新颖水解酶CESH的催化机制及其高效催化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
顺式环氧琥珀酸水解酶(cis-epoxysuccinate hydrolase, CESH),是一种水解酶,能催化顺式环氧琥珀酸水解为酒石酸。酒石酸广泛应用于食品、医药、化工、纺织、电镀等行业,其需求量正在逐年递增,目前利用具有立体选择特异性的微生物来源CESH生产酒石酸已逐步成为酒石酸生产技术的新发展方向。本文概述了酒石酸和CESH的研究进展,并研究了新颖水解酶CESH的催化机制及其高效催化工艺。
     从田园土中筛选到一株产新颖CESH的野生菌,它能将顺式环氧琥珀酸立体特异性的转化为D(-)-酒石酸,经鉴定为博德特氏菌属(Bordetella),并命名为Bordetella sp. BK-52。对该野生菌产酶条件进行优化,最高酶活达764U/g。随后我们从该野生菌中分离纯化得到CESH,酶学性质研究显示,该酶具有温度稳定性好、pH稳定性范围广、金属离子耐受性好,立体特异性高等特点,表明该酶很适合作为工业生物催化剂。此外,我们还首次获得Bordetella sp. CESH的基因序列(GenBank登录号为EU053208)。
     根据上述CESH基因序列,构建基因工程菌,通过响应面法优化了CESH在大肠杆菌中的表达条件,使工程菌的酶活达到40129U/g,为野生菌的53倍。随后从12种细胞固定化方法中筛选到K-卡拉胶包埋法,通过响应面法优化其固定化条件,使固定化工程菌细胞的酶活回收率达83%。该固定化细胞对温度、pH、金属离子、表面活性剂等多种外界条件具有较强的稳定性,连续使用10批后,残余活力仍为93%,显示出良好的工业应用潜能与前景。
     红球菌(Rhodococcus opacus) CESH可催化顺式环氧琥珀酸生成L(+)-酒石酸。序列比对和二级结构预测分析显示,该CESH属于卤烷基脱卤酶超家族成员,29个保守位点的定点突变实验、圆二色谱分析、立体特异性分析和酶学性质分析证实,下列9个氨基酸在该酶催化过程中起重要作用:Aspl8、Aspl93、Arg55、Lysl64、Hisl90、Thr22、Tyrl70、Asnl34和Alal88。同位素H218O标记的单转化和多转化实验表明,在水解过程中,水分子中的O原子首先转移到酶中,然后再转移到产物中。接着预测了Rhodococcus opacus CESH的三维结构,整体三维结构和重要活性位点的重叠结果显示,该酶与一些三维结构已知的卤烷基脱卤酶(Hdl、L-DEX和Dh1B)的结构非常相似,采用两步法的催化机制,并推测该催化机制通过催化三联体Asp18-His190-Asp193进行,即CESH中的Asp18首先亲核进攻底物顺式环氧琥珀酸,形成“底物-酶酯中间体”,接着位于活性位点的His190和Asp193激活水分子,进一步水解酯键,并释放产物L(+)-酒石酸。
cis-Epoxysuccinate hydrolase (CESH), a kind of hydrolase, could transform cis-epoxysuccinic acid into tartaric acid. Tartaric acid is widely used in food, pharmaceutical, chemistry, textile, electroplating industry and et al., resulting in its quantity demand increasing progressively year by year. A novel approach for tartaric acid production using stereospecific CESH from microorganism has become an inevitable development trend. Characters of tartaric acid and CESH enzyme are reviewed here, and we study on the catalytic mechanism of a novel CESH and its catalytic process with a high effieciency.
     A novel wild-type strain with CESH activity was isolated from vegetable field for biotransforming cis-epoxysuccinate into D(-)-tartaric acid. It was assigned to genus Bordetella and named Bordetella sp. BK-52. The maximum CESH activity reached764U/g after optimization its fermentation condition. Then the CESH was purified from the wild-type strain, and enzyme properties assay showed that CESH had high temperature and pH stability, was weakly affected by most metal ions and exhibited high stereospecificity, which indicated that it was potential for use in industry as a biologic catalyst. In addition, Bordetella sp. CESH gene (GenBank Accession No. EU053208) was firstly obtained.
     According to the above CESH gene sequence, the gene engineering bacteria were constructed and its maximum activity was40129U/g, which was53-fold higher than wild-type strain, after optimizing expression conditions to enhance CESH production in Escherichia coli by response surface methodology. Then, κ-carrageenan gel entrapment was selected as the best matrix through12methods for immobilization cells.83%yield of activity was got after optimization immobilization conditions by response surface methodology. The immobilized cells were relatively stable in various environmental conditions, such as temperature, pH, metal ions and surfactants, and still remain93%residual activity after10repeated batches, indicating its potential and prospect in industry.
