [307]Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991,354,56-58.
    [308]Swager, T. M., Wang, F., Gu, H. W., Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc.2008,130, 5392-+.
    [309]Baughman, R. H., Zakhidov, A. A., de Heer, W. A., Carbon nanotubes-the route toward applications. Science 2002,297,787-792.
    [310]Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J., Dai, H. J., Nanotube molecular wires as chemical sensors. Science 2000,287, 622-625.
    [311]Liu, T. X., Chen, D., Zhou, X. P., Tjiu, W. C., Hou, H. Q., Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J. Phys. Chem. B 2009,113,9741-9748.
    [312]Zhang, Q. H., Chang, Z. J., Zhu, M. F., Mo, X. M., Chen, D. J., Electrospun carbon nanotube composite nanofibres with uniaxially aligned arrays. Nanotechnology 2007,18,
    [313]Planeix, J. M., Coustel, N., Coq, B., Brotons, V., Kumbhar, P. S., Dutartre, R. Geneste, P., Bernier, P., Ajayan, P. M., Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc.1994,116,7935-7936.
    [314]Wildgoose, G. G., Banks, C. E., Compton, R. G., Metal nanopartictes and related materials supported on carbon nanotubes:Methods and applications. Small 2006,2, 182-193.
    [315]Rocha, R. P., Sousa, J. P. S., Silva, A. M. T., Pereira, M. F. R., Figueiredo, J. L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid:The role of the basic nature induced by the surface chemistry. Appl. Catal. B-Environ.2011,104,330-336.
    [316]Guo, X. F., Kim, J. H., Kim, G. J., Dehydrogenation of ethylbenzene to styrene on a direct synthesized Co, Ni/carbon nanotubes catalysts. Catal. Today 2011,164, 336-340.
    [317]Hahn, U., Engmann, S., Oelsner, C., Ehli, C., Guldi, D. M., Torres, T., Immobilizing water-soluble dendritic electron donors and electron acceptors-phthalocyanines and perylenediimides-onto single wall carbon nanotubes. J. Am. Chem. Soc.2010,132,6392-6401.
    [318]Bartelmess, J., Soares, A. R. M., Martinez-Diaz, M. V., Neves, M. G. P. M. S., Tome, A. C., Cavaleiro, J. A. S., Torres, T., Guldi, D. M., Panchromatic light harvesting in single wall carbon nanotube hybrids-immobilization of porphyrin-phthalocyanine conjugates. Chem. Commun.2011,47,3490-3492.
    [319]Bartelmess, J., Ballesteros, B., de la Torre, G., Kiessling, D., Campidelli, S., Prato, M., Torres, T., Guldi, D. M., Phthalocyanine-Pyrene Conjugates:A powerful approach toward carbon nanotube solar cells. J. Am. Chem. Soc.2010,132, 16202-16211.
    [320]Campidelli, S., Ballesteros, B., Filoramo, A., Diaz, D. D., de la Torre, G., Torres, T., Rahman, G. M. A., Ehli, C., Kiessling, D., Werner, F., Sgobba, V., Guldi, D. M., Cioffi, C., Prato, M., Bourgoin, J. P., Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via "Click Chemistry". J. Am. Chem. Soc. 2008,130,11503-11509.
    [321]Ballesteros, B., de la Torre, G., Ehli, C., Rahman, G. M. A., Agullo-Rueda, F., Guldi, D. M., Torres, T., Single-wall carbon nanotubes bearing covalently linked phthalocyanines-photoinduced electron transfer. J. Am. Chem. Soc.2007,129, 5061-5068.
    [322]Ballesteros, B., Campidelli, S., de la Torre, G., Ehli, C., Guldi, D. M., Prato, M., Torres, T., Synthesis, characterization and photophysical properties of a SWNT-phthalocyanine hybrid. Chem. Commun.2007,2950-2952.
    [323]Ozoemena, K. I., Nyokong, T., Nkosi, D., Chambrier, I., Cook, M. J., Insights into the surface and redox properties of single-walled carbon nanotube-cobalt(Ⅱ) tetra-aminophthalocyanine self-assembled on gold electrode. Electrochim. Acta 2007, 52,4132-4143.
    [324]Geraldo, D. A., Togo, C. A., Limson, J., Nyokong, T., Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochim. Acta 2008,53,8051-8057.
    [325]Mugadza, T., Nyokong, T., Electrocatalytic oxidation of amitrole and diuron on iron(Ⅱ) tetraaminophthalocyanine-single walled carbon nanotube dendrimer. Electrochim. Acta 2010,55,2606-2613.
    [326]Mamuru, S. A., Ozoemena, K. I., Fukuda, T., Kobayashi, N., Nyokong, T., Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim. Acta 2010,55,6367-6375.
    [327]Khene, S., Nyokong, T., Single walled carbon nanotubes functionalized with nickel phthalocyanines:Effects of point of substitution and nature of functionalization on the electro-oxidation of 4-chlorophenol. J. Porphyr. Phthalocyanines 2012,16, 130-139.
    [328]Mashazi, P., Mugadza, T., Sosibo, N., Mdluli, P., Vilakazi, S., Nyokong, T., The effects of carbon nanotubes on the electrocatalysis of hydrogen peroxide by metallo-phthalocyanines. Talanta 2011,85,2202-2211.
    [329]Khene, S., Nyokong, T., Electrooxidation of chlorophenols catalyzed by nickel octadecylphihalocyanine adsorbed on single-walled carbon nanotubes. Electroanal 2011,23,1901-1911.
    [330]Dong, G. F., Huang, M. H., Guan, L. H., Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys. Chem. Chem. Phys.2012,14,2557-2559.
    [331]Orellana, W., Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction:A theoretical study. Chem. Phys. Lett.2012,541, 81-84.
    [332]Hou, H. Q., Ge, J. J., Zeng, J., Li, Q., Reneker, D. H., Greiner, A., Cheng, S. Z. D., Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mat.2005,17,967-973.
    [333]Wu, D. F., Shi, T. J., Yang, T., Sun, Y. R., Zhai, L. F., Zhou, W. D., Zhang, M., Zhang, J., Electrospinning of poly(trimethylene terephthalate)/carbon nanotube composites. Eur. Polym. J.2011,47,284-293.
    [334]Xiao, S. L., Shen, M. W., Guo, R., Huang, Q. G., Wang, S. Y., Shi, X. Y., Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J. Mater. Chem.2010,20,5700-5708.
    [335]Sahoo, N. G., Rana, S., Cho, J. W., Li, L., Chan, S. H., Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci.2010,35,837-867.
    [336]Saeed, K., Park, S. Y., Preparation and characterization of multiwalled carbon nanotubes/polyacrylonitrile nanofibers. J. Polym. Res.2010,17,535-540.
    [337]Dror, Y., Salalha, W., Khalfin, R. L., Cohen, Y., Yarin, A. L., Zussman, E., Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 2003,19,7012-7020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700