配体交换除砷材料的制备及其除砷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地壳中的砷通过风化、侵蚀、溶解等自然作用以及打井取水、灌溉、采矿、化工等人为活动,已大量释放到天然水中,主要进入地下水,其次进入地表水,含砷浓度的高端范围已达到0.1~2mg/L以上。砷化合物容易在人体内积累,造成急性或慢性中毒,是造成人类患肺癌、皮肤癌和其它内脏癌症的主要威胁之一。中国、美国、日本以及WTO等均已经把饮用水含砷量标准从0.05mg/L降到0.01mg/L。因此,为了严格控制饮用水中的砷含量,保障人民身体健康,研究和开发新的除砷技术已势在必行。目前脱除水中砷的研究也比较多,但都不同程度存在缺陷,因而限制了其在实际中的应用。因此,探索经济、有效的深度除砷材料和工艺,对含砷饮用源水处理是一项很有价值的课题。
     本文在对已有除砷方法和工艺进行分析、研究的基础上,旨在利用多孔性、容易改性的分子筛或类似于分子筛的骨架上的笼状结构,将Fe3+通过离子交换吸附,固载在其骨架上,实现改性,再利用改性后的吸附剂具有大的活性表面积,以及砷阴离子与Fe3+的强配位能力,提出一种基于配体交换的固液分离除砷思路。通过实验研究,获得了新的从微量含砷水中去除砷的材料。
     实验研究中,分别对改性分子筛、改性活性炭以及改性高岭土三种除砷剂载体的合成、改性条件以及除砷剂去除水中As(V)的性能进行了研究,对除砷剂除砷条件、干扰条件和工艺条件和吸附机理等进行了详细的探讨:三种除砷材料均有操作简便、干扰少以及不对环境产生二次污染等特点。其中,改性分子筛和改性活性炭具有除砷后易从水中分离的特点,而改性高岭土除砷剂对水中As(V)的吸附容量在三种除砷材料中最大,处理后的水可达到国家饮用水标准甚至更低,另外从资源综合利用,成本较低,提高环境效益方面考虑,改性高岭土除砷具有重要的意义,有很高的实用价值。除砷剂除砷过程可描述为:扩散-反应-扩散过程,其机理实质是配体交换反应过程。文章最后通过参数设计计算,提出了集中式含砷水除砷装置,为新的深度固液分离除砷方法提出了理论依据和实践基础。
Though nature functions as well as the well drilling weathering, erosion, dissolution, and artificial activity such as water wells, irrigation, mining, chemical industry, arsenic in lithosphere has released into the natural water ,mainly into the groundwater, followed by access to surface water. The arsenic concentration has gone beyond 0.1 ~ 2 mg / L. Arsenide is easily accumulated in the human body, causing acute or chronic poisoning. It is one of the major threats caused human suffering from lung cancer, skin cancer and other cancers visceral. The arsenic quantity standard in drinking water has been dropped from 0.05mg/L to 0.01mg/L in China, the US, Japan and the WTO. Therefore, in order to strictly control the content of arsenic in drinking water, protect people's health, it is imperative to find a new method of removing arsenic from water. At present, a lot of study has been done in this area. Nevertheless, the method has limited used in practice for its shortcomings in varying degrees. Therefore, it is a subject of great value to investigate the cost-effective materials and methods for arsenic removal.
     In this paper, a detail analyzing and discussion of the existing arsenic removal methods is made in foundation of much reading and lots of experiments. Taking advantage of porous, easily modified molecular sieve or similar to the skeleton on the cage-like structure, it can be obtained by loading Fe3+ on the skeleton of the material. By the complexation of Fe3+ and H2AsO4—or HAsO42- , arsenate can be removed from high arsenic containing water.