     Rhodococcus opacus CESH could transform cis-epoxysuccinic acid into L(+)-tartaric acid. It was belong to haloacid dehalogenase like superfamily according to the results of amino acid sequence alignments and second structure predictions.9residues played indispensable roles in the catalytic function, including Asp18, Asp193, Arg55, Lys164, His190, Thr22, Tyr170, Asn134and Alal88, which were determined by site-directed mutagenesis of29conserved residues, circular dichroism spectra analysis, enantioselectivity analysis and enzyme properties assay. Single and multiple turnover reaction in H218O showed that the O atom of water firstly transfer into the eznzyme and then to the product in the reaction. Then3D structure of Rhodococcus opacus CESH was predicted. Superpositions in the whole structure and in the active site structure indicated that CESH is structurely similar to those3D-structure-reported haloacid dehalogenase (Hdl, L-DEX and Dh1B). We proposed that its reaction proceeds through the two-step mechanism and characterized by Asp18-His190-Asp193catalytic triad. Specifically, Asp18of CESH firstly nucleophilic attack on the substrate cis-epoxysuccinic acid, resulting in the formation of an ester bond between the enzyme and substrate. The His190and Asp193, in the active site, activate the water molecule, and hydrolyse the ester bond allowing the release of product L(+)-tartaric acid.
引文
[1]刘斌.半生物合成法生产d-酒石酸[J].化学世界,1996,10:527-531.
    [2]黄腾华,钱晓梅.L(+)-酒石酸的生产[J].工业微生物,1990,20:14-17.
    [3]Kotera U, Umehara K, Kodama T, Yamada K. Isolation method of highly tartaric acid producing mutants of Gluconobacter suboxydans[J]. Agric Biol Chem,1972,36: 1307-1313.
    [4]楼锦芳,张建国.酶法合成L(+)-酒石酸的研究进展[J].食品科技,2006,31(11):162-164.
    [5]Lola Kokila, CAI Shuihong, CHEN Kongchang. Optical Resolution of DL-Tartaric Acid Mediated by Diastereomeric Salts Crystallization:A Useful Method for Exploring and Optimizing Experimental Conditions[J]. Chinese J Chem Eng,2002, 10:244-248.
    [6]佐藤英次,矢内显.公开特许公报,昭50-140683[N],1975.
    [7]Kamatani Y, Okazaki H, Imai K, et al. Method for producing L-(+)-tartaric acid:US, 4028185A[P].1976.
    [8]Kamatani Y, Okazaki H, Imai K, et al. Production of L-(+)-tartaric acid:US, 4013509A[P].1976.
    [9]Kamatani Y, Okazaki H, Imai K, et al. Production of L-(+)-tartaric acid:US, 4011135A[P].1976.
    [10]张建国,钱亚娟.棒状杆菌固定化细胞生产L(+)-酒石酸[J].生物工程学报,2000,16:188-192.
    [11]Yoshio K, Okazaki H, Imai K, et al. Production of L(+)-tartaric acid:US, 4011135[P].1997.
    [12]Rosenberg M, Kristofikova L, Mikova H. Production of L-tartaric acid by immobilized bacterial cells Nocardia tartaricans[J]. Biotechnol Lett,1999,21: 491-495.
    [13]潘克侠,闵航,夏颖,等.产顺式环氧琥珀酸水解酶的红球菌M1菌株的分离鉴定及其产酶条件优化[J].微生物学报,2004,44(3):276-280.
    [14]Liu ZQ, Li Y, Xu YY, et al. Cloning, sequencing, and expression of a novel epoxide hydrolase gene from Rhodococcus opacus in Escherichia coli and characterization of enzyme[J]. Appl Microbiol Biotechnol,2007,74:99-106.
    [15]Shuji K, Atsushi Y, Akinobu M, et al. Direct chiral resolution of tartaric acid in food products by ligand exchange capillary electrophoresis using copper (Ⅱ)-D-quinic acid as a chiral selector[J]. J Chromot A,2001,932:139-143.
    [16]Gawronski J, Gawronska K. Tartaric and Malic Acids inSynthesis:A Source Book of Building Blocks, Ligands, Auxiliaries,and Resolving Agents[M]. New York:John Wiley & Sons,1998.
    [17]Ghosh AK, Koltun ES, Bilcer G. Tartaric acid and tartarates in the synthesis of bioactive molecules [J]. Synthesis,2001,9:1281-1301.
    [18]Skarzewski J, Gupta A. Synthesis of C2 symmetric primary vicinal diamines. Double stereospecific Mitsunobu reaction of the heterocyclic diols derived from tartaric acid[J]. Tetrahedron:Asymmetry,1997,8:1861-1867.
    [19]Su YL, Yang CS, Teng SJ, et al. Total synthesis of four diastereoisomers of Goniofufurone from D(-)-or L(+)-tartaric acid. Tetrahedron,2001,57:2147-2153.
    [20]Pabba J, Vasella A. Synthesis of D-gluco-, L-ido-, D-galacto-, and L-altro-configured glycaro-1,5-lactams from tartaric acid[J]. Tetrahedron Lett,2005, 46:3619-3622.
    [21]Huang YW. Chemical resolution of DL-tartaric acid[J]. Chemical World,1990,8: 372-374.
    [22]Sato H, Imamura S. Process for producing D-(31)-tartaric acid:US,4904589[P]. 1990.
