二氧化碳加氢合成二甲醚铜锰基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳催化加氢直接合成二甲醚既可以利用二氧化碳制得有用的化学品,又可以解决二氧化碳的环境污染问题,对于保证经济的高速发展和实现长期可持续发展战略均具有重要意义。
     CO_2加氢合成二甲醚的双功能催化剂由甲醇合成和甲醇脱水组分复合组成,只有当两种活性组分“协同催化”时,方能充分发挥催化剂的整体功能。本文以铜锰基甲醇合成催化剂和HZSM-5分子筛甲醇脱水催化剂所构成的双功能复合催化剂作为主要研究对象,利用XRD、BET、H_2-TPR、SEM、H_2-TPD、NH_3-TPD、XPS和加压固定床活性评价等多种研究方法系统地考察了下列诸因素对复合催化剂结构和性能的影响:甲醇合成催化剂制备过程中的沉淀温度、PH值、铜/锰比例;甲醇合成催化剂和HZSM-5的复合方法及焙烧温度;对甲醇合成催化剂的助剂改性处理。通过研究主要得出以下结果:
     在机械法制备的Cu-Mn/HZSM-5催化剂基础上,考察了共沉淀温度、PH值、不同铜锰比和焙烧温度对催化剂催化加氢性能的影响。结果表明:在2.0MPa、250℃、空速2100h~(-1)、n(H_2)/n(CO_2)=3.2的反应条件下,n(Cu)/n(Mn)=4/3、焙烧温度为350℃,共沉淀温度为70℃和pH值为7-8时,CO_2的加氢活性及二甲醚的选择性均最好。其CO_2转化率为21.83%,二甲醚的收率可达6.68%。
     助剂SiO_2的加入能显著提高Cu-Mn/HZSM-5催化剂的性能,在2.0MPa、250℃、空速2100h~(-1);V(H_2)/V(CO_2)=3.2下,当催化剂中W(SiO_2)=3.49%时,二氧化碳的转化率和二甲醚的收率分别为23.86%和9.33%。XRD和H_2-TPR表明,适量SiO_2的加入,使CuO晶相峰明显减弱,促进表面Cu的分散;铜锰复合氧化物进一步向非晶态转化,阻止Cu的深度还原,从而提高了催化剂的活性。XPS结果表明,活性组分铜以Cu~+形态存在,支持Cu~+物种是甲醇合成活性中心的观点。
     在共沉积法制备的Cu-Mn-Si/HZSM-5上,对温度、压力、空速和氢碳摩尔比等反应操作条件的考察结果显示,当温度260℃、压力2.0MPa、空速2100h~(-1),氢碳摩尔比3.2时,催化剂具有较好的活性和选择性,CO_2转化率26.03%,DME的选择性和收率分别为42.42%和11.04%。研究还表明,提高反应温度有利于提高CO_2转化率,但使二甲醚的选择性降低;增大压力和氢碳比有利于提高CO_2转化率和二甲醚的选择性;增大空速会使CO_2转化率和二甲醚选择性均呈现下降趋势。
     焙烧温度对共沉积法制备的Cu-Mn-Si/HZSM-5催化剂的催化性能影响研究表明:焙烧温度过高、过低均不利于CO_2加氢。当焙烧温度在400℃时,在反应过程会有更多Cu~+存在。而焙烧温度超过400℃时,峰形发生了质的变化,晶相CuO颗粒变大,催化剂的活性明显下降。CO_2-TPD结果表明,中强CO_2吸附中心与CO_2加氢合成二甲醚有关。在考察的范围内,最适宜的焙烧温度为400℃。
     为了进一步研究催化剂的表面活性中心物种,在共沉积法基础上采用超声波处理,来考察超声波处理对Cu-Mn-Si/HZSM-5催化剂的催化加氢活性的影响,并与以上两种制备方法相比较。结果表明:经过超声处理后,更有利于Cu~+和Mn~(3+)生成和稳定,促进Cu~+与Mn~(3+)之间相互协同作用,在一定程度上增强了中强的CO_2吸附中心,提高催化剂表面的加氢能力,使催化剂表面酸强度和强酸位中心数的增加,有利于甲醇脱水生成二甲醚反应的进行,从而促进了催化剂整体催化活性的提高。本文认为Cu~+和Mn~(3+)共同构成了Cu-Mn-Si/HZSM-5催化剂的活性中心。
Direct synthesis of dimethyl ether (DME) from carbon dioxide by catalytic hydrogenation is of great economical and environmental importance, not only to synthesize the useful chemical products, which will utilize carbon dioxide more efficiently, but also to reduce the greenhouse effect resulting from carbon dioxide.
