铈铬基氨选择性催化还原氮氧化物催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物能够引起酸雨和光化学烟雾,已成为大气环境的主要污染物之一。如何控制和治理日益严重的氮氧化物污染已经成为国际上研究的热点。氨气选择性催化还原氮氧化物技术(SCR)是目前治理氮氧化物应用最广泛的技术,高活性的SCR催化剂一直是人们研究的焦点。复合金属氧化物由于其特殊的晶体结构和较高的氧化还原能力越来越受到人们关注,在SCR领域具有广阔的应用前景。
     CeO_2由于其独特的氧化还原能力和酸碱性能,作为助催化剂或活性组分广泛地应用于催化领域。CeO_2晶格中部分Ce4+被尺寸较小的低价态离子取代形成的固溶体,显示出更高的热稳定性、储氧能力和催化性能,对CeO_2的掺杂改性引起了研究者和产业界的广泛关注。而Cr作为变价元素,具有优异的氧化还原能力,因此将Cr掺入CeO_2中可能会有意想不到的NOx去除效果。
     本文以氨水为沉淀剂采用共沉淀法制备了铈铬复合氧化物,利用N2吸附/脱附、X射线衍射(XRD)、透射电子显微镜(TEM)对合成样品的晶相、孔结构性质、形貌进行表征;利用拉曼光谱(Raman)、X射线光电子能谱(XPS)等对合成样品的表面特性进行了表征。利用氢气程序升温还原(H2-TPR)技术对催化剂的还原性能进行了研究。分析了Cr的含量、焙烧温度对合成铈铬复合氧化物结构以及形貌的影响。利用固定床反应器,采用NOx分析仪和四极质谱,对复合氧化物的氮氧化物的选择性催化还原性能进行了研究。
     研究结果表明,对于未焙烧样品,Cr掺杂的复合氧化物与CeO_2相比具有更高的比表面积;TEM结果显示,Cr的掺杂使得复合氧化物的形貌发生显著变化,当Cr含量为1-5 at.%时,样品呈现长约60-150 nm、直径为15-20 nm的棒状结构,进一步增加Cr含量,纳米棒的比例逐渐降低,当Cr的掺杂量达到20 at.%时,已经观察不到纳米棒的存在。
     焙烧后样品的表征结果显示,当Cr掺杂量≤3 at.%时,复合氧化物抗烧结能力比CeO_2有了明显提高,进一步增加Cr的掺杂量,复合氧化物的比表面积衰减幅度变大,Cr含量为20 at.%样品的比表面积衰减了75 %;XRD结果表明,650℃焙烧后Cr掺杂量20 at.%样品析出了Cr2O3的晶相。XPS和Raman结果证实,在铈铬复合氧化物中Ce主要是以Ce4+形式存在,同时也有少量的Ce~(3+)存在;而Cr是以Cr6+和Cr~(3+)两种形式存在的,并且主要富集在催化剂表面。由于Ce~(3+)以及Cr~(3+)、Cr6+的存在,致使铈铬复合氧化物的氧空位数较之CeO_2明显增加。
     H2-TPR测试结果表明,Cr的掺杂提高了复合氧化物的氧化还原性能。结合表征结果证实复合氧化物中存在两种Cr6+物种:可溶性的Cr6+以及嫁接型Cr6+,前者较后者更容易被还原。而嫁接型Cr6+与Ce4+之间存在相互作用,一方面限制了Cr6+的还原,另一方面又促进了Ce4+的还原,使得复合氧化物的氧化还原能力比CeO_2有了显著增强。
     氨选择性催化还原氮氧化物的性能测试结果表明,Cr的掺杂对复合氧化物的活性有明显的促进作用,结合表征结果推断Cr的掺杂提高了复合氧化物的氧化还原性能,并产生了更多的氧空位,有利于NO在催化剂上的预氧化,促进了催化反应的进行。虽然400℃焙烧样品相比650℃有更大的比表面积,但是反应出来的活性数据却显示两者相差不大,这说明对于NH3-SCR反应体系,比表面积是影响活性的重要因素,但并不是唯一因素。比较了不同合成方法合成的Ce90Cr10样品的活性,结果显示大的比表面积使得富集在催化剂表面的Cr6+物种分散更均匀,与反应气氛接触时能够提供更多的活性点,有利于NOx的去除,同时较小的孔径可能抑制了NOx的去除,SCR反应本质上是一个气固反应,气体的扩散与吸附会受到孔径大小的影响,大的孔径往往能够展现出高的活性。
Nitrogen oxides are main atmospheric pollutants, which can cause acid rain and photochemical smog. The NOx control technology has been a research focus in the international environmental protection field. Among the present technologies of NOx control, the selective catalytic reduction (SCR) with NH3 is the most widely used treatment technology. The development of an SCR catalyst with high activity has been the key of SCR technology. Because of the unique crystal structure and high redox properties, the composite metal oxides are paid more and more attention, which have broad application in the domain of deNOx.