    [23]Yamagishi K, Cho H, Takai Y, et al. Production of D(-)-tartaric acid:JP, 08-245497[P].1996.
    [24]Asai Y, Kobayashi M, Uchida K, et al. DNA encoding cis-epoxysuccinic acid hydrolase and its utilization:JP,2000-295992[P].2000.
    [25]Pan HF, Bao WN, Xie ZP, et al. Molecular cloning and characterization of a cis-epoxysuccinate hydrolase from Bordetella sp. BK-52[J]. J Microbiol Biotechnol, 2010,20(4):659-665.
    [26]Archelas A, Furstoss R. Epoxide hydrolases:new tools for the synthesis of fine organic chemicals[J]. Trends Biotechnol,1998,16:108-116.
    [27]Hammock BD, Grant D, Storms D. Epoxide hydrolase[M]. In Comprehensive Toxicology, ed. I Sipes, C McQueen, A Gandolfi, Oxford:Pergamon.1997: 283-305.
    [28]Willaert R, De Vuyst L. Continuous production of L(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor[J]. Appl Microbiol Biotechnol, 2006,71:155-163.
    [29]Archelas A, Furstoss R. Biocatalytic approaches for the synthesis of Enantiopure Epoxides[J]. Top Curr Chem,1999,200:159-192.
    [30]Moghaddam MF, Grant DF, Cheek JM, et al. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase[J]. Nat Med,1997,3:562-566.
    [31]Yu ZG, Xu FX, Huse LM, et al. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids[J]. Circ Res,2000,87:992-998.
    [32]Sinal CJ, Miyata M, Tohkin M, et al. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation [J]. J Biol Chem,2000,275: 40504-40510.
    [33]Campbell WB. New role for epoxyeicosatrienoic acids as anti-inflammatory mediators [J]. Trends Pharmacol Sci,2000,21:125-127.
    [34]Davis BB, Thompson DA, Howard LL, et al. Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation[J]. Proc Natl Acad Sci USA, 2002,99:2222-2227.
    [35]Imig JD, Zhao X, Capdevila JH, et al. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension[J]. Hypertension,2002,39: 690-694.
    [36]Yu Z, Davis BB, Morisseau C, et al. Vascular localization of soluble epoxide hydrolase in human kidney [J]. Am J Physiol Renal Physiol,2003,286:720-726.
    [37]Smith CA, Harrison DJ. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema[J]. Lancet,1997,350:630-633.
    [38]Kiyohara C, Otsu A, Shirakawa T, et al. Genetic polymorphisms and lung cancer susceptibility:a review[J]. Lung Cancer,2002,37:241-256.
    [39]Baxter SW, Choong DYH, Campbell IG. Microsomal epoxide hydrolase and susceptibility to ovarian cancer[J]. Cancer Lett,2002,187:75-81.
    [40]To-figueras J, Gene M, Gomez-Catalan J, et al. Microsomal epoxide hydrolase and glutathione S-transferase polymorphism in relation to laryngeal carcinoma risk[J]. Cancer Lett,2002,187:95-101.
    [41]De Jong JD, Van der Logt EM, Van Schaik A, et al. Genetic polymorphisms in biotransformation enzyme in Crohn's disease:association with microsomal epoxide hydrolase[J]. Gut,2003,52:547-551.
    [42]Blee E, Schuber F. Occurrence of fatty acid epoxide hydrolases in soybean (Glycine max) [J]. Biochem J,1992,282:711-714.
    [43]Arahira M, Nong VH, Ukada K, et al. Purification, molecular cloning and ethylene-inducible expression of a soluble-type epoxide hydrolase from soybean (Glycine max [L.] Merr.)[J]. Eur J Biochem,2000,267:2649-2657.
    [44]Stapleton A, Beetham JK, Pinot F, et al. Cloning and expression of soluble epoxide hydrolase from potato[J]. Plant J,1994,6:251-258.
    [45]Guo A, Durner J, Klessig DF. Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV[J]. Plant J,1998,15:647-656.
    [46]Bellevik S, Zhang J, Meijer J. Brassica napus soluble epoxide hydrolase (BNSEH1)[J]. Eur J Biochem,2002,269:5295-5302.
    [47]Kiyosue T, Beetham JK, Pinot F, et al. Characterization of an Aradibopsis cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress[J]. Plant J,1994,6:259-269.
    [48]Hammock BD, Pinot F, Beetham JK, et al. Isolation of the putative hydroxyacyl enzyme intermediate of an epoxide hydrolase[J]. Biochem Biophys Res Commun, 1994,198:850-856.
    [49]Kato T, Yamaguchi Y, Uhehara T, et al. Defense mechanism of the rice plant against rice blast disease [J]. Naturwissenschaften,1983,70:200-201.
    [50]Blee E, Schuber F. Biosynthesis of cutin monomers:involvement of a lipoxygenase/peroxygenase pathway[J]. Plant J,1993,4:1448-1456.