     The optimum condition of synthesis, modification, and the carrier behavior have been discussed in this study , separately from modified zeolite, modified activated carbon and modified kaolin. In-depth research has been carried on in arsenic removal conditions, disturbed conditions, technological conditions and adsorption mechanism. All of the three arsenic removal materials have the advantages of simple operation, less interference and non-secondary pollution the environment. The modified zeolite and the modified activated carbon could be separated from the water easily. The modified kaolin has the maximum arsenical absorption capacity in water among three materials. The water can meet the state drinking water standards or even lower after treatment by it. In addition, It has the vital significance and high practical value to arsenic removal. The mechanism of arsenic removal is a process of ligand exchange. The process can been described as three steps: scatter- react- scatter. Finally, through the design parameters, centralized water equipment of arsenic removal has been designed. It takes a new depth-solid-liquid separation method to arsenic removal both in theory and practice.
引文
[1]刘建国,卢学实,曾虹燕.水体系中砷污染及除砷方法探讨[J].湖南环境生物职业技术学院学报,2002,8(2):119-122
    [2]刘泽玲.砷与社会[J].化学教育,1994,26(8):1-4
    [3]刘绍璞,朱鹏鸣,张国轩,等.金属化学分析概论[M].第一版.成都:四川科学技术出版社,1985:958-988
    [4]戴树桂主编.环境化学进展[M].第一版.北京:化学与应用化学出版社,2005:100-115
    [5]雷觐韵,王锦强,等.水分析技术[M].第一版.北京:地质出版社,1982
    [6] Anawar H M,Akai J,Mostofa K M G,et al.Arsenic Poisoning of in groundwater:Health risk and geochemical sources in Bangladesh[J].Environment International,2002,27(7): 597 - 604
    [7] Armienta M A,Villasenor G,Rodriguez R,et al.The role of arsenic-bearing rocks in groundwater pollution at Zimapan Valley Mexico[J].Environmental Geology, 2001,40(2):571- 581
    [8]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1992
    [9] Badal Kuma Mandal,Kazuo T Suzuki.Talanta,2002,58:201-235
    [10]孙贵范.环境与健康展望[J],2003,111(4c):2
    [11] Julie Hartman.Civil Engineering,2002,72(10):38-39
    [12] Feroze Ahmed M. An overview of arsenic removal technologies in Bangladesh and India.http://www.unu.edu./Arsenic/Ahmed.pdf,2004
    [13] Korngold E,Belayev N,Arnov L.Desalination,2001,141:81-84
    [14] USEPA.Arsenic in drinking water-treatment technologies: removal. http:// www.epa.gov/ OGWDW/ars/ars4.htm,1998
    [15] Benjiamin M M,Bloom N S.Effects of strong binding of anionic adsorbates on adsorption of trace metals on amorphous iron oxyhdroxide.In:Tewari P H.Adsorption from aqueous solutions. New York and London:1981,Plenum,41-46