     The bifunctional catalysts used for this reaction were composed of the methanol synthesis component and the methanol dehydration component, only when the two components catalyzed synergistically, the bifunctional catalysts could exhibit excellent catalytic performance. In this paper, Cu-Mn-based catalyst prepared by co-precipitation method was selected as methanol synthesis catalyst, and HZSM-5 zeolite was selected as methanol dehydration catalyst. The effects of precipitation temperatures, pH values, Cu/Mn ratios, prepared methods, calcination temperatures and modifications of promoter on the physico-chemical and catalytic properties of the composite catalysts were systemically investigated, using the technologies of X-ray diffraction (XRD), nitrogen adsorption-desorption (BET), temperature programmed reduction (H_2-TPR), Scanning Electron Microscope (SEM), hydrogen temperature programmed desorption (H_2-TPD), ammonia temperature programmed desorption (NH_3-TPD), X-ray photoelectron spectra (XPS),and activity evaluation on a laboratory fixed-bed reactor. The results were obtained as follows:
     The influences of precipitation temperatures, pH values, and Cu/Mn ratios on the properties of catalysts prepared by co-precipitation method were investigated. The results indicated that the Cu-Mn/HZSM-5 catalysts showed the best catalytic activity when the Cu/Mn ratio was 4/3, the precipitation temperature was 70℃Calcination temperature was 350℃and pH values were 7-8. The conversion of CO_2 reached 21.83% and the yield of DME reached 6.68% under the conditions of 2.0MPa, 250℃, GHSV 2100h~(-1), and H_2/ CO_2 volume ratio of 3.2.
     The addition of SiO_2 could obviously improve the performance of the Cu-Mn/HZSM-5 catalysts. When the amount of SiO_2 was 3.49% of the catalyst mass(calculated as oxides), the conversion of CO_2 reached 23.86% and the yield of DME reached 9.33% under the conditions of 2.0MPa, 250℃, GHSV 2100h~(-1), and H_2/CO_2 volume ratio of 3.2. The XRD and H_2-TPR results suggested that the suitable introduction of SiO_2 can weak the peak intensity of crystal phase CuO, and promote disperse of Cu. The copper-manganese compound oxide translates into amorphous phase from crystal phase, which prevents deep reduce of Cu to promote catalytic activity. The XPS results proved that the active sites of copper species of Cu-Mn/HZSM-5 catalysts might be Cu~+, which might support the mechanism that Cu~+ species might compose the active sites for methanol synthesis.
     The effect of operating conditions (temperature, pressure, space velocity, and mole ratio of H_2/CO_2) on the conversion of CO_2, selectivity to DME, yield of DME and product distribution on the Cu-Mn-Si/HZSM-5 catalysts prepared by co-precipitation method was investigated. CO_2 conversion is up to 26.03% at 260℃and 2.0 MPa, with a selectivity to DME of 42.42% and a yield of DME of 11.04%, for space velocity of 2100h~(-1) and a feed made up of H_2/CO_2=3.2. It was also found that increasing reaction temperature could improve the conversion of CO_2, while it might decrease the selectivity of DME. Increasing pressure and H_2/CO_2 molar ratio were contributable to improve the conversion of CO_2 and the selectivity of DME. Furthermore, increasing the space velocity would decrease both the conversion of CO_2 and the selectivity of DME.
     The effect of calcination temperature on the performance of the Cu-Mn-Si/HZSM-5 prepared by co-precipitation method was also studied. The results showed that moderate temperature could be beneficial to catalytic hydrogenation. When calcination temperature was 400℃, more Cu~+ existed in the reaction process. When calcination temperature was higher than 400℃, the particles of CuO became bigger resulting in the decrease of catalytic activity. The results of CO_2-TPD showed that the adsorption center to CO_2 was related to the synthesis of dimethyl ether. The moderate temperature was 400℃ in the researched temperature range.
     To further study the active sites of the catalysts, ultrasonic treatment was carried out to investigate its effect on the catalytic activity of Cu-Mn-Si/HZSM-5. The results showed that ultrasonic treatment could make more Cu~+ and Mn~(3+) formed, promote the interaction of Cu~+ and Mn~(3+) which increase the adsorption center to CO_2, and increase surface acidity and the amount of strong acid sites, which is beneficial to the reaction of dimethyl ether, improving the catalytic activity. In this paper, it was thought that the activity sites were both Cu~+ and Mn~(3+).