     The wide application of cerium oxide either as a promoter or as an active catalyst is due to its unique redox and acid–base properties. The doping of undersized lower valence ions to form a ceria-based solid solution can enhance the thermal stability, oxygen storage capacity, and catalytic activities. Cr is an elements with variable valences and has excellent redox ability, therefore Cr doped CeO_2 for deNOx is intriguing.
     In this work, Ce-Cr composite oxides were prepared by co-precipitation method using ammonia as the precipitation agent and characterized by N2 adsorption/desorption, X-ray diffraction(XRD), transmission electron microscopy (TEM), raman spectra (Raman), X-ray photoelectron spectra (XPS). Temperature programmed reduction of H2 (H2-TPR) tests were employed to determine the redox properties. The effects of Cr contents and calcination temperatures on crystal phase and surface properties were investigated. The NH3-SCR was performed on a fixed bed reactor to study the catalytic activity.
     Before calcinations, the Ce-Cr composites had a larger specific surface area than that of CeO_2. TEM results show that the samples with 1-5 (molar content) of Cr doping show nanorod morphologies, which coexists with some nanoscaled particles. The length of the nanorods is about 60-150 nm and the width is 15-20 nm. With the increase in Cr, the yield of nanorods reduced gradually. When Cr content is 20 at%, no nanorods were observed. After calcinations, the samples with the Cr content less that 3 at% show improved anti-sintering ability than that of CeO_2. Further increase in Cr results in the decrease in the surface area compared with CeO_2. The Cr2O3 phase was observed for the 20 at.% Cr doped sample. Ce is mainly in + 4 valence, but there are a number of Ce~(3+) simultaneously. However, Cr is mainly segregated to the surface in two forms (Cr6+ and Cr~(3+)). The presence of Ce~(3+), Cr~(3+) and Cr6+ in mixed oxides results in an increased in concentrations of oxygen vacancies compared with pure CeO_2.
     The H2-TPR results show that the redox properties are enhanced by the doping of Cr. There may be two kinds of Ce6+ species in the mixed oxides. Hydrogen consumption peak at the lower temperature can be attributed to the reduction of soluble Ce6+, and the peak at the higher temperature is caused by the grafted Cr6+, which is formed by the interaction between Ce6+ and Ce4+. The results of catalytic activities for NH3-SCR show that the addition of Cr improved the catalytic performance of the composite oxides. Ce90Cr10 shows the highest activity. Although the samples calcined at 400℃had a higher surface area than that at 650℃, the activity shows little difference.
     The specific surface area is an important factor for the NH3-SCR reaction system, but it is not the only one. SCR reaction is essentially a gas-solid reaction, the diffusion and adsorption of gases will be affected by pore sizes. The larger pore size can often results in the higher activity.
引文
[1]曲虹霞.催化脱除燃煤烟气中NOx的研究[博士学位论文].南京:南京理工大学, 2004.
    [2]张楚莹,王书肖,邢佳等.中国能源相关的氮氧化物排放现状与发展趋势分析.环境科学学报, 2008, 28: 2470-2479.
    [3]郭东明,硫氮污染防治工程技术及其应用.北京:化学工业出版社, 2001.
    [4]曾汉才,姚斌,程俊峰等.关于我国大型锅炉NOx排放评价及其排放标准修订的建议.锅炉制造, 2001, 7: 1-4.
    [5]董建勋.燃煤电厂SCR烟气脱硝试验研究及数学模型建立[博士学位论文].保定:华北电力大学, 2007.
    [6]管锡珺,董典同,马培建等. NOx的产生及脱除研究进展.青岛建筑工程学院学报, 2002, 23: 35-40.
    [7]左志雄,向军.大型锅炉氮氧化物排放特性试验研究.华中电力, 2001, 14: 9-11.
    [8]李廷豪. SCR烟气脱硝反应塔动力学模型与实验研究[硕士学位论文].重庆:重庆大学, 2009.