    [16] Laurie S McNeill,Marc Edwards.Predicting as removal during metal hydroxide precipitation.J AWWA,1997,89(1):75-86
    [17] Han Binbing,Zimbron J,Runnels T R,et al.New arsenic standard spurs search forcost-effective removal techniques,J AWWA,2003,95(10):109-117
    [18] Jing Chuanyong,George P Korfiatis,Meng Xiaoguang.Environ Sci Technol, 2003,37:5050- 5056
    [19] Meng xiaoguang,Geore P Korfiatis, Christos Christodoulatos,et al.Wat Res,2000,38(12): 2805-2810
    [20] USEPA.Test in methods for Evaluating Solid Waste,Physical/Chemical Methods, SW-846, Method1311.3rd ed.Washington DC,1992
    [21]丁亮,陈焕新,黄承武.美国Albuquerque市的地下水除砷方法介绍[J].地方病通报,2001,16(16):108-110
    [22] Yuzi Arai,Evert J Elzing,Donald L Sparks.J of Colloid Interface Science,2001,235:80-88
    [23] Driehaus W,Jekel M,Hildebrandt U.J Water Supply Res Technol-Aqua,1998,47:30-35
    [24] Thirunavukkarasu O S,Virarahavan T,Subwamanian K S.Water,air,and soil Pollution, 2003, 142:95-111
    [25] Matthew J DeMarco,Arup K Senguta,John E Greeleat.Wat Res,2003,37:164-176
    [26]赵雅萍,王军锋,陈甫华.载铁(Ⅲ)-配位体交换棉纤维吸附剂去除饮用水中砷(Ⅴ)的研究[J].上海环境科学,2003,22(7):468-471
    [27]赵雅萍,王军锋,陈甫华.载铁(Ⅲ)-配位体交换棉纤维素吸附剂对饮用水中砷(Ⅴ)和氟联合去除的研究[J].高等学校化学学报,2003,24(1),643-647
    [28]杨昱,杨敏,王桂燕,等.利用稀土基无机合成材料去除饮用水中砷的研究[J].环境化学,2001,20(1):70-75
    [29]刘晓飞.饮用水中砷的去除方法研究进展[J].内蒙古石油化工,2003,29:7-8
    [30]郝存江,赵天培,木冠南.云南沱茶自混合水溶液中吸附除砷(Ⅲ)的特性研究[J].离子交换与吸附,1998,14(5):434-439
    [31]赵雅萍,王军锋,尹静等.载Fe(Ⅲ)和La(Ⅲ)-氨基膦酸型螯合树脂选择性吸附痕量砷(V)[J].南开大学学报(自然科学),2002,35(4):85-89
    [32]赵大顺,陈惠敏.水环境中砷的污染现状及毒害[J].辽宁城乡环境科技,2005,25(4):55-56
    [33]孙晓慰,凌波.利用电吸附技术去除水中过量砷的研究[J].环境与健康杂志,2003,20(3) :110-112
    [34]余青原,王琳,张宝伟.浅析水中砷的去除[J].山西建筑,2007,33(1):182-184
    [35] Matschullat J.Sci Total Environ,2002,249(1-3):297-312
    [36] Benjamin D Kocar,Willian P Inseep.Environ Sci Technol,2003,371:1581-1588
    [37] Maree T Ement,GingH Koe.Wat Res,2001,35(3):649-656
    [38]奚旦立,孙裕生,刘秀英.环境监测[M].第三版.北京:高等教育出版社,2004:85-87
    [39] Kaiser J. Scond look at arsenic finds higher risk[J]. Environmental Health
    [40] I.M.柯尔蜀夫等著,梁树权译.容量分析(卷3) [M].北京:科学出版社,1973:63
    [41]冶金工业部北京矿冶研究院.矿石及有色金属分析法[M].北京:科学出版社,1973:159
    [42] N.G.Maranowski,et al. [J].Anal.Ahem.,1957(29):353
    [43]А.К.БабкойДрЗав.Лаб.,1996,32:279;ЖАХ,1972,27:120
    [44] J.F.Kopp.[J].Anal.Chem.,1973(45):1786
    [45]王玉标,李前荣.用赤霉素作还原剂钼蓝分光光度法同时测定钢铁中的砷和硅[J].分析化学,1997,25(11):1364
    [46]吴继祖,熊辛梅.[J].理化检验,1979,2:34
    [47]虞光禹.[J].理化检验,1979,2(5):38
    [48]陈达仁,刘福宁.理化检验,1982,18(封三)
    [49]奚干卿,伍治林,雷常芬.理化检验,1981,17(1):17