引文
[1] 梁龙军,胡宏宇,秦溪.开发21世纪的新资源CO_2[J].油气田地面工程,2001,20(4):87-88.
    [2] 金川.世界二氧化碳排放量较多的十国[J].能源研究与利用,2002,(2):47.
    [3] 崔小明.二氧化碳资源的综合利用[J].贵州化工,1997,(4):13-17.
    [4] 徐俊,张军营,郑楚光等.二氧化碳储存技术的研究现状[J].煤炭转化,2005,28(3):80-86.
    [5] Randerson J. Trees aren't going to solve the problems of global warming [OL]. http://www.newscientist com/article/mg 17423382.700.html, 2002-04-13.
    [6] Borodko Y, Somorjai G A. Catalytic hydrogenation of carbon oxides-a 10-year perspective [J]. Appl Catal A, 1999, 186: 355-362.
    [7] 陈中明,李传华,凌海等.二氧化碳的生产及综合利用[J].精细化工中间体,2001,30(5):9-11.
    [8] 侯昭胤,费金华,郑小明.二甲醚的应用和生产工艺[J].石油化工,1999,28(1):59-62.
    [9] 张光德,黄震,乔信起等.二甲醚燃料喷射过程的试验研究[J].内燃机学报,2002,20(5):395-398.
    [10] Song J, Huang Z, Qiao X Q, et al. Performance of a controllable premixed combustion engine fueled with dimethyl ether [J]. Energy Convers Mgmt, 2004,45: 2223-2232.
    [11] 黄震.二甲醚-解决中国能源安全与环境保护之路[J].能源新技术,2005,27(11):37-39.
    [12] 陈正华,牛玉琴.二甲醚洁净燃料的开发与应用[J].煤炭转化,1996,6(4):38-41.
    [13] 许劲松,刘晓勤,姚虎卿.合成碳酸二甲酯的现状及展望[J].南京工业大学学报(自然科学版),2004,26(2):106-110.
    [14] Pachcco M A., Matshall C I. Review of dimethyl carbonate (DMC) manuture and its characteristics as a fuel additive [J]. Energy&Fuel, 1997, 11: 2-29.
    [15] 常雁红,韩怡申,王心葵等.甲醇、二甲醚共进料合成碳酸二甲酯[J].石油化工,2000,29(11):829-831.
    [16] 蔡光宇,刘中民,孙承林等.合成气经由一甲醚制取低碳烯烃[J].天然气化工,1994,19(5):26-30.
    [18] Galvita V V, Semin G L, Belyaev V D, et al. Production of hydrogen from dimethyl ether [J]. Appl Catal A.,2001,216: 85-90.
    [19] Matsumoto T, Nishiguchi T, Imvnura S,et al. Steam reforming of dimethyl ether over H-mordenite-Cu/CeO_2 catalysts [J]. Appl Catal A, 2004,276: 267-273.
    [20] Takeishi K., Suzuld H. Steam reforming of dimethyl ether [J]. Appl Catal A, 2004,260: 111-117.
    [21] Tanaka Y, Kikuchi R, Eguchi K, et al. Steam reforming of dimethyl ether over composite catalysts of γ-Al_2O_3 and Cu-based spinel [J]. Appl Catal B, 2005, 57: 211-222.
    [22] Mathew T, Yamada Y, Gopinath C S, et al. Effect of support on the activity of Ga_2O_3 species for steam reforming of dimethyl ether [J]. Appl Catal A, 2006, 300: 58-66.
    [23] 曹湘洪.谨慎对待甲醇、二甲醚作车用燃料加快GTL技术开发[J].化工进展,2004,23(10):1035-1042.
    [24] 刘志坚,廖建军,谭经品等.二氧化碳加氢合成二甲醚的热力学分析[J].石油与天然气化工,2000,29(4):163-164.
    [25] 赵彦巧,陈吉祥,张继炎.二氧化碳加氢直接合成二甲醚反应体系的热力学[J].天津大学学报,2006,39(4):408-413.