    [9] Forzatti P. Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 2001, 222: 221-236.
    [10]叶代启,梁红.环境催化技术在大气污染治理中的应用.环境保护科学, 1999, 7: 40-42.
    [11]戴树桂.环境化学.北京:高等教育出版社, 1997.
    [12]顾培亮.浅谈可持续发展.天津科技, 2001, 1: 38-40.
    [13]沈学静,王海舟.固定源NOx的排放控制及DeNOx催化剂的应用.钢铁, 2000, 9: 68-72.
    [14]郝玉振.火力发电厂SCR脱硝技术用催化剂性能试验研究[硕士学位论文].济南:山东大学, 2009.
    [15]程慧,解永刚,朱国荣.火电厂脱硝技术发展趋势.浙江电力, 2005, 2: 38-40.
    [16]王海强,吴忠标.烟气氮氧化物脱除技术的特点分析.能源与环境, 2004, 3: 27-30.
    [17]李云涛,钟秦.低温NH3-SCR反应机理及动力学研究进展.化学进展, 2009, 21: 1094-1100.
    [18] Silvia S, Seong M J, Pedro A, et al. Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania. Catalysis Today, 2002, 75: 331-338.
    [19] Nova I, Lietti L, Casagrande L, et al. Characterization and reactivity of TiO2-supported MoO3 De-NOxSCR catalysis. Applied Catalysis B : Environmental, 1998, 17: 245-258.
    [20] Olsson L, Sj?vall H, Blint R J. A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5. Applied Catalysis B: Environmental, 2008, 81: 203-217.
    [21]贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述.环境科学, 2007, 28: 1169-1177.
    [22]刘志明,郝吉明,朱乐天.富氧条件下NOx催化净化的研究进展.环境污染治理技术与设备, 2002, 3: 41-47.
    [23]万颖,王正,马建新.含金属分子筛上NOx选择性催化还原研究进展Ⅰ:含非贵金属分子筛体系.分子催化, 2002, 16: 153-160.
    [24] Komvokis V G, Iliopoulou E F, Vasalos I A, et al. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives. Applied Catalysis A: General, 2007, 325: 345-352.
    [25] Hanna S, Louise O, Erik F, et al. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5—The effect of changing the gas composition. Applied Catalysis B: Environmental, 2006, 64: 180-188.
    [26] Malin B, Magnus S, Anders E C P. Improved lean deNOx performance of Cu-ZSM-5 through alternative synthesis conditions for ZSM-5. Topics in Catalysis, 2007, 42-43: 153-156.
    [27] Bala R, Richard G H, Sukwon C, et al. Testing zeolite SCR catalysts under protocol condition for NOx abatement from stationary emission sources. Catalysis Today, 2000, 55: 281-290.
    [28] Michael S, Sascha H, Andrea D T, et al. The role of NO2 in the selective catalytic reduction of nitrogen oxides over Fe-ZSM-5: Active sites for the conversion of NO and of NO/NO2 mixtures. Journal of Catalysis, 2008, 259: 96-103.
    [29] Gongshin Q, Ralph T Y. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2005, 60: 13-22.
    [30] Antonio G, Isabella N, Enrico T. Study of a Fe-zeolite-based system as NH3-SCR catalyst for diesel exhaust aftertreatment. Catalysis Today, 2008, 136: 18-27.
    [31] Devadas M, Kr?cher O, Elsener M, et al. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM-5. Applied Catalysis B: Environmental, 2006, 67: 187-196.
    [32] Asima S, Masaaki H, Tadahiro F, et al. Role of zeolite structure on NO reduction with diesel fuel over Pt supported zeolite catalysts. Microporous and Mesoporous Materials, 2008, 111: 488-492.
    [33] Tadao N, Manabu M, Juhana R, et al. A NOx reduction system using ammonia-storage selective catalytic reduction in rich/lean excursions. Applied Catalysis B: Environmental, 2007, 77: 190-201.
    [34] Vogt E T C, van Dillen A J, Geus J W, et al. Selective catalytic reduction of NOx with NH3 over a V2O5/TiO2 on silica catalyst. Catalysis Today, 1988, 2: 569-579.
    [35] Janssen F J J G, Van den Kerkhof F M G, Bosch H, et al. Mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts. 1. The role of oxygen studied by way of isotopic transients under dilute conditions. Journal of Physical Chemistry, 1987, 91: 5921-5927.