    [51]Pinot F, Skrabs M, Compagnon V, et al. Omegahydroxylation of epoxy- and hydroxylfatty acids by CYP94A1:possible involvement in plant defense[J]. Biochem Soc Trans,2000,28:867-870.
    [52]Taniai K, Inceoglu AB, Yukuhiro K, et al. Characterization and cDNA cloning of a clofibrateinducible microsomal epoxide hydrolase in Drosophila melanogaster[J]. Eur J Biochem,2003,270:4696-4705.
    [53]Hammock BD. Regulation of juvenile hormone titer:degradation[M]. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology, ed. GA Kerkut, LI Gilbert, New York:Pergamon Press.1985:431-472.
    [54]Mullin CA. Adaptative relationships of epoxide hydrolase in herbivorous arthropods[J]. J Chem Ecol,1988,14:1867-1888.
    [55]Steinreiber A, Faber K. Microbial epoxide hydrolases for preparative biotransformations[J]. Curr Opin Biotechnol,2001,12:552-558.
    [56]Arand M, Grant DF, Beetham JK, et al. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins: implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis[J]. FEBS Lett,1994,338:251-256.
    [57]Nardini M, Dijkstra BW. α/β Hydrolase fold enzymes:the family keeps growing[J]. Curr Opin Strucl Biol,1999,9:732-737.
    [58]Lacourciere GM, Armstrong RN. The catalytic mechanism of microsomal epoxide hydrolase involves an ester intermediate [J]. J Am Chem Soc,1993,115: 10466-10467.
    [59]Miiller F, Arand M, Frank H, et al. Visualization of a covalent intermediate between microsomal epoxide hydrolase, but not cholesterol epoxide hydrolase, and their substrates[J]. Eur J Biochem,1997,245:490-496.
    [60]Ollis DL, Cheah E, Cygler M, et al. The α/β hydrolase fold[J]. Protein Eng,1992,5: 197-211.
    [61]Rink R, Fennema M, Smids M, et al. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1[J]. J Biol Chem,1997. 272:14650-14657.
    [62]Nardini M, Rink R, Janssen DB, et al. Structure and mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1[J]. J. Mol. Catal. B:Enzym,2001, 11:1035-1042.
    [63]Argiriadi MA, Morisseau C, Hammock BD, et al. Detoxification of environmental mutagens and carcinogens:Structure, mechanism, and evolution of liver epoxide hydrolase[J]. Proc Natl Acad Sci USA,1999,96:10637-10642.
    [64]Franken SM, Rozeboom HJ, Kalk KH, et al. Crystal structure of haloalkane dehalogenase:an enzyme to detoxify halogenated alkanes[J]. EMBO J,1991,10(6): 1297-1302.
    [65]Verschueren KH, Franken SM, Rozeboom HJ, et al. Refined X-ray structures of haloalkane dehalogenase at pH 6.2 and pH 8.2 and implications for the reaction mechanism[J]. J Mol Biol,1993,232(3):856-872.
    [66]Borhan B, Jones AD, Pinot F, et al. Mechanism of soluble epoxide hydrolase. Formation of an alpha-hydroxy ester-enzyme intermediate through Asp-333[J]. J Biol Chem,1995,270(45):26923-26930.
    [67]Arand M, Wagner H, Oesch F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase[J]. J Biol Chem,1996,271(8):4223-4229.
    [68]Laughlin LT, Tzeng HF, Lin S, et al. Mechanism of microsomal epoxide hydrolase. Semifunctional site-specific mutants affecting the alkylation half-reaction[J]. Biochemistry,1998,37:2897-2904.
    [69]Beetham JK, Grant D, Arand M, et al. Gene evolution of epoxide hydrolases and recommended nomenclature [J]. DNA Cell Biol,1995,14:61-71.
    [70]Koonin EV, Tatusov RL. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity-application of an iterative approach to database search[J]. J Mol Biol,1994,244:125-132.
    [1]Shuji K, Atsushi Y, Akinobu M, et al. Direct chiral resolution of tartaric acid in food products by ligand exchange capillary electrophoresis using copper(II)-D-quinic acid as a chiral selector[J]. J Chromot A,2001,932:139-143.
    [2]Ghosh AK, Koltun ES, Bilcer G. Tartaric acid and tartarates in the synthesis of bioactive molecules[J]. Synthesis,2001,9:1281-1301.
    [3]Su YL, Yang CS, Teng SJ, et al. Total synthesis of four isomers of Goniofufurone using D(-)-or L(+)-Tartaric acid as starting material [J]. Tetrahedron,2001,57: 2147-2153.
    [4]Pabba J, Vasella A. Synthesis of D-gluco-, L-ido-, D-galacto-, and L-altro-configured glycaro-1,5-lactams from tartaric acid[J]. Tetrahedron Lett,2005,46:3619-3622.
    [5]Safety Evaluation of Certain Food Additives[R]. Joint FAO/WHO Expert Committee on Food Additives,53rd. Report. WHO Food Additives Series 44,2000.
    [6]Huang Y W. Chemical resolution of DL-tartaric acid[J]. Chemical World,1990,8: 372-374.