    [26] Kiennemann A. Idriss H, Hindermann J P, et al. Methanol synthesis on Cu/ZnOAl_2O_3 and Cu/ZnO-Al_2O_3 catalysts Influence of carbon monoxide pretreatment on the formation and concentration of formate species [J]. Appl CatalA, 1990,59(1): 165-180.
    [27] Sahibzada M, Chadwick D. Metcalfe I S. Hydrogenation of carbon dioxide to methanol over palladium-promoted Cu/ZnO/Al_2O_3 catalysts [J]. Catal Today, 1996, 29: 367-372.
    [28] Fujita S I, Usui M, Takezawa N, et al. Mechanisms of methanol synthesis from carbon dioxide and from carbon monoxide at atmospheric over Cu/ZnO [J]. J Catal, 1995, 157: 403-413.
    [29] Chinchen G C, Mansfield H, Spencer M S. The methanol synthesis: how does it work?[J]. Chemtech, 1990, 20 (11): 692-699.
    [30] 迟亚武,梁东白,林励吾等.超细CuO/ZnO/SiO_2催化剂上CO_2和CO加氢反应对比-CO_2加氢反应机理[J].燃料化学学报,1997,25(2):157-161.
    [31] Sun Q, Liu C W, Deng J F, et al. In situ IR studies on the mechanism of methanol synthesis over anultrafme Cu/ZnOAl_2O_3 catalyst [J].Appl Catal A, 1998, 171: 301-308.
    [32] 殷永泉,李晋鲁,李树本等.CO和CO_2在Cu/ZnOAl_2O_3催化剂上加氢反应机理的原位
    [33] Takagawa M, Ohsugi M. Study on reaction rates for methanol synthesis from carbon monoxide, carbon diode and hydrogen [J]. J Catal, 1987,107: 161-172.
    [34] Inoue T, Iizuka T, Tanabe K. Support effect of zinc oxide on synthesis of methanol from CO_2 and H_2 [J] .The Chemical Society of Japan, 1987, 60 (7): 1663-2664.
    [35] Ren Z X, Wang J, Lu D S, et al.Effect of carbon dioxide on methanol s5mthesis over different catalysts [J]. Appl Catal, 1989,49: 83-90.
    [36] Friedrich J B, Wainwricht M S, Young D J. Methanol synthesis over copper-zinc catalysis Ⅰ .activities and surface properties of fully extracted catalysts [J]. J Calal, 1983, 80: 11-13.
    [37] Dai W L, Swi Q, Deng J F, et al. XPS studies of Cu/ZnOAl_2O_3 ultrafine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO_2+H_2 [J]. Appl Sur Sci, 2001, 177: 172-179.
    [38] 丛昱,包信和,田金忠等.CO_2加氢合成甲醇的超细Cu-ZnO-ZrO_2催化剂的表征[J].催化学报,2000,21(4):314-318.
    [39] Choi Y, Futagami K,Fujitani T, et al. The difference iii the active sites for CO_2 and CO hydrogenations on Cu/ZnO-based methanol synthesis catalysts[J].Canal Lett, 2001, 73(1): 27-31.
    [40] Fujitatni T, Nakamura J. The chemical modification in the Cu/ZnO methonal synthesis catalysts[J]. Appl Catal A, 2000, 191: 111-129.
    [41] Harikumar K R, Rao C N R. Interaction of CO with Cu/ZnO catalyst surfaces prepared in situ in the electron spectrometer: Evidence for CO_2 and related species relevant to methanol synthesis[J].Appl Sur Sci, 1998, 125: 245-249.
    [42] Nakamura J, Kanai Y, Fujitani T, et al.The role of ZnO in Cu/ZnO methanol synthesis catalysts[J]. Catal Today, 1996, 28: 223-230.
    [43] 许勇,卢冠忠,汪仁.CO_2加H_2合成甲醇Cu-Zn-O催化剂表面化学态研究[J].高等学校化学学报,1994,15(4):580-583.
    [44] 葛庆杰,黄友梅.合成气直接制取二甲醚的双功能催化剂 Ⅰ.脱水组分对催化剂性能影响的研究[J].天然气化工,1996,21(6):19.
    [45] Xu M T, Goodman DW,Bhattacharyya A, et al. Synthesis of dimethyl ether(DME) from methanol over solid-acid catalysts[J]. Appl CatalA, 1997, 149: 289-301.
    [46] 刘志坚,廖建军,李大东等.甲醇脱水生成二甲醚的沸石催化剂[J].石油化工,1999,28 (4):236-240.