    [36] Regalbuto J R, Zheng T, Miller J T. The bifunctional reaction pathway and dual kinetic regimes in NOx SCR by methane over cobalt mordenite catalysts. Catalysis Today, 1999, 54: 495-505.
    [37] Meunier F C, Zuzaniuk V, Breen J P, et al. Mechanistic differences in the selective reduction of NO by propene over cobalt-and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study. Catalysis Today, 2000, 59: 287-304.
    [38] Amiridis M D, Duevel R V, Wachs I E. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia. Applied catalysis B: environmental, 1999, 20: 111-122.
    [39] Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of catalysis, 2003, 217: 434-441.
    [40] Long R Q, Yang R T. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3-TiO2 prepared with a sol-gel method. Journal of catalysis, 2002, 207: 158-165.
    [41] Alemany L J, Liett L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts. Journal of catalysis, 1995, 155: 117-130.
    [42]闫志勇. Ti, Al基SCR催化剂及其脱硝性能研究[博士学位论文].杭州:浙江大学, 2006.
    [43] Xu W, Yu Y, Zhang C, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catalysis Communications, 2008, 9: 1453-1457.
    [44] Apostolescu N, Geiger B, Hizbullah K, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Applied catalysis B: environmental, 2006, 62: 104-114.
    [45] Wu Z B, Jiang B Q, Liu Y, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. Journal of Hazardous Materials, 2007, 145: 488-494.
    [46] Jiang B, Liu Y, Wu Z. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. Journal of Hazardous Materials, 2009, 162: 1249-1254.
    [47] Huang J H, Tong Z Q, Huang Y, et al. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 2008, 78: 309-314.
    [48] Qi G, Yang R T. A superior catalyst for low-temperature NO reduction with NH3. Chemical Communication, 2003: 848-849.
    [49] Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of Catalysis, 2003, 217: 434-441.
    [50] Liu Q, Liu Z, Xie G, et al. Effect of SO2 on a cordierite honeycomb supported CuO catalyst for NO reduction by NH3. Catalysis Letters, 2005, 101: 27-30.
    [51] Pena D A, Uphade B S, Smirniotis P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3 I. Evaluation and characterization of first row transition metals. Journal of catalysis, 2004, 221: 421-431.
    [52] Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Applied catalysis B: environmental, 2007, 76: 123-134.
    [53] Smirniotis P G, Pena D A, Uphade B S. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on hombikat TiO2. Angewandte Chemie International Edition, 2001, 40: 2479-2482.
    [54]钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社, 2002.
    [55]赵宗让.电厂锅炉SCR烟气脱硝系统设计优化.中国电力, 2005, 38: 69-74.
    [56]张强,许世森,王志强.选择性催化还原烟气脱硝技术进展及工程应用.热力发电, 2004, 33: 1-6.
    [57]环境保护部.火电厂烟气脱硝工程技术规范选择性催化还原法. HJ 562-2010, 2010.
    [58]陈代宾.燃煤电厂选择性催化脱硝工艺的实践与探讨.电力环境保护, 2003, 19: 21-23.
    [59]杨冬,徐鸿. SCR烟气脱硝技术及其在燃煤电厂的应用.电力环境保护, 2007, 23: 49-51.
    [60]朱文斌.燃煤电厂SCR烟气脱硝装置的冷模实验和CFD数值计算研究[硕士学位论文].上海:上海交通大学, 2008.
    [61] Barbier J, Jr, Oliviero L, et al. Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants. Catalysis Today, 2002,75: 29-34.
    [62] Tschope A, Birringer R. Oxyreduction studies on nanostructured cerium oxide. Nanostructured Materials, 1997, 9: 591-594.
    [63] Palmqvist A E C, Johansson E M, Jaras S G, et al. Total oxidation of methane over doped nanophase cerium oxides. Catalysis Letters, 1998, 56: 69-75.
    [64] Trovarelli A, Zamar F, Llorca J, et al. Nanophase Fluorite-Structured CeO2-ZrO2 Catalysts Prepared by High-Energy Mechanical Milling. Journal of catalysis, 1997, 169: 490-502.
    [65] Merryfield R, McDaniel M, Parks G. An XPS study of the Phillips Cr/silica polymerization catalyst. Journal of catalysis, 1982, 77: 348-359.