    [7]Sato H, Imamura S. Process for producing D-(31)-tartaric acid:US,4904589[P]. 1990.
    [8]Liu ZQ, Li Y, Ping LF, et al. Isolation and identification of a novel Rhodococcus sp. ML-0004 producing epoxide hydrolase and optimization of enzyme production[J]. Process Biochem,2007,42:889-894.
    [9]Steinreiber A, Faber K. Microbial epoxide hydrolases for preparative biotransformations[J]. Curr Opin Biotechnol,2001,12:552-558.
    [10]Willaert R, De Vuyst L. Continuous production of L(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor [J]. Appl Microbiol Biotechnol, 2006,71:155-163.
    [11]Yamagishi K, Cho H, Takai Y, et al. Production of D(-)-tartaric acid:JP, 08-245497[P].1996.
    [12]Asai Y, Kobayashi M, Uchida K, et al. DNA encoding cis-epoxysuccinic acid hydrolase and its utilization:JP,2000-295992[P].2000.
    [13]Odenyo AA, Bishop R, Asefa G, et al. Isolation and characterisation of anaerobic cellulose-degrading bacteria from East African porcupine (Hystrix cristata)[J]. Anaerobe,1999,5:93-100.
    [14]He YJ, Liu HM, Hu HB, et al. Isolation and characterization of a new Pseudomonas strain against Phytophthora capsici[J]. Wei Sheng Wu Xue Bao,2006,46:516-521.
    [15]Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature [J]. J Mol Biol,1962,5:109-118.
    [16]Mandel M, Marmur J. Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA[J]. Methods Enzymol,1968, 12:195-206.
    [17]Edwards U, Rogal T, Blocker H, et al. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA[J]. Nucleic Acids Res,1989,17:7843-7851.
    [18]Chung CT, Niemela SL, Miller RH. One-step preparation of competent Escherichia coli:transformation and storage of bacterial cells in the same solution[J]. Proc Natl Acad Sci USA,1989,86:2172-2175.
    [19]Thompson ID, Gibson TJ, Plewniak F, et al. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic acids Res,1997,24:4876-4882.
    [20]Saitou N, Nei M. The Neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol,1987,4:406-425.
    [21]Huang T H, Qian X M. Production of L (+) Tartaric acid[J]. Ind Microbiol,1990,6: 14-17.
    [22]Charles A L, Huang T C, Chang Y H. Structural analysis and characterization of a mucopolysaccharide isolated from roots of cassava (Manihot esculenta Crantz L.)[J]. Food Hydrocolloids,2008,22:184-191.
    [23]Jonas Borch, Thomas JD Jorgensen, Peter Roepstorff. Mass spectrometric analysis of protein interactions[J]. Curr Opin Chem Biol,2005,9:509-516.
    [24]Samuelson A B, Paulsen B S, Wold J K, et al. Characterization of a biologically active arabinogalactan from the leaves of Plantago major L[J]. Carbohydr Polym, 1998,35:145-153.
    [25]Kotik M, Kyslik P. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M 200[J]. Biochim Biophys Acta,2006, 1760:245-252.
    [26]Yang Y, Huang H, Zhang Z, et al. Cloning, expression and polyclonal antibody preparation of the asialoglycoprotein receptor of Marmota Himalayan[J]. J Huazhong Univ Sci Technol Med Sci,2007,27:411-414.
    [27]Chung CT, Niemela SL, Miller RH. One-step preparation of competent Escherichia coli:transformation and storage of bacterial cells in the same solution[J]. Proc Natl Acad Sci USA,1989,86:2172-2175.
    [28]Liu YQ, Yan XK. The colorimetry mensuration for tartaric acid[J]. Ind Microbiol, 1983,13:32-37.
    [29]Yuichi M, Kiyohiko Y, Yusuke L. cis-epoxysuccinate hydrolase and its use in L-tartaric acid production:JP,1060823 [P].1989.
    [30]Laemmli UK. Cleavage of structural proteins during the assembly of bacteriphage T4[J]. Nature,1970,227:680-685.
    [31]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976,72:248-254.
    [32]Pouchert, Charles J. The Aldrich library of infrared spectra[M]. Aldrich Chemical Co., Milwaukee Wisconsin,1981.
    [33]Yin TL, Zhang PD. Studies on increasing turnover rate of endoenzyme of immobilized cells by permealilizing and crosslinking method[J]. Ind Microbiol, 2003,33:14-18.
    [34]Wang YY, Peng YZ, Wang SY, et al. Effect of carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge[J]. J Environ Sci, 2004,16:548-552.
    [35]Pan HF, Bao WN, Xie ZP, et al. Molecular cloning and characterization of a cis-epoxysuccinate hydrolase from Bordetella sp. BK-52[J]. J Microbiol Biotechnol, 2010,20(4):659-665.
    [36]Jaeger KE, Eggert T. Enantioselective biocatalysis optimized by directed evolution[J]. Curr Opin Biotechnol,2004,15:305-313.
    [37]Li B. Production of d-tartaric acid by biosynthesis[J]. Hua Xue Shi Jie,1996,10: 527-531.