    [50] Palanivelu K,Ramakrishna T V.[J].Indian J Technol,1990,28:67-70
    [51]陈寿春,唐春元,丁世德.重要无机化合反应[M].上海:上海科学技术出版社,1989:149-155
    [52]赵希珠,许生洁. [J].分析化学,1987,7:625-628
    [53]高甲友,等.[J].冶金分析,1996,16(3):45-46
    [54] V.Stara,et al.Talanta,1970,17:341
    [55]南贵福,山本善一,上田俊三.[J].分析化学(日),1978,27:419
    [56]桑田清明,本水昌二,桐栄恭二.[J].分析化学(日),1977,26:609-614
    [57] S.P.Singh,et al.Analyst,1979,104:1094
    [58] H.Sanke Gowda et al.Indian J.Chem,1977,1(A)
    [59] H.Sanke Gowda et al.Microchem.[J].,19723,23:291
    [60]魏怡若.[J].理化检验,1982,18(3):62
    [61] GB/T 3260.6—2000,锡化学分析方法砷量的测定[S].北京:中国标准出版社,2000
    [62] GB/T 4103.6—2000,铅及铅合金化学分析方法砷量的测定[S].北京:中国标准出版社, 2000
    [63]宋清.定量分析中的误差和数据评价[M].第一版.北京:高等教育出版社,1982:166
    [64]武汉大学.分析化学[M].第四版.北京:高等教育出版社,2003:218-219
    [65]《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第三版.北京:中国环境科学出版社,1997:182-184
    [66]夏玉宇主编.化学实验室手册[M],北京:化学工业出版社,2004
    [67]曹景,韩放.实时电价的意义与实现[J].电网技术,1995,19(10):42
    [68] GB 3838-2002,地表水环境质量标准[S].北京:中国标准出版社,2002
    [69] GB/T 14848-9,地下水质量标准[S].北京:中国标准出版社,1994
    [70] Hamadi N K, Chen X D, Farid M M, et al. Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust[J]. Chemical Engineering Journal, 2001,84(2): 95-1O5
    [71] Lagergern S. About the theory of so-called adsorption of soluble substances[J]. Kungliga svenska Vetenskapsakademiens Handlingar Band.1989, 24(4): 1-39
    [72] Ho Y S, Mckay G Pseudo-second order model for sorption processes[J].Process Biochemistry, 1999, 34(5): 451-465
    [73]陈春云,庄源益,刘斐,等.染料在干污泥上的吸附平衡和动力学[[J].安全与环境学报,2003, 3(3): 46-50
    [74] Zumriye A. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J].Biochemical Engineering Journal, 2001,54(7):79-84
    [75] HO Y S, Mckay G.The sorption of lead (II) ions on peat[J].Water Research,1999, 33(2): 578-584
    [76] Saeid A. Kinetic models of sorption: a theoretical analysis[J].Journal of Colloid and Interface Science. 2004. 276(4-1):47-52
    [77]刘建,闫英桃,刘艳萍,等.改性5A分子筛吸附剂从含氟水中除氟研究[J].离子交换与吸附,2001,17(2):159 -164
    [78]王爱平.活性炭对溶液中重金属的吸附研究[D].昆明:昆明理工大学,2003
    [79]潘兆橹.结晶学及矿物学下册[M].北京:地质出版社,1985:174
    [80]南京大学地质学系检验室.结晶学与矿物学[M].北京:地质出版社,1978:462
    [81] Davies J A,Kent D B.Surface complexation modeling in aqueous geochemistry[A]. Hochella M F Jr,White A F.Reviews in Mineralogy(vol.23)[C]:Mineral Soc Am, 1990.177-260
    [82]李东祥,侯万国,韩书华,等.高岭土的零电荷点和电荷密度[J].山东大学学报(理学版),2003,38(1):80-92
    [83] G W Brindley and G Brown, Crystal Structures of Clay Minerals and Their X-Ray Identification, Mineralogical Society, Monograph No.5, 1980, London