    [47] 王继元,曾崇余.固体酸对CO_2加氢合成二甲醚复合催化剂的影响[J].现代化工,2006,26(1): 35-39.
    [48] Takeguchi T, Inui T, moue M, et al. Effect of the property of solid acid upon synthesis to dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga and solid acids[J]. Appl Catal A.,2000, 192: 201-209.
    [49] Vanden Bussche K M, Froment G F. A stead-state kinetic model for methanol synthesis and the water gas shift rcaetion on a commercial Cu/ZnO/Al_2O_3 catalyst[J]. J Catal, 1996, 161: 1-10.
    [50] 陈光文,袁权.硅橡HEX/陶瓷复合膜反应器中CO_2合成甲醇(Ⅰ)反应动力学[J].化工学报,2002 53(1):17-22.
    [51] Highfield J G, Moftat J B. Elucidation of the mechanism of dehydration of methanol over 12-tungstophosphoric acid using infrared photoacoustic spectroscopy[J]. J Catal, 1985, 95(1): 108-119.
    [52] 王晓辉.CO_2加氢合成二甲醚的本征动力学研究[D].南京工业大学硕士学位论文,2004.
    [53] 王继元.二氧化碳加氢合成二甲醚的催化剂和本征动力学研究[D].南京工业大学博士学位论文,2006,6.
    [54] Dubojs J L, Sayama K, Arakawa H. Conversion of CO_2 to dimethyl ether and methanol over hybrid catalysts[J].Chem Lett, 1992 (7): 1115-1118.
    [55] Tao J L, Jun K W, Lee K. W. Co-production of dimethyl ether and methanol from CO_2 hydrogenation: development of a stable hybrid catalyst[J]. Appl Organometal Chem, 2001, 15: 105-108.
    [56] Jwi K W, Lee K W.Process of preparing a mixture of dimethyl ether arid methanol from carbon dioxide[P]. US: 6248795, 2001-06-19.
    [57] Hirano Masaki, Imai Tet suya, Yasutake Toshinobu, et al.Dimethyl ether synthesis from carbon dioxide by catalytic hydrogenation (part 1) activities of methanol dehydration catalysts [J]. Journal of the Japan Petroleum Institute, 2002, 45(3): 169-174.
    [58] Hirano Masaki, Imai Tet suya, Yasutake Toshinobu, et al. Dimethyl ether synthesis from carbon dioxide by catalytic hydrogenation (part 2) hybrid catalyst consisting of methanol synthesis and methanol dehydration catalysts [J]. Journal of the Japan Petroleum Institute, 2004, 47 (1): 11-18
    [59] Jun K W, Jung M H, Rao K S Rama,et al.Effective conversion of CO_2 to methanol and dimethyl ether over hybrid catalysts[J]. Stud Surf Sci Catal, 1998, 114: 447-450.
    [60] Jun K W, Rao K S Rama, Jung M H, et al. The CO_2 hydrogenation toward the mixture of methanol and dimethyl ether:investigation of hybrid catalysts[J]. Bull Korean Chem Soc, 1998, 19(4): 466-470.
    [61] Yao J H, Kimble J B. Catalysts for converting carbon dioxide to oxygenates and processes therefor and therewith[P].US: 2003060355, 2003-03-27.
    [62] 卢振举,林培滋,林励吾等.CO_2+H_2制含氧化合物的研究[J].分子催化,1993,7(2):156-159.
    [63] 葛庆杰,黄友梅,李树本等.CO_2加氢直接制取二甲醚的研究[J].分子催化,1997,11(4):297-300.
    [64] Sun K P, Lu W W, Xu X L, et al. Low-temperature synthesis of DME from CO_2/H_2 over Pd-modified CuO-ZnO-Al_2O_3-ZrO_2/HZSM-5 catalysts[J]. Catal Commu, 2004 (5): 367-370.
    [65] 齐共新,费金华,侯昭胤等.添加Mo对Cu/HZSM-5催化剂性能影响[J].应用化学,1999,16(6):62-64.
    [66] Gong-xin Qi, Jin-hua Fei, Xiao-ming Zheng et al. DME synthesis from carbon dioxide and hydrogen over Cu-Mo/HZSM-5[J]. Catal. Letter, 2001, 72(1-2): 121-124.
    [67] 吴泽彪,朱毅青,林西平等.二氧化碳加氢合成二甲醚的研究[J].催化学报,2000,21(2):129-132.