    [38]Bucko M, Vikartovska A, Lacek I, et al. Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly (methylene-co-guanidine) capsules using a controlled encapsulation process[J]. Enzyme Microb Technol,2005,36:118-126.
    [39]Buchta K. Organic acid of minor importance[M]. In:Rehm HJ, Reed G (eds) Biotechnology. Verlag chemie, Weinheim,1983:469-478.
    [40]Mruooka H, Kobayashi Y, Asai T. Studies on oxidative fermentation XIX Catabolism of 5-ketogluconate by Acetobacter suboxydans[J]. Bull Agric Chem Soc, 1960,24:196-202.
    [41]Kodama T, Kotera U, Yamada K. Induction of mutants from the tartrate producing bacterium Gluconobacter suboxydans and their properties[J]. Agric Biol Chem, 1972,36:1299-1305.
    [42]Pronk JT, Levering PR, Olijve W, et al. Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans[J]. Enzyme Microbiol Technol,1989,11:160-164.
    [43]Pan HF, Xie ZP, Bao WN, et al. Isolation and identification of a novel cis-epoxysuccinate hydrolase-producing Bordetella sp. BK-52 and optimization of enzyme production[J]. Wei Sheng Wu Xue Bao,2008a,48:1075-1081.
    [44]Archelas A, Furstoss R. Epoxide hydrolases:new tools for the synthesis of fine organic chemicals[J]. Trends Biotechnol,1998,16:108-116.
    [45]Kroutil W, Genzel Y, Pietzsch M, et al. Purification and characterization of a highly selective epoxide hydrolase from Nocardia sp. EH1[J]. J Biotechnol,1998,61: 143-150
    [46]Mischitz M, Faber K, Willetts A. Isolation of a highly enantioselective epoxide hydrolase from Rhodococcus sp. NCIMB 11216[J]. Biotechnol Lett,1995,17: 893-898.
    [47]Jacobs MHJ, Van den Wijngaard AJ, Pentenga M, et al. Characterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas sp[J]. Eur J Biochem,1991,202:1217-1222.
    [48]Nakamura T, Nagasawa T, Yu F, et al. Purification and characterization of two epoxide hydrolases from Corynebacterium sp. strain N-1074[J]. Appl Environ Microbiol,1994,60:4630-4633.
    [49]Misawa E, Chion CK, Archer IV, et al. Characterisation of a catabolic epoxide hydrolase from a Corynebacterium sp[J]. Eur J Biochem,1998,253:173-183.
    [50]Rink R, Fennema M, Smids M, et al. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1[J]. J Biol Chem,1997, 272:14650-14657.
    [51]Nardini M, Rink R, Janssen DB, et al. Structure and mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1[J]. J. Mol. Catal. B:Enzym,2001, 11:1035-1042.
    [1]Steinreiber A, Faber K. Microbial epoxide hydrolases for preparative biotransformations[J]. Curr Opin Biotechnol,2001,12:552-558.
    [2]Willaert R, De Vuyst L. Continuous production of L(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor[J]. Appl Microbiol Biotechnol, 2006,71:155-163.
    [3]Su YL, Yang CS, Teng SJ, et al. Total synthesis of four isomers of Goniofufurone using D-(-) or L-(+)-Tartaric acid as starting material[J]. Tetrahedron,2001,57: 2147-2153.
    [4]Liu ZQ, Li Y, Xu YY, et al. Cloning, sequencing, and expression of a novel epoxide hydrolase gene from Rhodococcus opacus in Escherichia coli and characterization of enzyme [J]. Appl Microbiol Biotechnol,2007,74:99-106.
    [5]Weng YP, Hsu FC, Yang WS, et al. Optimization of the overexpression of glutamate mutase S component under the control of T7 system by using lactose and IPTG as the inducers[J]. Enzyme Microb Technol,2006,38:465-469.
    [6]Yan J, Zhao SF, Mao YF, et al. Effects of lactose as an inducer on expression of Helicobacter pylori rUreB and rHpaA, and Escherichia coli rLTKA63 and rLTB[J]. World J Gastroenterol,2004,10(12):1755-1758.
    [7]Denice W, Jill RC-V. Enhanced expression of cytochrome P450sfrom lac-based plasmids using lactose as the inducer[J]. Arch Biochem Biophys,2001,388(2): 276-280.
    [8]Kim M, Elvin C, Brownlee A, et al. High yield expression of recombinant pro-resilin: Lactose-induced fermentation in E. coli and facile purification[J]. Protein Expr Purif, 2007,52:230-236.
    [9]Kilikian BV, Suarez ID, Liria CW, Gombert AK. Process strategies to improve heterologous protein production in Esherichia coli under lactose or IPTG induction. Proc Biochem,2000; 35:1019-1025.
    [10]Myers RH, Montgomery DC. Response Surface Methodology:Process and Product Optimization Using Designed Experiments[M]. New York:John Wiley& Sons. 1995.
    [11]Sunitha K, Kim YO, Lee JK, et al. Statistical optimization of seed and induction conditions to enhance phytase production by recombinant Escherichia coli[J]. Biochem Eng J,2000,5:51-56.