    [84] Huertas F J,Chou L,Wollast R.Mechanism of kaolinite dissolution at room temperature and preessure:Part 1.Surface speciation[J].Geochin Cosmochim acta,1998,62(3):417 -431
    [85]廖仁春.高岭土膨润土的改性及其对重金属离子的吸附性能研究[D].长沙:中南大学,2002
    [86] Ganor J,Cama J,Meta.Surface protonation data of kaolinite-Reevaluation based on dissolution experiments[J].J Colloid Interface Sci,2003,264(1):67-75
    [87]吴宏海,刘佩红,高嵩等.高岭石-水溶液的界面反应特征[J].地球化学,2005,34(4):410-415
    [88]苏家齐.塑料工业辞典[M].北京:化学工业出版社,1994:352
    [89]曾泽新,汪岳新,叶可舒,等.橡胶工业辞典[M].北京:化学工业出版社,1989:506-507
    [90]吴宏海.高岭土矿物表面改性与应用[J].桂林工学院学报,1996(7):318-321
    [91]刘钦甫,孙庆峰,杨晓杰,等.煤系高岭土表面改性若干问题与对策[J].中国非金属矿工业导刊,2000(3):8-1
    [92]贾宝华,刘高武,贾杰.利用煤矸石制备结晶氯化铝、聚合氯化铝、水玻璃、白炭黑和钛白粉[J].化学世界,1998(12):632-634
    [93] Davidovits.Synthetic mineral polymer compound of the silicoa-lumiantes family and preparation process[P].USA:USP 4 472199,1984-09-18
    [94] Davidovits. Early high-strength mineral polymer[P]. USA:USP 4 509 985, 1985-04-09
    [95] Shvarzman A,Kovler K,Grader G S,et al.The effect of dehy-droxylation/ amorphization degree on pozzolanic activity of kaolinite [J].Cement and Comcrete Research,2003,33: 405-416
    [96]程先忠,沈上越,徐德明,等.硬质高岭土在药用橡胶中的应用研究[J].非金属矿,2003,26(3):13-22
    [97]任大伟.利用煤系优质高岭石生产高白度煅烧高岭土工艺研究[J].非金属矿,1997,20(2):50-5
    [98]李宝智,刘晓生.煤系煅烧高岭土的表面改性和应用效果及应注意的问题[J].中国非金属矿工业导刊,2003(3):15-1
    [99]黄继泰.粘土矿物的结构表征与应用研究[J].结构化学,1996,15(6):438-44
    [100]曹秀华.高岭石的改性与应用研究[D].广州:华南理工大学,2003
    [101]叶舒展,周严豪,陈福林.高岭土表面改性研究进展[J].橡胶工业, 2004,51:759-765
    [102]朱慧红,孙素华,刘杰,等.改性高岭土结构特性研究[J].石化技术与应用,2007,25(5):399-401
    [103]王颖.高岭土合成沸石分子筛的研究[D].石家庄:河北工业大学,2006
    [104]董少春,董家禄,李勇,等.高岭土合成沸石研究进展[J].非金属矿,2005:28(9)
    [105]郭九皋,何宏平,等.高岭石-莫来石反应系列:27Al和29Si MAS NNR研究[J].矿物学报,1997,17(3):250-25
    [106] Antonio de Lucas,M Angeles Uguina,et al. Synthesis of 13X Zeolite from Calcined Kaolin and Sodium Silicate for Use in Detergents.Ind Eng Chem Res.1992(31):2134-2140
    [107]刘琨,彭同江,孙红娟.煅烧高岭土活性的析因实验分析[J].矿产综合利用,2003-12(6):17-19
    [108]岳明波.以红辉沸石合成分子筛的研究[D].南京:南京理工大学,2002
    [109]王雪静,方克明.高岭土和煅烧高岭土的微观结构研究[A].中国颗粒学会2006年年会暨海峡两岸颗粒技术研讨会[C],2006-8
    [110]高智简丽,乔淑萍,张桂峰,等.高岭土合成4A沸石及其表征[J].内蒙古工业大学学报,2001,20(3):177-179
    [111]郑水林,李杨,许霞.煅烧时间对煅烧高岭土物化性能影响的研究[J].非金属矿,2002,25(2):10-12
    [112]罗永康,马智,吴杰等.煅烧温度对高岭土结构及其氧化铝浸出率的影响[J].化学工业与工程,2005,22(4):263-266
    [113]许霞,郑水林.煅烧条件对煤系煅烧高岭土物化性能影响的研究[J].中国粉体技术,2000,6(专辑):181-183
    [114]刘艳萍.高岭土型除氟剂的制备及配体交换除氟性能与工艺研究[D].西安:长安大学,2006
    [115]黄克恕.固定床活性氧化铝除氟装置的工艺计算[J].西北建筑工程学报,1999,19(4)
    [116]鄂学礼主编.饮用水深度净化与水质处理器[M].第一版.北京:化学工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700