    [68] Yagi Jun-ichiro, Akiyama Tomohiro, Muramat su Atsushi. Catalyst development for methanol and dimethyl ether production from blast furnace off gas[J]. Studies in Surface Science and Catalysis, 2001, 133: 435-443.
    [69] 柯思明,刘殿华,房鼎业等.CO_2加H_2在三相床中一步法制二甲醚[J].华东理工大学学报,2001,27(1):20-23.
    [70] 李增喜,冯玉龙,张继炎等.合成二甲醚铜基/HZSM-5催化剂的研究-制备条件和反应条件对催化剂活性的影响[J].催化学报,1998,19(4):367-370.
    [71] 刘志坚,廖建军,谭经品等. 二氧化碳加氢合成二甲醚CuO-ZnO-Al_2O_3/HZSM-5型催化剂的研究[J].工业催化,2002,10(2):46-49.
    [72] 张建祥,赵彦巧,张继炎等.二氧化碳加氢直接合成二甲醚的研究 1.沉淀剂对催化结构和性能的影响[J].燃料化学学报,2003,31(5):444-448.
    [73] 赵彦巧,陈吉祥,张继炎等二氧化碳加氢直接合成二甲醚催化剂的研究 Ⅰ.铜/锌对复合催化剂结构和性能的影响[J].燃料化学学报,2005,33(3):334-338.
    [74] 王继元,曾崇余.Zr促进的Cu-ZnO/HZSM-5 合成二甲醚催化剂的制备[J].石油炼制与化工,2004,35(12):13-17.
    [75] 王继元,曾崇余,吴昌子.SiO_2改性的Cu-ZnO/HZSM-5催化剂及合成二甲醚性能[J].燃料化学学报,2006,34(2):195-199.
    [76] 赵云鹏,荆涛,田景芝.CuO-ZnO/ZrO_2催化剂上CO_2催化加氢合成甲醇的研究[J].天然气化工,2007,32(5):9-11.
    [77] 李廷真,王东升,刘全生等.铜基低汽气比高温变换催化剂制备工艺条件的研究[J].内蒙古工业大学学报(自然科学版),2002,(03):170-173.
    [78] 齐共新.[J].Chin.J.Chea,2001,19(5):441-448.
    [79] 齐共新,费金华,侯昭胤,郑小明.助剂Mn对Cu/Al_2O_3催化剂一氧化碳加氢性能的影响[J].燃料化学学报,2000,28(4):382-384.
    [80] 林明桂,杨成,吴贵升等.锰和镧改性Cu/ZrO_2合成甲醇催化剂的结构及催化性能[J].催化学报,2004,25(7):591-595.
    [81] YE Bing-Huo, JIANG Li-Long, WEI Ke-Mei et al. Multiple-metal (Ni-Cu-Mn-K/-Al_2O_3) Catalysts for High-temperature Water Gas Shift Reaction: Preparation by Equi-volumetic Impregnation and Character ization[J]. CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007,23(8): 1358-1364.
    [82] JIANG Da-hao,DING Yun-jie,PAN Zhen-dong,et aI.Effect of Impregnation Solvents on CO Hydrogenation over Rh-Mn-Li/SiO_2 Catalysts [J] .NATURAL GAS CHEMICAL INDUSTRY, 2007, 32(5): 5-8.
    [83] 何代平,丁云杰,尹红梅等.碱金属助剂对MnO_x/ZrO_2催化合成甲醇及异丁醇反应性能的影响[J].催化学报,2003,24(2):111-114.
    [84] BUssemeier B, Frohning CD, Cornils B.[J].Hydrocarbon Process, 1976,55(11): 110.
    [85] Maiti G C, Malessa R, Baerns M.[J].ApplCatal, 1983, 5(2): 86-91.
    [86] 刘颖,杨俊,白亮等.Fe-Mn催化剂对F-T合成反应的催化性能Ⅰ.初期反应性能[J].催化学报,2003,24(4):99-304.
    [87] 齐会杰,李德宝,马玉刚等.Mn改性Ni/K/MoS_2合成低碳醇催化剂反应性能研究[J].燃料化学学报,2003,31(2):119-123.
    [88] 张俊岭,任杰,陈建刚等.锰助剂对费托合成Co/Al_2O_3催化剂反应性能的影响[J].物理化学学报,2002,18(3):260-263.