    [12]Luz MT Paz Maldonado, Victor E Balderas Hernandez, Emilio Medina Rivero, et al. Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology:The case of human interferon beta[J]. Biomol Eng,2007,24:217-222.
    [13]Po Kim Loa, Osman Hassanb, Arshad Ahmadc, et al. Excretory over-expression of Bacillus sp. G1 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: Optimization of the cultivation conditions by response surface methodology [J]. Enzyme Microb Technol,2007,40:1256-1263.
    [14]End N, Schoning KU. Immobilized biocatalysts in industrial research and production[J]. Top Curr Chem,2004,242:273-317.
    [15]Bucko M, Vikartovska A, Lacik I, et al. Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process[J]. Enzyme Microb Technol,2005,36:118-126.
    [16]Kurillova L, Gemeiner P, Vikartovska A, et al. Calcium pectate gel beads for cell entrapment.6. Morphology of stabilized and hardened calcium pectate gel beads with cells for immobilized biotechnology [J]. J Microencapsul,2000,17:279-296.
    [17]Rosenberg M, Mikova H, Kristofikova L. Production of L-tartaric acid by immobilized bacterial cells Nocardia tartaricans[J].Biotechnol Lett,1999,21: 491-495.
    [18]Sun ZH, Zheng P, Dai XT, et al. Production of L(+)-tartaric acid by immobilized Nocardia tartaricans SW13-57[J]. Sheng Wu Gong Cheng Xue Bao,1995,11: 372-376.
    [19]Vikartovska A, Bucko M, Gemeiner P, et al. Flow calorimetry-a useful tool for determination of immobilized cis-epoxysuccinate hydrolase activity from Nocardia tartaricans[J].Artif Cells Blood Substit Biotechnol,2004,32:77-89.
    [20]Zhang JG, Qian YJ. Production of L-(+)-tartaric acid by immobilized Corynebacterium sp. JZ-1[J]. Sheng Wu Gong Cheng Xue Bao,2000,16:188-192.
    [21]Chung CT, Niemela SL, Miller RH. One-step preparation of competent Escherichia coli:transformation and storage of bacterial cells in the same solution[J]. Proc Natl Acad Sci USA,1989,86:2172-2175.
    [22]Takara I, Tosa T, Chibata I. Effect of Growth Phase on Stability of Fumarase Activity of Brevibacterium flavum Cells Immobilized with K-Carrageenan[J]. Agric Biol Chem,1983,47(6):1289-1296.
    [23]Pan HF, Bao WN, Xie ZP, et al. Molecular cloning and characterization of a cis-epoxysuccinate hydrolase from Bordetella sp. BK-52[J]. J Microbiol Biotechnol, 2010,20(4):659-665.
    [24]Villaverde A, Carri'o MM. Protein aggregation in recombinant bacteria:biological role of inclusion bodies[J]. Biotechnol Lett,2003,25:1385-1395.
    [25]Schein CH. Production of soluble recombinant protein in bacteria[J]. Biotechnology, 1989,7:1141-1149.
    [26]I Emrah Nikerel, EbruToksoy Oner, Betul Kirdar, et al. Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology [J]. Biochem Eng J,2006,32:1-6.
    [27]Donovan RS, Robinson CW, Glick BR. Review:optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter [J]. J Ind Microbiol,1996,16:145-154.
    [28]Kroutil W, Orru RVA, Faber K. Stabilization of Nocardia EH1 epoxide hydrolase by immobilization[J]. Biotechnol Lett,1998,20:373-377.
    [1]Lacourciere GM, Armstrong RN. Microsomal and soluble epoxide hydrolases are members of the same family of C-X bond hydrolase enzymes[J]. Chem Res Toxicol, 1994,7(2):121-124
    [2]B1 e e E, Schuber F. Occurrence of fatty acid epoxide hydrolases in soybean(Glycine max). Purification and characterization of the soluble form[J]. Biochem J,1992, 282(3):711-714.
    [3]Arand M, Grant DF, Beetham JK, et al. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis[J]. FEBS Lett,1994,338(3):251-256.
    [4]Van der Werf MJ, Overkamp KM, De Bont JA. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases[J]. J Bacteriol,1998,180:5052-5057.
    [5]Rudberg PC, Tholander F, Andberg M, et al. Leukotriene A4 hydrolase:identification of a common carboxylate recognition site for the epoxide hydrolase and aminopeptidase substrate[J]. J Biol Chem,2004,279:27376-27382.
    [6]Asai Y, Kobayashi M, Uchida K, et al. DNA encoding cis-epoxysuccinic acid hydrolase and its utilization:JP,2000-295992[P].2000.
    [7]Steinreiber A, Faber K. Microbial epoxide hydrolases for preparative biotransformations[J]. Curr Opin Biotechnol,2001,12:552-558.
    [8]Archelas A, Furstoss R. Epoxide hydrolases:new tools for the synthesis of fine organic chemicals[J]. Trends Biotechnol,1998,16:108-116.