    [66] McDaniel M P. The state of Cr(VI) on the Phillips polymerization catalyst II. The reaction between silica and CrO2Cl2. Journal of catalysis, 1982, 76: 17-28.
    [67] Mentasty L R, Gorriz O F, Cadus L E. Chromium oxide supported on different Al2O3 supports: Catalytic propane dehydrogenation. Ind. Eng. Chem. Res, 1999, 38: 396-404.
    [68] Al-Zahrani S M, Elbashir N O, Abasaeed A E, et al. Catalytic performance of chromium oxide supported on Al2O3 in oxidative dehydrogenation of isobutane to isobutene. Ind. Eng. Chem. Res, 2001, 40: 781-784.
    [69] Singh P, Hegde M S, Gopalakrishnan J. Ce2/3Cr1/3O2+y: A New Oxygen Storage Material Based on the Fluorite Structure. Chemistry Of Materials, 2008, 20: 7268-7273.
    [70] Moriceau P, Grzybowska B, Barbaux Y, et al. Oxidative dehydrogenation of isobutane on Cr–Ce–O oxide II. Physical characterizations and determination of the chromium active species. Applied Catalysis A: General, 2000, 199: 73-82.
    [71] Moriceau P, Grzybowska B, Barbaux Y, et al. Oxidative dehydrogenation of isobutane on Cr–Ce–O oxide: I. Effect of the preparation method and of the Cr content. Applied Catalysis A: General, 1998, 168: 269-277.
    [72] Perez-Alonso F J, Granados M L, Ojeda M, et al. Chemical Structures of Coprecipitated Fe-Ce Mixed Oxides. Chem. Mater, 2005, 17: 2329-2339.
    [73] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halidesand chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32: 751-767.
    [74] Keramidas V G, White W B. Raman spectra of oxides with the fluorite structure. The Journal of Chemical Physics, 1973, 59: 1561-1562.
    [75] McBride J, Hass K C, Poindexter B D, et al. Raman and X-ray studies of Ce1-xRExO2-y, where RE= La. Pr, Nd, Eu, Gd, and Tb. Journal of applied physics, 1994, 76: 2435-2441.
    [76] Sinha A K, Suzuki K. Preparation and Characterization of Novel Mesoporous Ceria-Titania. J. Phys. Chem. B, 2005, 109: 1708-1714.
    [77] Rama R M V, Shripathi S T. Photoelectron spectroscopic study of X-ray induced reduction of CeO2. Journal of Electron Spectroscopy and Related Phenomena, 1997, 87: 121-126.
    [78] Kundakovic L, Mullins D R, Overbury S H. Adsorption and reaction of H2O and CO on oxidized and reduced Rh/CeOx(111) surfaces. Surface Science, 2000, 457: 51-62.
    [79] Beche E, Charvin P, Perarnau D, et al. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal, 2008, 40: 264–267.
    [80] Natile M M, Glisenti A. CoOx/CeO2 nanocomposite powders: Synthesis, characterization, and reactivity. Chem. Mater, 2005, 17: 3403-3414.
    [81] O'Connell M, Norman A K, Hüttermann C F, et al. Catalytic oxidation over lanthanum-transition metal perovskite materials. Catalysis Today, 1999, 47: 123-132.
    [82] Liu L, Li H, Zhang Y. Effect of Synthesis Parameters on the Chromium Content and Catalytic Activities of Mesoporous Cr-MSU-x Prepared under Acidic Conditions. J. Phys. Chem. B, 2006, 110: 15478-15485.
    [83] Zhang Y, Andersson S, Muhammed M. Nanophase catalytic oxides: I. Synthesis of doped cerium oxides as oxygen storage promoters. Applied Catalysis B: Environmental, 1995, 6: 325-337.
    [84] Cherian M, Rao M S, Yang W T, et al. Oxidative dehydrogenation of propane over Cr2O3/Al2O3 and Cr2O3 catalysts: effects of loading, precursor and surface area. Applied Catalysis A: General, 2002, 233: 21-33.
    [85] Gaspar A B, Brito J L F, Dieguez L C. Characterization of chromium species in catalysts for dehydrogenation and polymerization. Journal of Molecular Catalysis A: Chemical, 2003, 203: 251-266.
    [86] Shi X, Ji S, Wang K, et al. Oxidative dehydrogenation of ethane with CO2 over novel Cr/SBA-15/Al2O3/FeCrAl monolithic catalysts. Energy Fuels, 2008, 22: 3631-3638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700