    [89] 徐润,马中义,杨成等.Mn助剂对CuFeZrO_2低碳醇合成催化剂的修饰作用[J].物理化学学报,2003,(05):423-427.
    [90] 吴耀国,惠林,赵晨辉等.金属锰(Ⅱ)催化臭氧化TNT的机理[J].火炸药学报,2006,29(5):17-21.
    [91] WU Yao-guo, HUI Lin, ZHAO Chen-hui et al. Mechanism of 2,4,6-Trinitrotoluene removal by Mn(Ⅱ)-Catalyzed Ozonation[J]. Chinese Journal of Explosives & Propellants, 2006, 29(5): 17-21.
    [92] 沈荣明,竹湘锋,徐新华.Mn~(2+)催化臭氧氧化苯酚废水的初步研究[J].天津化工,2006,20(6):57-59.
    [93] 杨艳丽,王有乐,王玉双.Mn~(2+)催化臭氧化去除腐殖酸的试验研究[J].安徽农业学报,2007,35(6):1770-1771.
    [94] 孟庆海,周国伟,林会亮.Mn~(2+)-TiO_2介孔复合材料的制备及其光催化降解对氯苯酚[J].纳米科技,2007,4(3):41-43.
    [95] 张定国,刘芬,李发亮.Mn~(2+)-WO_3-TiO_2光催化降解甲基橙的研究[J].环境科学与技术,2007,30(1):86-89.
    [96] LI Xin, BIAN Jiang, ZHU Xue-Duo, QIANG Liang-Sheng, et al. Preparation, Structural Characterization and Catalyst Activity of CuO-MnO_2/Al_2O_3 Catalysts[J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, 2007, 28(6): 1155-1159.
    [97] YAN Xin-yu, CEN Shu-qiong, XIANG Li-ping.et al.Acetone Oxidation Activity and the Structure Character ization of Cu-Mn Complex Oxides[J]. BULLETIN OF SCIENCE AND TECHNOLOGY, 2005, 21(5): 521-523.
    [98] 赵建军,钟依均,谢云龙,罗孟飞.Mn_x-Mg_(1-x)/SiO_2催化剂上乙腈与甲醇选择性合成丙烯腈[J].石油化工,2005,34(1):30-33.
    [99] ZHANG Qingde, TAN Yisheng, YANG Caihong et al.Catalytic Oxidation of Dimethyl Ether to Dimethoxymethane over MnCl_2-H_4SiW_(12)O_(40)/SiO_2 Catalyst[J] .Chinese Journal of Catalysis, 2006,27(10): 916-920.
    [100] 王贺玲,田恒水.二氧化碳加氢直接合成二甲醚的研究进展[J].化学工业与工程技术,2005,26(2):16-20.
    [101] J. Sloczy'nski, R. Grabowski, A. Kozlowska et al Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO_2 catalysts for the methanol synthesis from CO_2[J]. Applied Catalysis A: General, 2003, (249): 129-138.
    [102] J. Sloczyn'ski, R. Grabowski, P. Olszewski et al.Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO_2 catalysts in the synthesis of methanol from CO_2 and H_2[J]. Applied Catalysis A: General,2006, (128):127-137.
    [103] Neli B. Stankova, Mariana S. Khristova, Dimitar R. Mehandjiev et al.Catalytic Reduction of NO with CO on Active Carbon-Supported Copper,Manganese, and Copper-Manganese Oxides[J]. Journal of Colloid and Interface Science, 2001, (241): 439-447.
    [104] Ivanka Spassova, Mariana Khristova, Dimitar Panayotov et al.Coprecipitated CuO-MnOx Catalysts for Low-Temperature CO-NOand CO-NO-O_2 Reactions[J]. Journal of Catalysis, 1999, (185): 43-57.
    [105] Min Kang, Eun Duck Park, Ji Man Kim et al.Cu-Mn mixed oxides for low temperature NO reduction with NH_3[J]. Catalysis Today, 2006, (111): 236-241.
    [106] 周仁贤,蒋晓源,郑小明.Mn-Cu-O负载型催化剂上CO氧化性能的研究[J].环境科学学报,1997,17(2):132-135.
    [107] Gong-Xin Qi, Xiao-Ming Zheng, Jin-Hua Fei et al. A novel catalyst for DME synthesis from CO hydrogenation (?). Activity, structure and surface properties[J]. Journal of Molecular Catalysis A: Chemical, 2001, (176): 195-203.