    [9]Yoshio K, Okazaki H, Imai K, et al. Production of L(+)-tartaric acid:US,4011135[P]. 1997.
    [10]Rosenberg M, Kristofikova L, Mikova H. Production of L-tartaric acid by immobilized bacterial cells Nocardia tartaricans[J]. Biotechnol Lett,1999,21: 491-495.
    [11]Zhang JG, Qian YJ. Production of L-(+)-tartaric acid by immobilized Corynebacterium sp. JZ-1[J]. Sheng Wu Gong Cheng Xue Bao,2000,16:188-192.
    [12]Liu ZQ, Li Y, Xu YY, et al. Cloning, sequencing, and expression of a novel epoxide hydrolase gene from Rhodococcus opacus in Escherichia coli and characterization of enzyme[J]. Appl Microbiol Biotechnol,2007,74:99-106.
    [13]Yuichi M, Kiyohiko Y, Yusuke L. cis-epoxysuccinate hydrolase and its use in L-tartaric acid production:JP,1060823 [P].1989.
    [14]Pan HF, Xie ZP, Bao WN, et al. Optimization of culture conditions to enhance cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology[J]. Biochem Eng J,2008,42:133-138.
    [15]Pan HF, Bao WN, Xie ZP, et al. Immobilization of Escherichia coli cells with cis-epoxysuccinate hydrolase activity for D(-)-tartaric acid production [J]. Biotechnol Lett,2010,32:235-241.
    [16]Ridder IS, Rozeboom HJ, Kalk KH, et al. Three-dimensional structure of L-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate[J]. J Biol Chem,1997,272:33015-33022.
    [17]Hisano T, Hata Y, Fujii T, et al. Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp. YL. An alpha/beta hydrolase structure that is different from the alpha/beta hydrolase fold[J]. J Biol Chem,1996,271:20322-20330.
    [18]Murdiyatmo U, Asmara W, Tsang JS, et al. Molecular biology of the 2-haloacid halidohydrolase IVa from Pseudomonas cepacia MBA4[J]. Biochem J,1992,284: 87-93.
    [19]Schneider B, Muller R, Frank R, et al. Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from Pseudomonas sp. strain CBS3[J]. J Bacteriol,1991,173:1530-1535.
    [20]Kawasaki H, Tsuda K, Matsushita I, et al. Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid from Moraxella sp. strain B[J]. J Gen Microbiol,1992,138:1317-1323.
    [21]Kohler R, Brokamp A, Schwarze R, et al. Characteristics and DNA-sequence of a cryptic haloalkanoic acid dehalogenase from Agrobacterium tumefaciens RS5[J]. Curr Microbiol,1998,36:96-101.
    [22]Nardi-Dei V, Kurihara T, Okamura T, et al. Comparative studies of genes encoding thermostable L-2-halo acid dehalogenase from Pseudomonas sp. strain YL, other dehalogenases, and two related hypothetical proteins from Escherichia coli[J]. Appl Environ Microbio,1994,60:3375-3380.
    [23]Van der Ploeg J, Van Hall G, Janssen DB. Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene[J]. J Bacteriol,1991,173:7925-7933.
    [24]Stinear TP, Seemann T, Harrison PF, et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tubercuIosis[J]. Genome Res,2008,18:729-741.
    [25]Pollastri G, McLysaght A. Porter:a new, accurate server for protein secondary structure prediction[J]. Bioinformatics,2005,21:1719-1720.
    [26]Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server[J]. Nucleic Acids Res,2008,36:W197-W201.
    [27]Jones DT. Protein secondary structure prediction based on position-specific scoring matrices[J]. J Mol Biol,1999,292:195-202.
    [28]Rost B, Yachdav G, Liu J. The PredictProtein Server[J]. Nucleic Acids Res,2004,32: 321-326.
    [29]Rink R, Fennema M, Smids M, et al. Primary Structure and Catalytic Mechanism of the Epoxide Hydrolase from Agrobacterium radiobacter AD1[J]. J Biol Chem,1997, 272:14650-14657.
    [30]Misawa E, Chan KCC, Archer IV, et al. Characterisation of a catabolic epoxide hydrolase from a Corynebacterium sp.[J]. Eur J Biochem,1998,253:173-183.
    [31]Yan Y, Yang J, Dou Y, et al. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501[J]. Proc Natl Acad Sci USA,2008,105:7564-7569.
    [32]Ollis DL, Cheah E, Cygler M, et al. The a/(3 hydrolase fold[J]. Protein Eng,1992,5: 197-211.
    [33]Morisseau C, Hammock BD. Epoxide hydrolases:mechanisms, inhibitor designs, and biological roles[J]. Annu Rev Pharmacol Toxicol,2005,45:311-333.
    [34]Li YF, Hata Y, Fujii T, et al. Crystal structures of reaction intermediates of L-2-haloacid dehalogenase and implications for the reaction mechanism[J]. J Biol Chem,1998,273:15035-15044.
    [35]Nardini M, Rink R, Janssen DB, et al. Structure and mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1 [J]. J Mol Catal B Enzym,2001,11: 1035-1042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700