    [108] 李基涛,张伟德,高利珍.甲醇合成催化剂Cu-Mn/Al_2O_3中锰的助催化作用[J].分子催化,1997,11(5):369-373.
    [109] 杨明霞,费金华,郑小明.共沉淀浸渍法制备由合成气直接合成二甲醚的Cu.Mn催化剂[J].燃料化学学报,2004,32(2):210-214.
    [110] 齐共新.CO_2催化加氢合成醇醚等含氧化合物的Cu基催化剂及其机理研究[D].浙江大学博士学位论文,2001.
    [111] 齐共新,费金华,侯昭胤等.Cu-MnO_x/Al_2O_3催化剂上CO_2加氢反应的研究[J].石油化工,1999,28(10):660-662.
    [112] 何凤仙,唐秀娟,费金华等.金属组分负载量对Cu-Mn-Zn/Y直接合成二甲醚催化剂的影响[J].燃料化学学报,2006,34(2):191-194.
    [113] Arakawa H ,Sachtler W M H ,Sormorjai G A. Catalysis research of relevance to Carbon managment: Progress,challenges,and opportunities[J].Chem Rev, 2001,101(4): 953-996.
    [114] Jin-Hua Fei, Xiu-Juan Tang, Zhou-Yin Huo et al. Effect of copper content on Cu-Mn-Zn/ zeolite-Y catalysts for the synthesis of dimethyl ether from syngas[J].Catalysis Communications, 2006,(7): 827-831.
    [115] 吴贵升,陈小平,任杰等.焙烧温度对Cu/MnO_2/ZrO_2催化剂性能影响[J].燃料化学学报,1999, Z(27):90-94.
    [116] 孙鲲鹏,卢伟伟,邱凤炎.ZrO_2对合成二甲醚双功能催化剂表面结构及催化性能的影响[J].分子催化,2002,17(3):168-172.
    [117] YAN Gang, HUO Chao, L IU Huazhang. Application of ultrasonic technologies in catalytic chemistry [J]. INDUSTR LAL CATALYSIS, 2007,15(2): 1-5.
    [118] 吴跃东,万颖,李和兴.用超声波技术制备的Raney Ni催化剂及其催化加氢活性[J].催化学报,2004,25(7):529-532.
    [119] Mikkola J. P , Salmi T. Three-phase Catalytic Hydrogenation of Xylose to Xylitol-Prolonging the Catalyst Activity By Means of on-line Ultrasonic Treatment[J].Catal Today, 2001, 64 (3/4): 271.
    [120] Bianchi C L , Martini F, Ragaini V.New Ultrasonically Prepared Co-based Catalysts for Fischer-Tropsch Synthesis [J]. Ultrason Sonochem, 2001, 8 (2): 131.
    [121] Liang.X.Y.,Zhang L.M.,Qin Y.N. et al.Properties and Sonochemical Preparation of Nano- structured. [J]Acta Phys-Chim.Sin, 2003, 19(7): 666-669.
    [122] Liang.X.Y., Ma.Z., Bai.Z.C.et al.Properties and Sonochemical Preparation of Nanostructured LaNiO_3. [J]Acta Phys-Chim.Sin, 2002, 18(6): 567.
    [123] Jiang Xiaoyuan, Zhou Renxian, ChenPing. Studies on the CO oxidation and oxygen species desorption and recovery of CuO/CeO_2/γ-Al_2O_3catalyst [J].Environmental Chemistry, 1997, 16(5); 418-422.
    [124] Li Jinlu, Inui T. Enhancement in Methanol Synthesis Activity of a Copper/Zinc/Aluminium Oxide Catalyst by Ultrasonic Treatment During the Coerse of the Preparation Procedure[J].Appl Catal, 1996,139: 87-96.
    [125] 于凤文,计建炳,郑遗凡等.复频超声法制备合成甲醇铜基催化剂[J].石油化工,2004,33(9):824-827. prepared by spark-erosion[J].Appl Catal A, 1993,101: 151-165.
    [127] Takahashi T,Kai T.Hydrogenation catalysts prepared from amorphous alloys with zirconium[J].Mater Sci Eng,1999,267: 207.
    [128] 吉媛嫒,银小龙,王常有等.非均相催化氢化CO_2合成醇Ⅱ.双金属交换顺序及离子交换液pH值的影响[J].燃料化学学报,1994,22(1):53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700